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On the High-SNR Capacity of Noncoherent Networks
Amos Lapidoth, Fellow, IEEE

Abstract—We obtain the first term in the high signal-to-noise
ratio (SNR) asymptotic expansion of the sum-rate capacity of non-
coherent fading networks, i.e., networks where the transmitters
and receivers—while fully cognizant of the fading law—have no ac-
cess to the fading realization. This term is an integer multiple of log
log SNR with the coefficient having a simple combinatorial charac-
terization. It can be interpreted as the effective number of parallel
channels that can be supported by the network, i.e., as the maximal
number of point-to-point single-user scalar channels that can be
supported by the network in a manner that will allow, with proper
power allocation, negligible cross interference. The results hold ir-
respective of whether the transmitters can cooperate or must op-
erate in an multiple-access regime; irrespective of whether feed-
back from the receivers to the transmitters is available or not; and
irrespective of whether the receivers can cooperate or not.

Index Terms—Channel capacity, fading, high signal-to-noise
ratio (SNR), memory, multiple-antenna network, noncoherent.

I. INTRODUCTION

I N this paper, we consider a discrete-time vector fading
channel, where the transmitted vector suffers from both

multiplicative and additive noises. The multiplicative noise
takes the form of a matrix-valued stationary and ergodic process
that multiplies the transmitted vector, and the additive noise
takes the form of independent and identically distributed (i.i.d.)
isotropic Gaussian vectors. We only consider the case where the
realization of neither the additive noise nor of the multiplicative
noise are known to the transmitter and receiver; only their
probability laws are given. The mathematical model that we
address is thus very similar to the “noncoherent” flat-fading
multiple-antenna channel model.

There is, however, an important difference. In the multiple-
antenna channel model we think of the components of the trans-
mitted vector as being the signals transmitted by colocated an-
tennas. Similarly, the components of the received vectors are
viewed as the signals received at colocated antennas. Our model
is more general. We can think of the different components of
the input vector as being controlled by a single user as in a
single-user multiple-antenna communication scenario, but we
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can also think of each component as being controlled by dif-
ferent geographically separated users as, for example, in a mul-
tiple-user network where each of the users employs a single
transmit antenna. We can also envision that the components of
the transmitted vector are partitioned into disjoint groups where
the different groups are controlled by geographically separated
users. This corresponds to a network where the different geo-
graphically separated users may employ multiple transmit an-
tennas of various numbers. Finally, in our setup, the different
components of the input vector need not correspond to physi-
cally different transmit antennas. We can also envision a sce-
nario where they correspond to transmissions taking place at
different frequencies and/or times as in a network employing a
slotted protocol. Analogous scenarios can be envisioned for the
received vector.

The various scenarios mentioned above differ not only in
the allowed dependencies between the different components of
the transmitted vector. It turns out that, at high signal-to-noise
ratio (SNR), far more important is the structure of the multi-
plicative noise that they imply. For example, if a certain receive
antenna and a certain transmit antenna operate at different
time/frequency slots, then the corresponding component in the
multiplicative noise matrix will be deterministically zero. A
similar situation occurs when a given transmitter is geographi-
cally very far apart from a given receiver as could, for example,
be the case in a cellular system. For example, in Wyner’s
linear cellular model [1], [2] the transmitters are assumed to be
uniformly spaced on a line, and each transmitter is received by
only two base stations: the base station to its left and the base
station to its right.

As we shall see, rather than the cooperation restrictions, it
is these deterministic zeros (and the interference that their lack
implies) that will determine the high-SNR asymptotic behavior
of channel capacity. Very roughly, the main result of this paper
is that, irrespective of the cooperation allowed, at high SNR the
capacity of the channel is given approximately by

(1)

where the nonnegative integer can be computed combina-
torially from the zeros of the multiplicative noise. Thus, rather
than the number of antennas or the fine structure of the fading
correlations, it is the network’s topology and its frequency/time
reuse pattern that determine—via the zeros in the fading matrix
that they induce—the high-SNR asymptotics of the network’s
capacity.
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This asymptotic expansion is proved by establishing an upper
bound on the network sum–rate capacity (“converse”) and an
achievable lower bound (“direct part”). The upper bound is
proved assuming that the transmitters can cooperate in full, i.e.,
that they are controlled by a single user and assuming that a
decoder has access to all the received signals. The lower bound
is proved using independent scalar transmitters and
single-user scalar detectors. The bounds are fairly general and
only require that the nonzero components of the multiplicative
noise be stationary and ergodic with finite variances and finite
joint differential entropy rate. They need not be Gaussian. See
Theorem 1 for details.

The preceding result can be viewed as an extension of a result
of [3] on multiple-antenna fading channels. In the multiple-an-
tenna scenario, where the components of the transmitted vector
are geographically colocated and where the components of the
received vector are also colocated, there are typically no deter-
ministic zeros in the fading matrix. In this case, it can be readily
verified that our combinatorial expression for yields the value
of , thus recovering the SNR asymptotics of [3]. Sim-
ilarly, the “joint isotropic fading” assumption of [4] implies that
deterministic zeros in the fading matrix cannot appear in isola-
tion. If a component is deterministically zero, then so must be
its entire row. Under this condition as well.

The rest of the this paper is organized as follows. In the next
section, we describe the channel model, state the main result,
and discuss some examples. In Section III, we provide a proof,
and in the final section, Section IV, we summarize our results
and discuss some possible extensions.

II. CHANNEL MODEL AND MAIN RESULT

The channel we consider is a discrete-time channel where the
time- channel input is an -dimensional complex
vector, where is a discrete-time index taking value in the
integers is a positive integer; denotes the complex field;
and denotes the -dimensional complex Euclidean space.
We refer to as the number of transmitters, and to the set

(2)

as the set of transmitters. For every we denote the th
component of the time- input vector by . This corre-
sponds to the signal transmitted at time by transmitter . The
time- channel output corresponding to the input
is given by

(3)

where is a positive integer that denotes the number of receive
antennas and where

(4)

denotes the set of receivers. In the above, is a matrix-
valued stochastic process such that at every time instant the
random matrix is an complex random matrix, and

the random vectors are i.i.d., each taking value in ac-
cording to an isotropic circularly symmetric multivariate com-
plex Gaussian law

(5)

where denotes the identity matrix. (In general,
indicates that is a zero-mean circu-

larly symmetric complex Gaussian random vector of covariance
matrix .) We assume throughout that the processes and

are independent and that their joint law does not depend
on the input sequence . Denoting by the row-
column- entry of the matrix , and denoting by the
th component of the time- additive noise vector , we can

rewrite (3) as

(6)

To account for the possibility that some of the components of
the fading matrices might be deterministically zero we introduce
the set

(7)

where if then is deterministically zero at all
times

(8)

As for the other components, we shall assume a finite second
moment

(9)

and a finite differential entropy rate condition that we next de-
scribe. But first we introduce some notation. Given a collection
of random variables indexed by a set , we de-
note, for any subset , by the unordered collection

. With this notation and (7) we have that
is the collection of random variables

(10)

where we use to denote the set complement of in
and we use to denote set cardinality. The finite differentiable
entropy rate condition that we require can be now stated as

(11)

In the case where is i.i.d., this condition translates to the
joint differential entropy of the random variables

being finite. In the more general case,
(11) can be written as

(12)

or even more explicitly as

(13)
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Notice that a stationary process simultaneously satisfies
(9) and (11) if, and only if, it simultaneously satisfies (9) and the
two conditions

and

(14)
We denote by the capacity of this channel under full

cooperation conditions when the input is subjected to the av-
erage-power constraint . That is,

(15)

where the supremum is over all joint distributions on
satisfying

where is the Euclidean norm of the vector . This is
thus the capacity when a single user controls the input vector

, and when a “super-receiver” has access to all the
components of the received vector . Similarly, we define

as the single-user capacity but when there is a noise-
less feedback link so that the time- transmitted signal is al-
lowed to depend not only on the message to be transmitted but
also on all the past channel outputs. Clearly

because the feedback link can always be ignored.
At the other extreme, we define as the sum-rate ca-

pacity for this channel when it is viewed as a multiple-access
channel (MAC) where the different components of the input
vector are viewed as separate users who wish to communicate
independent messages. Each user is assumed to be allowed a
peak power of and no feedback link is available. The assump-
tion of a “super-receiver” continues to hold. (We shall later see
that this assumption can be significantly relaxed.) We thus have

(16)

To state the paper’s main theorem we need to introduce the
notion of a “power chain.” To define this concept we introduce
the following notation. For any transmitter let be the
set of receivers that can “hear” it, i.e.,

(17)

Analogously, for any receiver , let denote the set of
transmitters that “hears”

(18)

Definition 1: We shall say that the -tuple
is a -length power chain with respect to the set if

(19)

(20)

We can now state the paper’s main result.

Theorem 1: Consider a vector fading channel (3) whose
input takes value in and whose output takes value in .
Let the set be given, where and are defined
in (4) and (2), respectively. Assume that the stationary and
ergodic matrix-valued fading process satisfies (8), (9),
and (11). Further assume that are i.i.d. according to (5),
that the process is independent of , and that their
joint law does not depend on the channel input sequence .
Let and be defined as above. Then

(21)

and

(22)

where is the length of the longest power
chain with respect to .

Moreover, (22) is achievable with single-user scalar detec-
tors. That is, there exist transmitters ; receivers

; and distributions for under which the com-
ponents of are independent, under which the peak constraints

are satisfied almost surely, and such that

(23)

Note that since converges to zero as
with held fixed, it follows from (16) and from

the theorem that, under the theorem’s assumptions

(24)

Consequently, we can loosely say that, at high SNR, the capacity
of a fading network is given by (1), where ,
irrespective of whether we impose individual peak-power con-
straints or whether we impose combined average-power con-
straints, irrespective of whether we allow cooperation between
the transmitters or not, irrespective of whether feedback is avail-
able or not, irrespective of whether the receivers can cooperate
or not, and irrespective of the precise law of the fading process
(subject to (8), (9), and (11)).

Before proceeding to prove this theorem in the next section,
we next present some examples. In these examples, we denote
all generic nonzero entries of the fading matrix by . It should,
however, be understood that the entries that are denoted by
are different and that they have finite joint differential entropy
rate.

1) A single-input single-output (SISO) channel can be de-
scribed by the matrix

(25)
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In this case, the only power chain is the length-one chain
, and the pre-loglog is thus one.

2) Similarly, a single-user multiple-input multiple-
output (MIMO) channel can be described by the
matrix

(26)

In this case, there are two power chains, namely, the power
chain , and the power chain . Both are of length one
and hence .

3) The case

(27)

can describe a multiple-input single-output (MISO)
channel or a two-user scalar MAC. In either case, there
are only two power chains: the chain and the chain

, so that .
4) The case of a “dangling transmitter” can be described by

(28)

Here, the signal transmitted by Transmitter 2 is not heard
by any receiver. The only power chain is which is of
length one.

5) Similarly, the case of a “dangling receiver” can be de-
scribed by

(29)

Here, Receiver 2 does not hear any of the transmitted sig-
nals. Its signal is additive noise only, and it is thus irrel-
evant. Consequently, we expect to equal one. This is
indeed the case because the only power chains are the two
length-one power chains and .

6) An example of a network consisting of two noninterfering
single-user channels (one of which is SISO and the other
MIMO) is

(30)

Here, the longest power chains are of length two:
and .

7) An example that is good to have in mind in studying the
direct part of the theorem is one where

(31)

is upper triangular. In fact, one can view the the different
power chains as different ways of upper triangularizing
the channel’s fading matrix.

A scenario that might yield such a matrix is one where
the transmitters and receivers are placed on the integer
lattice as follows. Transmitter 1 is at , Receiver 1 is
at , Transmitter 2 is at , and Receiver 2 is at . The
first receiver thus hears both transmitters whereas the

second only hears the second transmitter. The longest
power chain here is the chain . As we shall see in
the proof of achievability, this power chain corresponds
to power- transmission by Transmitter 1 and power-
transmission by Transmitter 2. The signal is de-
coded by Receiver 1 and the signal is decoded by
Receiver 2. When decoding , Receiver 1 treats
as interference.1 It can overcome this interference because

is of power whereas is of power so
that the SNR is roughly . The weaker signal,

, is decoded by Receiver 2. The zero in the matrix
guarantees that this receiver suffers no interference from

. Thus, it operates at an SNR of .
8) An example that is particularly useful for demonstrating

the converse is one where

(32)

This may correspond to a circular geometry where the
transmitters and receivers are located on a circle, say a
clock. The three transmitters are located at 12, 4, and 8,
and the three receivers at 2, 6, and 10. Each receiver only
receives the signals transmitted by the transmitters adja-
cent to it. This circular model was introduced (in the ab-
sence of fading) by [5] for the study of cellular systems.
Here the longest power chains are of length and are
given by , , and .

9) A variation on a theme of Wyner’s [1] is a cellular tele-
phony model where cells are arranged uniformly along
a circle. A transmission in a given cell is received by three
antennas: by the cell’s base station and by the base stations
of the two cells adjacent to it. An example of the resulting
matrix for is

(33)

A longest power chain for this case is, for example,
, which yields .

III. PROOF OF THEOREM 1

In this section, we provide a proof of Theorem 1. We shall
begin by showing that it suffices to prove the theorem in the
case where the fading is memoryless, i.e., when are
i.i.d. We shall then separately prove the “converse” (21) and the
“direct” (22) parts in the two corresponding subsections.

Let then be some stationary and ergodic fading process
with memory satisfying (9) and (14), and let be an i.i.d.
fading process of equal marginal so that the law of is the

1This interference is non-Gaussian so that some care must be exercised in an-
alyzing it. Moreover, because we allow for dependence among the components
of , this interference is not independent of the fading that X(1) experiences
at Receiver 1.
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same as the law of (which is the same, by stationarity, as the
law of for any ).

That it suffices to prove the converse in the memoryless case
follows because, as shown by Moser [6, Ch. 8], the difference
between the feedback capacity of the channel with fading

and the capacity of the channel with i.i.d. fading is
bounded in the SNR. For the sake of completeness we repeat
Moser’s result in the Appendix.

As to the direct part, we note that the capacity of the channel
with fading cannot be smaller than that of fading .
Indeed, if is any distribution on then the mutual informa-
tion that it induces on the memoryless channel of fading
is achievable on the channel of fading by considering in-
puts that are i.i.d. according to . Indeed, for such
i.i.d. inputs

where the first equality follows from the chain rule; the subse-
quent from the independence of ; and the subse-
quent inequality because reducing observations cannot increase
mutual information. Here we use to denote .

We shall thus proceed to prove the theorem assuming that the
fading is memoryless. In this case, we shall omit the time index
so that our assumptions on the fading process can be now written
as

(34)

(35)

almost surely (36)

We shall further assume that none of the rows of is deter-
ministically zero, i.e.,

(37)

or equivalently

(38)

This corresponds to the condition that every receiver “hears” at
least one transmitter. Analogously, we shall assume that none of
the columns of is deterministically zero, i.e.,

(39)

or equivalently

(40)

This corresponds to the condition that every transmitter is
heard by at least one receiver. The above assumptions can be
made without loss of generality because a receiver that hears
no signals (other than ambient additive noise) does not affect
the longest power chain and can also be ignored at the detector.
Similarly, a transmitter that cannot be heard by any receiver
will never be an element of a power chain and there is also no
point in having it transmit any signal.

A. The Converse

In this subsection, we provide a proof of (21) for i.i.d. fading
satisfying (34), (35), and (36). We begin by considering

the “ordering permutation” of a given -tuple .
This is the permutation that orders the components of in de-
scending order of their magnitudes, resolving ties with prefer-
ence to lower indices. Thus, given an -tuple , we set

to be the permutation on that satisfies

(41)

and that resolves ties in favor of lower indices so that

(42)

The form in which ties are resolved does not play an important
role in our analysis. It is made here explicit because it is im-
portant that determine the ordering permutation
uniquely.

If is a random vector taking value in , then its ordering
permutation is a random permutation. Since the number
of permutation on is , it follows that, irrespective of the
distribution of , the entropy of is upper-bounded by

(43)

Given any channel input we can thus expand the mutual
information between the channel terminals as

(44)

The proof of the converse will now focus on the terms of the
form

where is an arbitrary permutation satisfying

Fix then such a permutation and let

(45)

We will show that corresponding to the set and to the permu-
tation there is a power chain of length such that

(46)

(47)
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where the second inequality follows because, by definition,
is the length of the longest power chain, and where the constant

depends only on the law of and on the permutation but not
on the power .

Note that once we establish (47), the converse will follow
from (45) and (44) as well as Jensen’s inequality by the con-
cavity of the double-logarithmic function. We thus proceed to
construct the length- power chain and to then prove (46).

To avoid some double subscripts in the description of this
length- power chain we shall use for . Thus, con-
ditional on we have that has the maximal
magnitude among all the elements of , and has the
smallest magnitude.

Let . Assume that we have defined . We then
define as

(48)

where the minimum of an empty set should be understood as
. We then set

(49)

and define

(50)

Thus, is the next strongest transmitter after that can
be heard by some receiver that is uninfluenced by any of the
stronger transmitters that are already in the chain. The set is
the set of receivers that can hear but not any of the stronger
transmitters that are in the chain. Note that by (40) we have

. In fact, is a power chain with respect to
, so that

(51)

(Recall that is the length of the longest power chain with
respect to .) Also note that the sets are disjoint and that
by (38) their union is , i.e., they form a partition of

whenever

(52)
Finally, we define

(53)

and

(54)

The key properties of the constructions of , of the
power chain , of the collection , and of the
collection are as follows. The -tuple is a
power chain, so that , (51). The collections and

are partitions of and , respectively. And conditional

on , the random variables only influence
; they do not influence any receiver in .

That is, conditional on and on the random variables
, the random variables

are independent of the random variables .
Using these properties, we next prove (46). The key will be

the following lemma.

Lemma 2: Let be a random complex matrix
whose components are all of finite second moment

where and . Let the set
be the set of pairs such that is deter-

ministically zero

almost surely

Assume that the joint differential entropy of the coordinates that
are not in is finite

(55)

Let be fixed. Assume that transmitter influences all
receivers in the sense that

(56)

Let be a random vector taking value in whose compo-
nent of largest magnitude is almost surely

almost surely (57)

Assume the average-power constraint

Finally, let take value in according the multivariate
Gaussian law and assume that , , and are
independent.

Then there exists some constant , which depends on the law
of but not on the law of or on its power , such that

(58)

It should be noted that this lemma cannot be applied directly
to the original capacity problem at hand. There is no reason to
believe that the capacity of the network will be achieved by some
input law under which one of transmitters is always sending a
signal that is larger than all other signals. The application of
the lemma will be restricted to the analysis of the mutual infor-
mation conditional on the ordering permutation being equal to

. Conditioned on this, Transmitter sends the largest
signal with probability one. Even under this conditioning we
cannot immediately apply the lemma, because there is no reason
to believe that this strongest transmitter will be heard by all re-
ceivers. We shall only apply the lemma to study the mutual in-
formation between the inputs and the subset of receivers that do
indeed hear the strongest transmitter.
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Proof of Lemma 2: Let and let

(59)

so that (57) can be rewritten as .
The proof of the lemma is very similar to the proof of [3,

Theorem 4.2]. It too is based on the bound [3, eq. (333)]

(60)

where denotes expectation with respect to . From this
inequality it follows that for inputs satisfying (57) (i.e., sat-
isfying )

(61)

We now proceed to analyze the various terms in (61). We
begin with showing that the supremum, which does not depend
on , is finite

(62)

To this end, we use Jensen’s inequality to obtain

(63)

where the second inequality follows from the Cauchy–Schwarz
inequality with

denoting the squared Frobenius norm, and where the last in-
equality follows by restricting to be in the set where

.
As to the differential entropy term in (62), we obtain two sep-

arate bounds. The first is useful when is very small and is
otherwise quite crude

(64)

The second is

(65)

Here the first inequality follows by ignoring the noise; the
second inequality follows because conditioning cannot increase
differential entropy; the subsequent equality by expressing
as

...

...
...

by noting that conditional on the second
term on the right is deterministic, and by noting that the addition
of a deterministic vector does not affect a vector’s differential
entropy; the next equality from the behavior of differential en-
tropy under scaling; and the final equality because it is pointless
to condition on deterministic random variables. Note that (55)
guarantees that the right-hand side (RHS) of (65) is finite. In-
equalities (63)–(65) combine to prove (62).

The analysis of the other terms in (61) and the choice of in
(61) as , where is given in (69), is identical to the
analysis and choice in [3, Appendix II]

(66)

(67)

(68)

(69)

where with the SNR. See [3, Appendix II] for details.

Note 3: The Gaussianity of the noise in the above lemma is
not crucial. As in [3 Appendix II], the result continues to hold
whenever the additive noise is of finite second moment and
of finite differential entropy.

With the aid of this lemma we can now prove (46). We
shall upper-bound in phases. In the
first phase, we shall upper-bound this mutual information by
a double-logarithmic term, a constant, and another mutual
information term. This latter mutual information term will be
upper-bounded in the second phase by a double-logarithmic
term, a constant, and yet another mutual information term,
which is then upper-bounded in the third phase. In the final
phase, Phase , we upper-bound the mutual information by a
double-logarithmic term and a constant only, thus terminating
the calculation. Since each phase contributes a double-loga-
rithmic term (and a constant), the phases contribute together

double-logarithmic terms (and constants, which are com-
bined into one) as required.
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The details now follow. In Phase 1 we expand mutual infor-
mation using the chain rule

(70)

The first term on the RHS of (70) is easily treated using the
lemma, because conditional on , the component

is of largest magnitude, and it is heard by all
the receivers in . Consequently, we have by Lemma 2

(71)

where the constant is as in Lemma 2 independent of the SNR.
As for the second term on the RHS of (70), we use the chain

rule once again to obtain

(72)

Here the last inequality follows by the data processing in-
equality, and the preceding equality follows because is
conditionally independent of given .

Thus, we have by (70) and (71) that the original mutual infor-
mation term is upper-bounded by a double-logarithmic term, a
constant term (which is finite by (35)), and another mutual in-
formation term

(73)

The mutual information term

on the RHS of the above is now upper-bounded in Phase 2. No-
tice that this term corresponds to a “smaller” fading channel
where the inputs are immaterial, as are the outputs . In
Phase 2 we thus upper-bound this term as follows:

(74)

The first term can be bounded using the lemma because
is the component of of largest magnitude, and it is heard
by all receivers in

for some constant .
The second term in (74) can be expanded in analogy to (72)

to yield

The mutual information term

is now upper-bounded in Phase 3. This process is continued until
the final phase, Phase , when the term

is upper-bounded using the lemma by a double-logarithmic term
and a constant without an additional mutual information term.
Indeed, the component is of largest magnitude among the
terms in and it influences all the receivers in .

It is thus seen that performing a total of phases yields the
bound (46) and hence, by (51), also (47). The converse now
follows from (47) and (44) using Jensen’s inequality because
the double-logarithmic function is concave and because, in view
of (45)

(75)

B. The Direct Part

To prove the direct part we shall demonstrate that if
is any power chain with respect to then

we can find a distribution on under which its components are
independent (thus guaranteeing the achievability of
under multiple-access conditions) and such that

(76)

We shall also demonstrate the existence of a -tuple
such that for the above input vector

thus demonstrating the achievability of with
single-user detectors.
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Let the power chain be fixed. Consider
a distribution for under which the components of are in-
dependent with laws that can be described as follows. If some

is not in , we set to be deterministically
zero

a.s. (77)

As to the other components of , we choose them to be circu-
larly symmetric with squared magnitudes whose logarithms are
uniformly distributed on intervals

Uniform

(78)

where the endpoints satisfy

(79)

and will be specified later. (See (102) and (103).) Note that with
this choice of the laws

(80)

Since is a power chain, it follows that for every
we can find a receiver such that

(81)

Thus, Receiver can hear Transmitter

(82)

but it is uninfluenced by the transmitters

(83)

(Receiver may be affected by transmitters , but
those, as we shall see, will be chosen to have powers that are
much smaller than the power assigned to transmitter .) Let

thus satisfy (82) and (83).
The mutual information can be now lower bounded

as follows:

(84)

Here, the first equality follows by (77); the second by the chain
rule; the subsequent inequality by restricting the set of observ-
ables in each of the terms; and the final inequality because the
components of are independent.

We shall next show that with a judicious choice of the con-
stants

in (78) we can guarantee that each of the terms in (84) grow
double-logarithmically in the SNR.

Consider the expression

(85)

for some . By (77) and (83) it follows that we can
express as

(86)

where

(87)

Note that the term cannot be treated as independent ad-
ditive noise because and may be dependent.
(This dependence comes about because may depend
on for .) However, conditional on

, the random variables and are indepen-
dent, i.e.,

— — — — (88)

forms a Markov chain. To analyze we shall
use the following lemma.

Lemma 4: Let the random variables and have finite
second moments. Assume that both and are of finite dif-
ferential entropy. Finally, assume that is independent of ;
that is independent of ; and that — — — — forms
a Markov chain.2 Then

(89)

where and are the variances of and ,
respectively. Consequently, if with probability one
for some positive constant , then

a.s. (90)

If, additionally, is circularly symmetric, then

circ. sym. (91)

Proof of Lemma 4: First note that the assumptions that
has a finite second moment and finite differential entropy guar-
antee that the logarithm of its magnitude is of finite expectation
[3, Lemma 7.7] so that the lemma’s claim is meaningful.

2This is equivalent to X being independent of (H;W ).
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The proof proceeds by expressing as

(92)

and by then bounding the terms on the RHS. We begin with the
first

(93)

where the first inequality follows because conditioning (on )
cannot increase differential entropy; the second because condi-
tional on , the random variables and are independent;
and the subsequent equality from the behavior of differential en-
tropy of complex random variables under deterministic scaling
and from the independence of and .

As to the other term in (92), we note that conditional on
, the differential entropy of the random variable is

upper-bounded by that of a circularly symmetric Gaussian of
equal variance. Hence,

(94)

where and are the respective variances of and .
Here the last inequality follows from the Cauchy–Schwarz in-
equality, from the independence of and , and from the in-
dependence of and .

Combining (93) and (94) with (92) yields (89), which com-
bines with the monotonicity of the logarithm function to imply
(90). Finally, to obtain (91) we note that if is circularly sym-
metric then

(95)

which follows, for example, from [3, eqs. (320) and (316)].

We continue the proof of the direct part of Theorem 1 by
applying Lemma 4 to the analysis of (85)–(87) with

and replacing and , respectively.
To proceed we need an upper bound on the variance of .
Such a bound can be derived using the Cauchy–Schwarz in-
equality. From (87) we have

(96)

where the second inequality follows from the Cauchy–Schwarz
inequality

(97)

and from the independence of and .
It thus follows from Lemma 4 and from (96) that the mutual

information in (85) will satisfy

(98)

for satisfying (with probability one)

(99)

whenever both

(100)

—so that the last term on the RHS of (91) tends to a constant,
i.e., to the constant —and

(101)

—so that by (80) the first term on the RHS of (91) has the right
asymptotic growth.

To conclude the proof it is thus only required to find choices
for that will guarantee that both (100) and
(101) hold. An example of such a choice is (for large enough )

(102)

(103)

IV. DISCUSSION AND SUMMARY

In this paper, we considered noncoherent fading networks
with vector-valued additive and matrix-valued multiplicative
noises. We have shown that, at high SNR, the capacity of the
network grows like an integer multiple of log log SNR. This in-
teger multiple is determined by the location of the deterministic
zeros of the fading matrix. Loosely speaking, this integer can
be viewed as the effective number of parallel channels that can
be supported by the network, i.e., as the maximal number of
point-to-point single-user scalar channels that can be supported
by the network in a manner that will allow, with proper power
allocation, negligible cross-interference.

It is felt that this integer is an important parameter of the net-
work, but that more parameters are needed to obtain more pre-
cise approximations of the system’s throughput. For example,
to assess the rates above which every increase in throughput of
one bit per channel-use requires squaring the SNR one can con-
sider the network’s fading number . This can be defined, anal-
ogously to the MIMO fading number [3], as

SNR SNR (104)

where is the length of the longest power chain.
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Not surprisingly, the evaluation of is much more elaborate
than that of . That is not just a function of is readily
seen from the single-user MIMO case where
but where the fading number is highly dependent on the number
of transmit and receive antennas [7]. Needless to say, as in the
SISO case [3], the memory in the process also plays a key role
in determining the fading number.

Consider, for example, the case where the compo-
nents of are i.i.d., each being a zero-mean, unit-variance,
circularly symmetric, stationary, Gaussian process of spectral
distribution function with corresponding positive predic-
tion error

(105)

In this case, one can show using techniques very similar to those
in [8] that

(106)

where the term corresponds to the fading number of
the network under full cooperation conditions but with memo-
ryless fading of the same marginal law as that of the original
network, i.e., i.i.d. components. On the other hand, by
analyzing more precisely the power allocation scheme (102),
(103) we obtain that in the absence of feedback and under mul-
tiple-access conditions

(107)

where denotes Euler’s constant and where we are relying on
the asymptotic results on the capacity of SISO Rayleigh-fading
channels with memory [3, Corollary 4.42]. While the bounds
(106) and (107) can be quite loose in some scenarios3 there are
cases where they give reasonable estimates, e.g., for Wyner’s
cellular model (33) with the number of cells being large.

We have already noted that Theorem 1 holds under very gen-
eral conditions. It does not, for example, require that the fading
be Gaussian. It suffices that the fading be of finite second mo-
ment and that the nonzero components have finite joint differen-
tial entropy rate. In fact, the additive noise need not be Gaussian
either. It suffices that it be stationary and ergodic with a finite
second moment and finite differential entropy rate. It is thus nat-
ural to ask whether we can also relax the conditions on the zeros.
Can the result be extended to networks where some components
of the fading matrix are deterministic but nonzero or determin-
istically dependent on others? This requires some care and is be-
yond the scope of this paper. To see some of the difficulties, first
note that in the case there is a dramatic difference
between the sole component of the fading matrix being zero or
some deterministic nonzero. The former leads to zero capacity
whereas the latter to a nonfading Gaussian channel, and hence
to a logarithmic growth of capacity. Yet another example is the

MIMO case. If the two rows are identical with each being
of finite differential entropy then capacity grows double-loga-
rithmically. If the matrix is diagonal with the diagonal elements

3The upper bound is, for example, loose in single-input multiple-output
(SIMO) scenarios [9], and the lower bound can be quite loose in MIMO
channels [7].

being identical (as in the SISO block-constant fading model),
capacity grows like SNR [10].

Theorem 1 can, however, be somewhat generalized using [3,
Lemma 4.7] which demonstrates that the fading number (and
hence also the pre-loglog ) is invariant under deterministic
nonsingular matrix multiplication

(108)

and

(109)

It has been pointed out to me by Shlomo Shamai that in some
broadcast scenarios the fading levels experienced by the dif-
ferent users may be highly correlated so that the assumption
that the nonzero components of the fading matrix are of fi-
nite joint differential entropy may be violated. Such scenarios
can be sometimes addressed using our results by noting that in
broadcast scenarios the achievable rates are determined by the
marginals of the network law [11]. Thus, in some such scenarios
one can replace the fading matrix with a fading matrix whose
rows are independent, but such that each row is of the same law
as that in the original matrix.

APPENDIX

In this appendix we show that if the stationary and ergodic
fading process satisfies (9) and (14) then the difference
between the channel’s feedback capacity and the capacity of the
memoryless channel of i.i.d. fading , where the law of
is identical to the law of , is bounded in the SNR.

This proof is taken almost verbatim from [6] and is included
here only for the sake of completeness. We denote the mes-
sage to be transmitted by , and we assume that the time-
transmitted input is now a function of and of the pre-
vious outputs . The proof, as in, for example, [11, Sec.
8.12], is based on Fano’s inequality and on an upper bound on

.

(110)

(111)

(112)

(113)

(114)

(115)
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(116)

(117)

Here the first two equalities follow from the chain rule; the sub-
sequent inequality from the nonnegativity of mutual informa-
tion; the following inequality from adding random matrices; the
subsequent equality follows since is a deterministic func-
tion of and ; then we have used the chain rule again;
(116) follows since

(118)

and finally we have used the chain rule once more.
The term does not depend on the memory in the

fading process and is thus identical for and for . As
for the other term, we upper-bound it as follows:

(119)

(120)

(121)

(122)

(123)

(124)

The feedback capacity of the channel with fading can
thus exceed the capacity of the memoryless fading channel with
equal-marginal fading by at most , which

does not depend on the SNR and which, by assumption (14),
is finite.
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