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Abstract

We present results on the high signal-to-noise ratio (SNR) asymptotic capacity
of peak-power limited single-antenna discrete-time stationary complex-Gaussian
fading channels with memory, where the transmitter and receiver, while fully cog-
nizant of the fading law, have no access to its realization. Complementing recent
results of Lapidoth & Moser about the case where the fading process is regular,
we consider here the non-regular case, i.e., the case where the entropy-rate of the
fading process is negative infinity.

It is demonstrated that while in the former case capacity grows double logarith-
mically in the SNR with a fading number that is determined by the prediction error
in predicting the present fading from noiseless observations of its past, here the
asymptotics require a careful analysis of the noisy prediction error, i.e., the asymp-
totic functional dependence of the prediction error in predicting the present fading
from noisy observations of its past. This functional dependence, which can be made
explicit in terms of the spectrum of the fading process, may lead to dramatically
different asymptotic dependencies of capacity on SNR, e.g., double-logarithmic,
logarithmic, or fractional powers of the logarithm of the SNR.

The “pre-log”, i.e., the asymptotic ratio of channel capacity to the logarithm
of the SNR takes on a particularly simple form: it is the Lebesgue measure of the
set of harmonics where the spectral density is zero. The pre-log is unrelated to the
“bandwidth” of the process or its “coherence time”.

In the light of these results we re-examine some of the models in the literature on
fading channels and the asymptotic behaviors associated with them. It is found that
what may appear as slight changes in the channel model may lead to dramatically
different high-SNR asymptotics.

1 Introduction

This paper addresses the capacity of a single-antenna fading channel whose time-k
complex-valued output Yk ∈ C is given by

Yk =
(
d + Hk

)
xk + Zk, (1)

where xk ∈ C is the time-k complex-valued channel input; the complex valued “fading
process” {Hk} models multiplicative noise; the “specular component” d ∈ C is deter-
ministic; and the complex process {Zk} models additive noise. The processes {Hk} and
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{Zk} are assumed to be independent and of a joint law that does not depend on the
input sequence {xk}.

We shall assume that the additive noise {Zk} is independent and identically dis-
tributed (IID) circularly-symmetric complex Gaussian random variables of zero mean
and variance σ2. Thus Zk ∼ NC(0, σ2) where we use the notation W ∼ NC(µ, σ2) to
indicate that W −µ has a zero-mean variance-σ2 circularly-symmetric complex-Gaussian
distribution, i.e., to indicate that the density fW (w) of W is given by

fW (w) =
1

πσ2
e−

|w−µ|2
σ2 , w ∈ C. (2)

The fading process {Hk} is assumed to be a unit-variance zero-mean stationary
circularly-symmetric Gaussian process of general spectral distribution function F (λ),
λ ∈ [−1/2, 1/2]. Thus, F (·) is a monotonically non-decreasing function on the inter-
val [−1/2, 1/2] [1, Theorem 3.2, p. 474],

E [Hk+mH∗
k ] =

∫ 1/2

−1/2

ei2πmλ dF (λ), k, m ∈ Z, (3)

and
E
[|Hk|2

]
= 1. (4)

Being monotonic, the function F (·) is almost everywhere differentiable, and we denote its
derivative by F ′(·). If F (·) is absolutely continuous with respect to the Lebesgue measure
on [−1/2, 1/2] then its derivative F ′(λ) is called the spectral density of the fading process.
In this case the process {Hk} is also guaranteed to be ergodic.

We denote the mean squared-error in predicting H0 from the infinite past {Hk}−1
k=−∞

by ε2
pred. It is given by

ε2
pred = exp

{∫ 1/2

−1/2

log F ′(λ) dλ

}
.

We say that the process is regular if ε2
pred > 0. Otherwise we say that the process is

non-regular.
In analyzing the capacity of this channel we shall assume that while the statistics of

the channel — namely d, F (·), and σ2 — are fully known at the transmitter and receiver,
neither transmitter nor receiver has knowledge of the realization of the fading process.

Without any constraints on the input the capacity of this channel is infinite. We
shall thus be interested in two different input constraints: a peak power constraint and
an average power constraint. In the former we require that, at no time k, will the
magnitude of the input exceed the peak power A:

|xk| ≤ A, k ∈ Z. (5)

In this case the capacity CPP(A) is given by

CPP(A) = lim
n→∞

1

n
sup I(X1, . . . , Xn; Y1, . . . Yn) (6)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying the peak
constraint (5), and where the limit exists because {Hk} was assumed stationary. If



instead of a peak-power constraint we impose an average power constraint, the capacity
CAvg is given by

CAvg(Es) = lim
n→∞

1

n
sup I(X1, . . . , Xn; Y1, . . . Yn) (7)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying the average
power constraint

n∑
k=1

E
[|Xk|2

] ≤ n · Es.

In the case of a peak power constraint we define the signal-to-noise ratio SNR as A2/σ2

whereas in the average power constraint we define the SNR as Es/σ
2. Thus,

SNR =

{
A2

σ2 peak power
Es

σ2 average power
. (8)

2 Regular Fading

The high SNR channel asymptotics for regular fading were studied in [2]. There it was
shown that for general finite entropy rate stationary fading processes capacity is given
by

C = log log SNR + log π + E
[
log |Hk|2

]− h ({Hk}) + o(1) (9)

where the o(1) term tends to zero as the SNR tends to infinity, and where — with the
SNR being defined as in (8) — the asymptotics hold irrespective of whether a peak power
or an average power input constraint is imposed. Specializing this result to the case of
Gaussian fading [2] one obtains the expansion

C = log log SNR + log |d|2 − Ei(−|d|2) − 1 + log
1

ε2
pred

+ o(1) (10)

where Ei(·) denotes the exponential integral function

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0. (11)

It is based on (10) that Lapidoth & Moser proposed that the key to the high SNR
asymptotics of regular Gaussian fading is the prediction error ε2

pred.

3 Non-Regular Fading

Recall that the fading is non-regular if ε2
pred = 0. This is, for example, the case whenever

F ′ is zero over a finite interval, e.g., when the process is bandlimited. The key to the
asymptotics of non-regular fading channels is the noisy prediction error ε2

pred(δ
2). It is

the mean squared-error in predicting H0 from noisy observations of the past

H−1 + W−1, H−2 + W−2, H−3 + W−3, · · ·
where {Wk} is independent of {Hk} and IID NC (0, δ2) distributed. Explicitly

ε2
pred(δ

2) = exp

{∫ 1/2

−1/2

log
(
F ′(λ) + δ2

)
dλ

}
− δ2. (12)



The analysis of the asymptotics is based on the following two bounds [3]. The first is the
upper bound

CPP(SNR) ≤ CIID
PP (SNR) + log

1

ε2
pred(1/SNR)

(13)

= log log SNR + log |d|2 − Ei(−|d|2) − 1 + log
1

ε2
pred(1/SNR)

+ o(1) (14)

where CIID
PP (SNR) is the peak-limited capacity of the corresponding memoryless Ricean

channel, and where the equality follows from the analysis of this term at high SNR; see
[2]. The lower bound is somewhat loose, but suffices for our asymptotic analysis

CPP(SNR) ≥ log
1

ε2
pred(4/SNR) + 8/(5SNR)

+ log |d|2 − Ei

(
− |d|2

1 − ε2
pred(4/SNR)

)
− log

5e

6
. (15)

These bounds and (12) have some consequences that we next describe.

Log-Log Growth: As mentioned earlier, for regular processes capacity grows double log-
arithmically in the SNR. It turns out that this may be the case even for some non-regular
fading processes. In fact, with the aid of the above bounds we can fully characterize the
spectra that lead to a double logarithmic growth of capacity.

lim
SNR→∞

C(SNR)

log log SNR
< ∞ ⇐⇒ lim

δ2↓0

− ∫ 1/2

−1/2
log
(
F ′(λ) + δ2

)
dλ

log log 1
δ2

< ∞. (16)

Pre-Log: The limiting value of the ratio of channel capacity to log SNR has lately
received much attention under the heading of “multiplexing gain”. We prefer the term
“pre-log” because it seems more self-explanatory and because for SISO channels it cannot
exceed the value of 1, which corresponds to non-fading channels. With the aid of the new
bounds we can give a simple characterization of the pre-log: it is the Lebesgue measure
of the set of zeros of the derivative of the spectral distribution function:

lim
SNR→∞

CPP(SNR)

log SNR
= µ

({
λ : F ′(λ) = 0

})
, (17)

where µ(·) denotes the Lebesgue measure on the interval [−1/2, 1/2].

Other Asymptotics: It turns out that the capacity asymptotics are not limited to
logarithmic or double-logarithmic growths in the SNR. For example, using these bounds
it is shown in [3] that for any 0 < β < 1 and any 0 < ω < 1/2 there exist spectral
distribution functions such that

lim
SNR→∞

C(SNR)(
log SNR

)β =
2ω

β
, 0 < β < 1, 0 < ω < 1/2. (18)

Where does the Log-Log Region Start?: The new bounds are not only useful in
the study of non-regular fading. They can also be used for a finer analysis of the regular



fading asymptotics. We mention here one such possible use. In [2] it was suggested to use
(10) as an indication of the rates above which capacity grows only double-logarithmically
in the SNR. Thus, it was suggested that a system operating at rates that are significantly
higher than the fading number

χ = log |d|2 − Ei(−|d|2) − 1 + log
1

ε2
pred

(19)

is operating in the log-log SNR regime. This characterization of the double-logarithmic
regime in terms of rates gives no indication of the corresponding SNRs. With the aid of
the new bounds one can give an alternative indication of the log-log regime. Namely, an
SNR is in the log-log region if the prediction error ε2

pred(1/SNR) is “close” to the noiseless
prediction error ε2

pred, e.g., if

ε2
pred(1/SNR) < 2ε2

pred(0). (20)

To this one should add, of course, that the SNR must be large enough so that the first
term on the RHS of (13) be in the double-log regime. For example [2], [4],

log

(
1 +

SNR · |d|2
1 + SNR

)
≈ log

(
1 + |d|2) .

4 Comments, Questions, and Other Models

In this section we shall comment on some of the above results, raise some questions, and
address other models that relate to this paper.

1. Asymptotics and Bandwidth: The noisy prediction error ε2
pred(δ

2), the noiseless pre-
diction error ε2

pred, and the Lebesgue measure of the set {λ : F ′(λ) = 0} are all invariant
under a reordering of the set of harmonics [−1/2, 1/2]. Consequently, there can be no
direct relationship between the “bandwidth” of {Hk} and the channel capacity asymp-
totics. If the process is bandlimited, capacity will grow logarithmically in the SNR, but
the pre-log will depend not only on the bandwidth but also on the Lebesgue measure of
the set of in-band harmonics where the spectral density is zero.

2. Asymptotics and Snippets of the Autocorrelation: No matter how large p is, the first
p + 1 values of the autocorrelation

{E [HmH∗
0 ]}p

m=0

typically say nothing about the channel asymptotics. This can be attributed to the fact
that, unless these values are not of full rank, the sequence can be extended to a regular
autocorrelation (e.g., to that of the max-entropy process) thus yielding a log log SNR
growth or to an autocorrelation whose spectral measure consists of a finite number of
atoms and which thus leads to a log SNR growth. More precisely:

Fact 1. The maximum entropy rate stochastic process {Xk} satisfying the constraint

E
[
XkX

∗
k+m

]
= rm, m = 0, . . . , p, for all integer k (21)

is the p-th order Gauss-Markov process. The differential entropy rate of this maximum
entropy process is finite if, and only if, the covariance matrix of the vector X0, . . . , Xp is
non-singular.



A minimum entropy rate stochastic process {Xk} is a Gaussian process of the form

Xk =

p+1∑
`=1

α`Xk−`

for some constants α1, . . . , αp+1. This process is typically non-ergodic and is of a spec-
tral distribution function F (·) which is a step function with a finite number of steps.
It’s derivative F ′(λ) is thus almost everywhere zero. The entropy rate of this minimum
entropy process is −∞.

Moreover, if the vector (X0, . . . , Xp)
T has a covariance matrix (induced by the con-

straint (21)) that is non-singular, then for any M > 0 there exists an ergodic (p + 1)-th
order Gauss-Markov process that satisfies (21) and which has a differential entropy rate
smaller than −M .

3. Testing for Regularity: The above fact also demonstrates the difficulty in designing a
statistical test for regularity. Indeed, there is no non-trivial unbiased hypothesis-testing
procedure for determining whether a finite number of samples come from a regular Gaus-
sian process or from a non-regular Gaussian process. In other words, in any statistical
procedure that does not ignore the data, there will always be a non-regular process that
is more likely to be classified as “regular” than some regular process.

This can be formalized as follows: Assume that we have no measurement noise, and
that we can obtain clean samples from the realization of a fading channel. Let p + 1
denote the number of samples H0, . . . , Hp obtained from the fading process. Moreover
assume that the fading is known to be a stationary Gaussian process. Based on these
measurements, we would like to determine whether the fading process is regular or not.
We shall show that this hypothesis testing problem does not admit a non-trivial unbiased
test. To be more formal, denote by Ω the set of all stationary Gaussian processes, and
by ΩR its subset of regular processes. Denote by ΩR̄ = Ω \ ΩR the set of non-regular
processes. Recall that a hypothesis test is simply a set S0 ⊂ Cp+1 where we declare “R” if
(H0, . . . , Hp) ∈ S0, and declare “R̄” otherwise. The “size of the test” α is, by definition,

α = sup
θ∈ΩR

Pr(“R̄”|θ).

The test is unbiased if

Pr(“R̄”|θ) ≥ α, for all θ ∈ ΩR̄.

To quote [5]: “unless this condition is satisfied, there will exist alternatives under which
the acceptance of the hypothesis is more likely than in some cases in which the hypothesis
is true”. We shall show that the only unbiased tests for this problem declare “R” with
a probability that does not depend on θ ∈ Ω. These unbiased tests are, in other words,
(possibly randomized) tests that ignore the data.

To prove this denote for any process θ ∈ ΩR by θmin ∈ ΩR̄ the Gaussian min-entropy
process whose autocorrelation agrees with that of θ in the first p+1 values. Thus, under
θ ∈ ΩR, and θmin ∈ ΩR̄ the joint distributions of (H0, . . . , Hp) are identical. In particular

Pr(“R̄”|θ) = Pr(“R̄”|θmin), θ ∈ ΩR. (22)

We shall show that if a test is unbiased then

Pr(“R̄”|θ) = Pr(“R̄”|θ′), θ, θ′ ∈ ΩR. (23)



This will imply that the probability of declaring “R̄” does not depend on the covariance
matrix of H0, . . . , Hp so that the test is trivial.

To prove that any unbiased must satisfy (23) assume by contradiction that for some
θ, θ′ ∈ ΩR we have

Pr(“R̄”|θ) < Pr(“R̄”|θ′).
Then by (22) we have:

Pr(“R̄”|θmin) = Pr(“R̄”|θ)
< Pr(“R̄”|θ′)

but θmin ∈ ΩR̄ and θ′ ∈ ΩR, so that the test is biased.
It should be noted that the absence of non-trivial unbiased test does not, in itself,

prove that the testing is impossible. It does demonstrates some of the difficulties involved.

4. Asymptotics via Physics: The difficulty of using statistical procedures to test for reg-
ularity and for the corresponding asymptotics motivate considering the physics involved.
It is interesting that Jakes’s model for continuous-time fading [6] models the fading as a
bandlimited process, i.e., a non-regular process. There is a need to study the discrete-
time analog of this model and examine whether it also leads to a non-regular fading
process. A step in this direction was recently taken in [7].

5. “Real World Numbers”: Before we can answer such basic questions as whether the
typically encountered fading is regular, it will be extremely difficult to come up with
approximate numbers that quantify the SNRs at which the system’s capacity exhibits
various behaviors. An attempt at numerically quantifying the region in which systems
exhibit a log log SNR capacity dependence was recently made in [8]. The authors used
such measures as “coherence bandwidth”, “RMS delay spread”, “coherence time”, and
“maximum Doppler shift” to estimate the number of samples L required before the au-
tocorrelation of the fading process decreases below half the variance. The authors then
fit a first-order Gauss-Markov process accordingly. That is, they found the innovation
variance that would result in a first-order Gauss-Markov process having an autocorrela-
tion function that decays to half the variance in the above specified number of samples
L. The authors then studied the asymptotic of this Gauss-Markov model to determine
the SNR at which the log log SNR behavior of channel capacity begins.

This approach requires a leap of faith. As mentioned above, no snippet of the auto-
correlation can determine the channel asymptotics. Thus, there are numerous different
processes whose autocorrelation decays to half the variance in L symbols. These have
arbitrary noiseless prediction errors. Some lead to logarithmic capacity growths, some
to double-logarithmic, etc. In fact, as we shall see, even if we knew that the process
is regular, and even if we knew its noiseless prediction error (which we cannot!), there
would still be no way to determine based on this data alone the SNR at which the
double-logarithmic region begins.

6. The Marzetta-Hochwald Model: The fading model proposed by Marzetta & Hochwald
[9] is parameterized by one parameter T , which is a positive integer. The model, also
known as the “block-constant” model, assumes that once every T symbols the fading level
is picked from a zero-mean unit-variance circularly symmetric Gaussian distribution and
remains constant at this level for the next T fading symbols. After T symbols the fading
level is drawn again from the above distribution (independently of previous fading values)
and the resulting value is the fading level for the next T symbols, whence a new level is



drawn, etc. While [9] focused on capacity at moderate SNR, Zheng and Tse [10] derived
the high SNR asymptotics. They showed that for T > 1 capacity grows logarithmically in
the SNR, with the pre-log being (T − 1)/T . It is thus seen that this model behaves very
differently from the stationary Gaussian fading model with regular fading. Indeed, in
the latter model capacity always grows double logarithmically in the SNR; in the former
only when the fading is memoryless (T = 1).

Moreover, this model also behaves very differently from the stationary Gaussian fading
model with non-regular fading. The pre-log in the Marzetta-Hochwald model is always
in the set {0, 1/2, 2/3, 3/4, · · · }, whereas µ({λ : F ′(λ) = 0}) can be any number between
zero and one.

We also note here that the Marzetta-Hochwald model is a non-stationary model. This
is sometimes justified by assuming a frequency hopping system, i.e., that the system hops
to a new frequency every T symbols. This justification is addressed next

7. Frequency Hopping: The Marzetta-Hochwald model is often justified by assuming a
frequency hopping system. We note here that in addition to limiting the scope of the
results, some difficulties remain. First note that in comparison to the regular station-
ary fading model, this model is overly optimistic (in predicting a logarithmic rather than
double-logarithmic growth). Since frequency hopping destroys memory, it reduces capac-
ity, so that in the absence of frequency hopping the discrepancy with the regular fading
model would only be greater.

Secondly, if we are to seriously consider a frequency hopping system, we must con-
clude that the Marzetta-Hochwald model is appropriate only if we are willing to model
the fading in each frequency as constant over time. This corresponds to a constant auto-
correlation for which capacity grows with a unit pre-log1. We would thus have to conclude
that if the system were not hopping we could have achieved, at each of the frequencies,
a unit pre-log. Under such conditions one would have great difficulty justifying the use
of frequency hopping.

In short, the Marzetta-Hochwald model makes two idealizations: that the fading
is independent from block to block and that it is constant within a block. It is the
latter, which is not justifyable by frequency hopping, that leads to the overly optimistic
asymptotics.

8. The Liang-Veeravalli Model: The Liang-Veeravalli model extends the Marzetta-
Hochwald model to allow for the T fading values in each duration-T block to be jointly
Gaussian with a covariance matrix of rank Q. They show that for Q = T one obtains a
double-logarithmic capacity growth, whereas for Q < T the growth is logarithmic with a
(T − Q)/T pre-log. This certainly allows for richer pre-logs, though never non-rational.
In addition, the model does not allow for growths of the form (log SNR)β, for 0 < β < 1.

The richness of the model makes it somewhat difficult to pick its parameters. As we
have discussed, this is also a problem that haunts the stationary Gaussian fading model.

9. Stationarity: In both the Marzetta-Hochwald and the Liang-Veeravalli the fading
is modeled as a non-stationary process. Is this physically motivated or is it done for
mathematical convenience alone? We suspect the latter. Stationary models with memory
are far less prevalent. See [2], [3] and the first-order Gauss-Markov model [11], [8].

10. The First Order Gauss-Markov Model: The capacity of a fading channel where the

1This corresponds to a non-ergodic channel but one for which one can achieve a unit pre-log with
arbitrarily high probability.



fading process is a first order Gauss-Markov model was studied in [11] and [8]. In the
former the focus was on Gaussian inputs. In [8] it was demonstrated that the capacity-
SNR function of a Gauss-Markov fading model can be roughly divided into three regions:

C ≈




log SNR SNR < 1/ε2
pred

log 1/ε2
pred 1/ε2

pred ≤ SNR < e1/ε2pred

log log SNR SNR ≥ e1/ε2pred

. (24)

We would like here to comment on the dangers in extrapolating the classification and
boundaries of (24) to general stationary Gaussian fading models.

We begin by noting that the Gauss-Markov model falls under the category of regular
stationary Gaussian fading2. The asymptotics of channel capacity are thus always double-
logarithmic. The model will thus never predict a logarithmic growth of channel capacity,
or any fractional power thereof. Indeed, for non-regular processes the asymptotics need
not be double-logarithmic, so that it is questionable whether one would get such three
regions.

The reason that caution must be exercised in extrapolating from this model, is that
the model is not very rich. It is based on only one parameter — the variance of the
innovation. Thus, quantities that for general Gaussian processes are unrelated become
rigidly tied in the Gauss-Markov model. Indeed, if one is restricted to a one-parameter
family, almost any non-trivial quantity determines all others. To demonstrate the need for
caution consider the problem of determining the region in which capacity grows double-
logarithmically in the SNR. Specializing the result of [2] to the Gauss-Markov case, one
obtains that Lapidoth & Moser would characterize the region as the one where the rate
is significantly higher than the RHS of (19), which for d = 0 equates to −1−γ− log ε2

pred.
(For Gauss-Markov processes the noiseless prediction error is simply the variance of the
innovation process.)

Etkin and Tse specify the region in terms of SNR. Namely, the double-logarithmic re-
gion corresponds to an SNR greater than e1/ε2pred . Notice that for Gauss-Markov processes
the two characterizations are by (24) essentially the same. The difficulty lies in extrapo-
lating to general fading. The characterization in terms of SNR is problematic. The reason
is that as one can see from the new bounds, the SNR at which the double-logarithmic
behavior begins is related to the noisy prediction error ε2

pred(δ
2) and not directly to its

limiting value ε2
pred = ε2

pred(0); hence the motivation for (20).
Note, however, that while for the Gauss-Markov process the value of the noiseless

prediction error ε2
pred determines the noisy one, this is generally not the case. The SNR

at which (20) holds with equality can be arbitrarily higher than e1/ε2pred . Thus, while for
Gauss-Markov fading the characterization of the double-logarithmic region in terms of
rates (19) or in terms of SNR (20) both agree with the characterization as SNR > e1/ε2pred

this is in general not the case.
Great caution must be exercised extrapolating the SNR > e1/ε2pred characterization to

non Gauss-Markov fading. Ditto for the other two regions.

11. The Gaussian Assumption: Can the fading be modeled as Gaussian at high SNR?
While (9) holds in general, our study of the non regular fading relies heavily on this
assumption. This assumption is also made in all the models we discussed above.

2In this discussion we assume that the Gauss-Markov is not degenerate, i.e., that the innovation is of
positive variance so that the process is not constant over time.



12. Peak vs. Average Power: Our study was limited to a peak power constraint. Do
the asymptotics change for average power constraints? They do not for regular fading
or for non-fading channels. Even if they do, one could argue that when they differ, the
peak constraint is more important because in such cases the asymptotics of the average
power constraint can only be achieved by input distributions with a peak-to-average ratio
tending to infinity.
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