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Abstract — We obtain the first term in the high
signal-to-noise ratio (SNR) expansion of the ca-
pacity of fading networks where the transmitters
and receivers—while fully cognizant of the fad-
ing law—have no access to the fading realization.
This term is an integer multiple of log log SNR with
the coefficient having a simple combinatorial char-
acterization.

I. The Channel Model
The communication problem we address is one with
nT ∈ N transmitters (N denoting the positive integers)
and nR ∈ N receivers. Denoting by X

(t)
k ∈ C the com-

plex signal transmitted at time-k by Transmitter t and
by Y

(r)
k ∈ C the time-k received signal by Receiver r, we

assume a fading channel model

Yk = HkXk + Zk (1)

where Yk and Xk denote the time-k vectors of
received and transmitted signals (Y (1)

k , . . . , Y
(nR)
k )T,

(X(1)
k , . . . , X

(nT)
k )T, respectively, Hk is a random nR×nT

complex matrix, and {Zk} are IID nR-dimensional com-
plex Gaussian vectors of IID variance-1 circularly sym-
metric complex Gaussian components.

So far, the model is very much reminiscent of the multi-
ple antenna fading channel. The difference here is that we
assume that some of the components of the fading matrix
are deterministically zero. Such entries model situations
where some receivers only receive the signals transmitted
by a subset of the transmitters. We denote by

Z ⊆ {1, · · · , nR} × {1, · · · , nT}

the set of components of the matrix-valued fading process
{Hk} that are deterministically zero:

H
(r,t)
k = 0 a.s. whenever (r, t) ∈ Z (2)

and we denote by

HZ
k = {H(r,t)

k : (r, t) /∈ Z}

the rest of the components.
We shall assume that the process {HZ

k } is a stationary
and ergodic Gaussian process of finite second moment

E
[∣∣H(r,t)

1

∣∣2] < ∞, 1 ≤ r ≤ nR, 1 ≤ t ≤ nT (3)

and of finite differential entropy rate

h
(
{HZ

k }
)

> −∞. (4)

II. The Main Result
Denote by Cco(Es) the capacity of the channel from

all the transmitters to all the receivers when the average
transmitted power by each transmitter is limited to Es.
Denote by CMAC(Es) ≤ Cco(Es) the sum-rate capacity of
this channel when the different transmitters are viewed as
separate users, each of average power Es, in a multiple-
access channel whose output is the vector of all received
signals.

Our main results are that under the above assumptions
on {Hk}

lim
Es→∞

{Cco(Es)− κ∗ log log Es} < ∞ (5)

and
lim
Es→∞

{κ∗ log log Es − CMAC(Es)} < ∞ (6)

where the non-negative integer κ∗ can be computed in the
following combinatorial way. For any transmitter 1 ≤ t ≤
nT let Rt denote the set of receivers its signal affects

Rt = {1 ≤ r ≤ nR : (r, t) /∈ Z}, 1 ≤ t ≤ nT.

Define a κ-length power chain

(t1, . . . , tκ) ∈ {1, . . . , nT}κ

as a κ-tuple satisfying Rt1 6= ∅, Rt2 \Rt1 6= ∅, Rt3 \(Rt1∪
Rt2) 6= ∅, and in general

Rtν \
⋃

1≤η<ν

Rtη 6= ∅, ν = 1, . . . , κ. (7)

Then κ∗ is the length of the longest power chain.
Note that in the special case that {Hk} is of finite dif-

ferential entropy rate (and hence has no deterministically
zero components) the longest power chain is of length
one, and our results are in agreement with the results on
multiple-antenna fading channels [1]. The present results
allow us, however, to analyze much more interesting net-
works such as Wyner’s cellular communication model [2],
[3], etc.

References
[1] A. Lapidoth and S. Moser, “Capacity bounds via duality with

applications to multi-antenna systems on flat fading channels,”
IEEE Trans. on Inform. Theory, pp. 2426–2467, Oct. 2003.

[2] A.D. Wyner, “Shannon-theoretic approach to a Gaussian cellu-
lar multiple-access channel,” IEEE Trans. on Inform. Theory,
pp. 1713–1727, Nov. 1994.

[3] S. Shamai and A.D. Wyner, “Information-theoretic considera-
tions for symmetric, cellular, multiple-access fading channels—
Parts I & II,” IEEE Trans. on Inform. Theory, pp. 1877–1911,
Nov. 1997.


