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Abstract - We compute the coding capacity of the 
watermarking game for a vector Gaussian covertext 
and squared-error distortions. As with a scalar Gaus- 
sian covertext [l], the capacity does not depend on 
knowledge of the covertext at the decoder. Unlike the 
scalar version, an attacker based on the rate distortion 
solution (i.e. optimal compression) is suboptimal. 

I. INTRODUCTION 
The watermarking game [I, 21 can model a situation 

where an original source sequence (“covertext”) needs to be 
copyright-protected before it is distributed to the public. 
The copyright (“message”) needs to be embedded in the dis- 
tributed version (“stegotext”) so that no “attacker” with ac- 
cess to the stegotext will be able produce a “forgery” that 
resembles the covertext and yet does not contain the embed- 
ded copyright message. 

Different messages may correspond to different possible 
owners, versions, dates, etc. of the covertext, and it is thus 
of interest to study the number of distinct messages that can 
be embedded (subject to an encoding distortion constraint) 
if reliable decoding is required from any reasonable forgery. 
The highest exponential rate at which this number can grow 
in relation to the covertext size is the coding value of the game. 

Our previous study [l] of IID scalar Gaussian covertexts is 
extended here to IID vector Gaussian covertexts. These re- 
sults provide a stepping stone to the study of general Gaussian 
covertexts [3]. 
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11. WATERMARKING MODEL 

The vector Gaussian watermarking game can be described 
as follows. A source emits a covertext U consisting of n IID 
zero-mean Gaussian random vectors, each with m x m covari- 
ance matrix K,. (The blocklength n is allowed to grow, while 
the vector size m stays fixed.) Independently of U ,  a message 
W is drawn uniformly over the set (1,. . . , [2””J}, where R is 
the rate of the system. 

Using a secret key 0 1 ,  which is independent of U and 
W ,  the encoder produces the stegotext X = X ( U ,  W ,  0 1 )  E 
R ” X W l  . We require the encoder to satisfy i E,,, ( X z ,  -U,,)z 5 
A,, a.s., where i and j range from 1 to n and m, respec- 
tively, A1 > 0 is a given constant called the encoder dzstor- 
tzon level, and a.s. stands for “almost surely”. The attacker, 
which is assumed to be ignorant of U ,  W and 01, produces 
a forgerg Y = Y ( X , 0 2 )  E Etmxm based on X and its own 
attack key 0 2 .  We similarly require the attacker to satisfy 

C,,,(& - X,,)’ 5 A,, a.s., where A2 > 0 is a given con- 
stant called the attacker dzstortzon level. The decoder pro- 
duces an estimate of the message W .  In the publzc verszon 
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of the game, the decoderAonly Tses the encoder’s secret key 
and the forgery, so that W = W ( Y , % ) .  In the private ver- 
sion ofAthe game, the decoder also uses the covertext, so that 
W = W ( Y ,  01, U ) .  We consider the probability of error av- 
eraged over the covertext, message and- both sources of ran- 
domness, which is written P,(n) = Pr(W # W ) .  

We adopt a conservative approach to the watermarking 
game and assume that the attacker knows the details of the 
encoder and decoder (but not the realizations of U ,  W and 
01). Conversely, the encoder and decoder have no knowledge 
of the attacker, and in particular, how the attacker will dis- 
tribute its distortion. We thus say that rate R is achievable 
if there exists a sequence of allowable rate-R encoder and de- 
coder pairs such that for any sequence of allowable attackers, 
f k (n)  tends to zero as n tends to infinity. The coding capacity 
of the game is the supremum of all achievable rates. 

Theorem. The coding capacity of the vector Gaussian water- 
marking game (private and public versions) is given by  

m. 

where C * ( D l ,  D z ,  a”) is the capacity of the scalar Gaussian 
watermarking game [I] and U?,  . . . , U% are the eigenvalues of 
the covariance matrix K,. 

To better understand our main result, let us assume that 
K, is diagonal so that U consists of m streams, each a length- 
n sequence of IID zero-mean Gaussian random variables with 
respective variances a?, . . . ,U:. After choosing vectors D1 
and &, the encoder encodes stream j using the scalar encoder 
of [l] based on Dlj and &. Every attacke_r is associated 
with a feasible D2 (not necessarily equal to  D2), where D z j  
describes the amount of distortiop the attacker adds to  stream 
j. For the optimal choice of Dz, the attacker will choose 
D2 = & in order to minimize the achievable rates. We next 
note that the max and min in (1) cannot be switched and thus 
the order of the game remains critical, even if the encoder and 
attacker are constrained to use optimal scalar strategies on 
each of the streams. Finally, the attacker’s optimal distortion 
distribution is not given by reverse water-filling on the powers 
of the components of X .  Thus, unlike in the scalar version, 
an attacker based on the rate distortion solution allows rates 
larger than capacity to be achieved. 
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