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Abstract — Lapidoth and Moser have recently pro-
posed a general technique for obtaining upper bounds
on channel capacity via a dual expression in which
the maximization over probability distributions on
the channel input alphabet is replaced with a mini-
mization over probability distributions on the chan-
nel output alphabet. They have also introduced the
notion of “capacity achieving input distributions that
escape to infinity” in order to study channel capacity
at high signal-to-noise (SNR) ratios.

In this partly tutorial paper we shall demonstrate
the use of these ideas by applying them to the study of
communication over discrete-time channels impaired
by additive Gaussian noise and phase noise.

I. Introduction

Lapidoth and Moser [1] have recently proposed a general
approach to obtain upper bounds on channel capacity. The
approach is based on a dual expression for channel capac-
ity in which maximization (of mutual information) over the
space of probability distributions on the input alphabet is re-
placed with a minimization (of average relative entropy) over
the space of probability distributions on the output alphabet.
While this dual expression had been known for a while [2,
Section 2.3], [3, Exercise 4.17], [4] it had been — to the best
of our knowledge — previously mostly used to derive a ter-
mination criterion for iterative numerical calculations of the
capacity of discrete memoryless channels (DMCs) and to de-
rive connections between the redundancy in universal source
coding and channel capacity. In [1] it was proposed to use this
expression to derive closed form upper bounds on the capacity
of channels with infinite alphabets.

The key to the method is the inequality

I(Q; W ) ≤
∑
x∈X

Q(x)D
(
W (·|x)‖R(·)

)
, R ∈ P(Y) (1)

which upper bounds the mutual information I(Q; W ) be-
tween the terminals of a DMC W (y|x) under the input dis-
tribution Q in terms of the average (over Q) relative en-
tropy D

(
W (·|x)‖R(·)

)
between the channel output distribu-

tion W (·|x) corresponding to the input x and some arbitrary
distribution R(·) on the channel output alphabet. Here X and
Y denote the finite channel input and output alphabets, and
P(Y) denotes the set of all probability distributions on the
output alphabet Y. While choosing R(·) to be the output dis-
tribution (QW )(y) =

∑
x′∈X Q(x′)W (y|x′) that corresponds

to the input distribution Q will yield an equality in (1), other
output distributions may lead to more tractable expressions.
In [5] we extended this inequality to infinite alphabets and
proposed that by a judicious choice of the probability mea-
sure R(·) this inequality can lead to useful upper bounds on

channel capacity. The proposed approach was used in order to
study multi-antenna fading channels [1] [5] and in the study
of constrained communication over finite state channels [6].

In [7] it was noticed that for many channels with power
constraints, capacity achieving input distributions escape to
infinity. Loosely speaking, this means that the asymptotic
behavior of channel capacity can be achieved even if the inputs
are subjected to an additional constraint that requires them
to be bounded away arbitrarily far from zero. This was then
used extensively in order to study the fading number of multi-
antenna systems operating over flat fading channels [8].

In this paper we shall demonstrate how these two ideas can
be used in the study of the asymptotic behavior of channel ca-
pacity. We shall illustrate this approach by studying discrete-
time channels with additive white Gaussian noise and phase
noise impairments.

II. Channel Model

We study a channel whose time-k output Yk ∈ C is a complex
random variable given by

Yk = xk · eiΘk + Zk (2)

where xk ∈ C denotes the time-k power-|xk|2 channel input,
{Zk} is an IID sequence of circularly symmetric zero-mean
variance-σ2 Gaussian random variables, and {Θk} is a station-
ary and ergodic phase noise sequence of finite entropy rate

h
(
{Θk}

)
> −∞. (3)

We assume throughout that the process {Zk} is independent
of the process {Θk} and that their joint law does not depend
on the input sequence. The channel inputs are assumed to be
power limited so that in considering a blocklength-n transmis-
sion we require

1

n

n∑
k=1

E
[
|Xk|2

]
≤ Es. (4)

Henceforth we shall assume σ2 = 2 so that the signal-to-noise
ratio (SNR) is

SNR =
Es

2
. (5)

If the sequence {Θk} is IID, we shall say that the phase noise
is memoryless and we shall drop all time indices. If, in addi-
tion, Θ is uniformly distributed over [−π, π) we shall say that
communication is non-coherent. In this case

T = |Y |2 =
∣∣xeiΘ + Z

∣∣2 (6)

is a sufficient statistic. Conditional on |x|2, the distribution of
T is a non-central chi-square distribution with non-centrality
|x|2 and two degrees of freedom. We therefore write

T
∣∣∣ (|X|2 = |x|2) ∼ χ,2

2 (|x|2) (7)



where χ,2
ν (λ) denotes the non-central chi-square distribution

with ν ≥ 1 degrees of freedom and non-centrality λ, i.e., the
distribution that results from the addition of the squares of
ν independent unit-variance real Gaussian random variables
whose squared means sum to λ. For future reference we note
the mean, variance, and entropy estimates of such distribu-
tions:

• Mean: ν + λ

• Variance: 2(ν + 2λ)

• Differential entropy:

h
(
χ,2

ν (λ)
)
≤ 1

2
log

(
4πe(ν + 2λ)

)
, ν ∈ N, λ ∈ R. (8)

lim
λ→∞

h
(
χ,2

ν (λ)
)
− 1

2
log

(
8πeλ

)
= 0, ν ∈ N. (9)

III. Non-Coherent Case — Upper Bounds

The non-coherent channel can be viewed as a channel whose
output T takes value in R+. For such channels it has been
proposed in [5] to employ (1) with the choice of the output
distribution R(·) having the Gamma density:

tα−1e−t/β

βαΓ(α)
, t ≥ 0. (10)

Here α > 0 and β > 0 are parameters that will be optimized
later. (Somewhat tighter results can be obtained by choos-
ing the output law to be a modified Gamma distribution [5],
but for our present purposes the above suffices.) This output
distribution and (1) lead to the bound:

I(Q; W ) ≤ α log β + log Γ(α)

− hQ(T |X) + (1− α)E[log T ] +
1

β
E[T ] , α, β > 0

where hQ(T |X) is the conditional differential entropy of T
given X when X is distributed according to Q and all expec-
tations are with respect to the law on T induced by law Q on
X. Choosing β = E[T ] /α leads to the bound:

I(Q; W ) ≤ α− α log α + log Γ(α) + α log E[T ]

+ (1− α)E[log T ]− hQ(T |X), α > 0. (11)

Notice that (11) is not specific to our channel. It holds
for any channel W (·|·) taking value in the non-negative
reals.

Returning to our channel we note that to use (11)
we need an expression for hQ(T |X), which requires the
complicated computation of the differential entropy of a
χ,2

2 (λ) random variable. Fortunately, it can be shown
that the capacity of our channel can be achieved by in-
put distributions that escape to infinity. Hence, adding
the constraint

|X| ≥ xmin (12)

where xmin is any (possibly very large) positive number,
does not alter the asymptotic behavior of the channel
capacity as Es → ∞. Consequently, we may use (9) to
obtain

h(T |X = x) =
1
2

log |x|2 +
1
2
(log 8πe) + o(1) (13)

where the correction term o(1) tends to zero as xmin tends
to infinity.

As for the term E[log T |X = x] we use the exact ex-
pression for the expected logarithm of a non-central chi-
square random variable [5] to obtain

E[log T |X = x] = log |x|2 + o(1). (14)

With E[T ] = Es+2 we now have estimates of all the terms
in (11) and we thus obtain from (11), (13), and (14):

I(Q;W ) ≤ α log(Es + 2) + α− α logα− 1
2

log(8πe)

+ log Γ(α) +
(1
2
− α

)
EQ

[
log |X|2

]
+ o(1). (15)

Finally, upon choosing α = 1/2 and using (5), we obtain:

lim sup
SNR→∞

{
C(SNR)−

(1
2

log SNR− 1
2

log 2
)}

≤ 0. (16)

(The choice α = 1/2 is motivated by considering the max
min of the RHS of (15) over EQ

[
log |X|2

]
≤ log Es and

α > 0 respectively.)

IV. Non-Coherent Case — Lower Bounds

The proposed lower bound is again based on the
Gamma distribution, but this time applied as an input
distribution to the channel. We shall need the fact that
if the density of S ≥ 0 is

sα−1e−s

Γ(α)
, s ≥ 0, (17)

then
E[S] = α, E[logS] = ψ(α) (18)

h(S) = (1− α)ψ(α) + α+ log Γ(α) (19)

where ψ(α) = Γ′(α)/Γ(α) denotes the digamma function.
We now choose

|X|2 =
Es

α
S. (20)

Noting that by circular symmetry

log π + h(T ) = h
(
XeiΘ + Z

)
≥ h

(
XeiΘ

)
= log π + h

(
|X|2

)
we obtain the bound

h(T ) ≥ h
(
|X|2

)
= log

Es

α
+ (1− α)ψ(α) + α+ log Γ(α)

which combines with (8) to yield

I(X;T ) ≥ log
Es

α
+ (1− α)ψ(α) + α+ log Γ(α)

− 1
2
E
[
log

(
8πe(|X|2 + 1)

)]
. (21)



Noting now that by [5] the condition h(S) > −∞ implies

lim
Es→∞

{
E
[
log(|X|2 + 1)

]
− E

[
log(|X|2)

]}
= 0 (22)

we obtain

I(X;T ) ≥ 1
2

log Es −
1
2

logα+
(1
2
− α

)
ψ(α) + α

+ log Γ(α)− 1
2

log(8πe) + o(1)

where we have used (20) and (18) to compute E
[
log |X|2

]
explicitly.

The choice of α = 1/2 now demonstrates the achiev-
ability of

1
2

log SNR− 1
2

log 2 + o(1)

which combines with (16) to yield

C(SNR) =
1
2

log
(

1 +
SNR

2

)
+ o(1) (23)

where the o(1) terms tends to zero as the SNR tends to
infinity.

It is interesting to note that the choice of α = 1/2,
which at high SNR asymptotically achieves channel ca-
pacity, corresponds to choosing |X|2 to have a central
chi-square distribution of one degree of freedom. At high
SNR the choice of X as a zero-mean Gaussian so that
|X|2 has two degrees of freedom is thus sub optimal.

V. Memoryless Phase Noise

We now consider the case where Θ is not uniformly dis-
tributed over [−π, π). We assume that

h(Θ) > −∞ (24)

and that the distribution of Θ is fixed and does not vary
with the SNR. This latter assumption is reasonable when
the source of the phase noise is inaccuracies in the oscil-
lators, and perhaps less so when the source is Gaussian
noise in the phase recovery loop.

Since the mutual information across this channel is in-
variant under a rotation of the input distribution, and
since mutual information is concave in the input distri-
bution, it follows that there is no loss in optimality in
limiting the input distributions to circularly symmetric
input distributions. For such distributions X = |X| · eiΦ

where Φ is independent of |X| and uniformly distributed
we have:

I(X;Y ) = I
(
|X| ; Y

)
+ I

(
Φ ; Y

∣∣ |X|)
= I

(
|X| ; |Y |

)
+ I

(
Φ ; Y

∣∣ |X|)
≤ I

(
|X| ; |Y |

)
+ I

(
Φ ; XeiΘ

∣∣ |X|)
= I

(
|X| ; |Y |

)
+ I

(
Φ ; ei(Φ+Θ)

)
=

1
2

log SNR− 1
2

log 2 + log(2π)− h(Θ) + o(1).

This bound is actually tight because

lim
|x|→∞

I
(
Φ ; Y

∣∣ |X| = |x|
)

= I
(
Φ ; ei(Φ+Θ)

)
(25)

and because channel capacity is achievable by inputs dis-
tributions that escape to infinity so that we may limit
ourselves to inputs of such very large magnitudes.

VI. Phase Noise with Memory

We next address the case where the phase noise {Θk} is
not memoryless but rather a stationary and ergodic pro-
cess of finite entropy rate. Denoting by Xk the random
variables X1, . . . , Xk and similarly for Y we have

1
n
I(Xn;Y n) =

1
n

n∑
k=1

I(Xn;Yk|Y k−1)

Inspecting each of the terms on the right hand side of the
above separately we have:

I(Xn;Yk|Y k−1) = h(Yk|Y k−1)− h(Yk|Y k−1, Xn)

≤ h(Yk)− h(Yk|Y k−1, Xn)

= h(Yk)− h(Yk|Y k−1, Xk−1, Xk)

≤ h(Yk)− h(Yk|Y k−1, Xk−1,Θk−1, Xk)

= h(Yk)− h(Yk|Θk−1, Xk)

= I(Xk;Yk) + I(Θk−1;Yk|Xk)

= I(Xk;Yk) + I(Θk−1;Yk, Xk)

≤ I(Xk;Yk) + I(Θk−1; Θk).

Here the first term on the right corresponds to the mutual
information in the memoryless case, and the second term
approaches the difference between h(Θ1) and the entropy
rate h({Θk}).

A lower bound on capacity can be demonstrated by
considering IID inputs that achieve the memoryless chan-
nel capacity and that have large norms (with probability
one), thus guaranteeing that from past inputs and out-
puts one would be able to reconstruct the past phases
with arbitrarily high precision. With this approach we
obtain the asymptotic expansion:

C =
1
2

log
(

1 +
SNR

2

)
+ log(2π)−h

(
{Θk}

)
+ o(1) (26)

or

C =
1
2

log
(
1 + 2π2e−2h({Θk}) SNR

)
+ o(1) (27)

where the o(1) term tends to zero as the SNR tends to
infinity.
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