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Abstract— A generalization of the problem of writing on dirty
paper is considered in which one transmitter sends a common
message to multiple receivers. Each receiver experiences on its
link an additive interference, which is known noncausally to the
transmitter but not to any of the receivers.

In this work, we focus on the Gaussian case with two users
and independent interferences. We provide upper and lower
bounds on capacity. At high interference-to-noise ratios, we show
that time-sharing is (asymptotically) optimal. This settles the
conjecture by Steinberg and Shamai [10]. At high signal-to-noise
ratios, we propose a superposition dirty paper code that achieves
within 1/4 bit/symbol of capacity. An extension to the case of
correlated interferences is also discussed.

I. I NTRODUCTION

The study of communication over channels controlled by
a random state parameter known only to the transmitter has
received renewed attention due to emerging applications such
as digital watermarking and broadcasting over multi-input-
multi-output (MIMO) channels. The case of point to point
channels with random parameters has been studied in [1], [3]–
[5], [9] in several different scenarios. In particular, Costa [1]
considers a model in which there is an additive white Gaussian
interference (“dirt”), which constitutes the state, in addition to
independent additive white Gaussian noise. The key result in
this “dirty paper coding” scenario is that there is no loss in
capacity if the interference is known only to the transmitter.

This paper examines thecommon-message broadcast chan-
nel, which we refer to as themulticast channel. Specifically,
we consider a scenario in which one transmitter broadcasts
a common message to multiple receivers over Gaussian chan-
nels. In the case of interest, associated with the link to each re-
ceiver is a corresponding additive white Gaussian interference,
in addition white Gaussian noise. The transmitter has perfect
noncausal knowledge of all these interference sequences, but
none of the receivers have knowledge of any of them. This
model and its generalizations arise rather naturally not only in
a variety of multi-antenna wireless multicasting problems, but
also in applications of dirty paper coding where only imperfect
knowledge of the state is available to the transmitter.

The capacity of some binary versions of such multicast
channels is reported in [6], [8]. For more general channels,
[10] reports achievable rates for broadcasting common and
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independent messages over a discrete memoryless broadcast
channel with noncausal state knowledge at the transmitter.
The case of two-user Gaussian channels with jointly and in-
dividually independent identically distributed (i.i.d.)Gaussian
interferences on each link is also considered in [10], for which
it is conjectured that in the limit of large interference, time-
sharing between the two receivers is optimum even when both
are only interested in a common message. In this paper we
establish that this conjecture is true. We upper bound the
capacity of the Gaussian channel and show that it approaches
the time-sharing rate in this limit. In addition, we also present
a coding scheme that achieves within 1/4 bit/symbol of the
capacity1 in the high signal to noise ratio (SNR) limit for any
interference power.

II. CHANNEL MODEL

The two user memoryless Gaussian case is depicted in
Fig. 1. It consists of one transmitter and two receivers withan
additive white Gaussian noise of varianceN on each link. In
addition, each link also experiences an additive white Gaussian
interferenceSn

k , k = 1, 2 of varianceQ. Unless otherwise
stated, we assume that the two interference sequences are also
mutually independent. Thus, the observation at receiverk takes
the form

Y n
k = Xn + Sn

k + Zn
k , k = 1, 2. (1)

The transmitted sequenceXn is a function of the message
W and the state sequencesSn

1 ,Sn
2 . It satisfies the power

constraint

E

[

1

n

n
∑

i=1

X2
i (W,Sn

1 , Sn
2 )

]

≤ P, (2)

where the expectation is over the message and the state
sequences. Finally, note that without loss of generality, we
may setN = 1, and interpretP as the signal-to-noise ratio
(SNR), andQ as the interference-to-noise ratio (INR).

III. C APACITY BOUNDS

For this channel, we have the following bounds on capacity.
Theorem 1: The Gaussian multicast channel capacity is

bounded according to:

R− ≤ C ≤ R+, (3)

1Throughout this work, symbol refers to areal symbol.
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Fig. 1. Two-user Gaussian multicast channel model with additive in-
terference. The encoder maps messageW into codewordXn. The state
takes the form of interference sequencesSn

1
and Sn

2
. Each channel output

Y n

k
= Xn + Sn

k
+ Zn

k
is decoded to produce message estimateŴk.

where2

R+ =







1
4 log(1 + P ) + 1

4 log
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√

PQ
Q

)
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4 log
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Q < 4

(4)
and
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




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1
2 log
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1 + P
Q/2+1

)
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1
2 log

(

P+Q/2+1
Q
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+ 1
4 log

(

Q
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)

1 ≤ Q/2 < P + 1

1
4 log(1 + P ) Q/2 ≥ P + 1.

(5)
Proof: A proof for the upper bound is presented in the

full paper [7]. Our approach involves bounding the rate of
the two-interference channel in terms of that for a single-
interference channel. The lower bound (5) is an explicit
expression of the following maximization:

R− = max
{(P1,P2):P1≥0,P2≥0,P1+P1≤P}

R(P1, P2) (6a)

with

R(P1, P2)
∆
=

1

2
log

(

1 +
P1

P2 + Q/2 + 1

)

+
1

4
log (1 + P2) .

(6b)
Accordingly, we show the achievability of (6b). The pro-

posed scheme, combines superposition coding, dirty paper
coding, and time-sharing, and exploits a representation ofthe
interferences in the form

Sn
1 = Sn + V n

Sn
2 = Sn − V n,

(7)

where
Sn = (Sn

1 + Sn
2 )/2

V n = (Sn
1 − Sn

2 )/2.
(8)

Specifically, the encoding is as follows:

2We can also tighten the upper bound further by considering
min

`

R+, 1

2
log (1 + P )

´

, where the second expression corresponds to the
multicasting rate when the interference is absent.

1) Decompose the messageW into two submessagesWS

and WV and divide the powerP into two powersP1

andP2 so thatP = P1 + P2.
2) Use dirty paper coding [1] to (independently) encode

messageWS into a codewordUn
S in a (random i.i.d.

Gaussian) codebookCS using powerP1 for a channel
with interferenceSn and Gaussian noise of powerP2 +
Q/2 + 1. TransmitXn

S = Un
S − αSSn, whereαS =

P1/(P + Q/2 + 1). The corresponding rate is

RS =
1

2
log

(

1 +
P1

P2 + Q/2 + 1

)

. (9)

3) Use dirty paper coding to encode messageWV into a
codewordUn

V in a codebookCV using powerP2 for
a channel with interference either(1 − αS)Sn + V n

or (1 − αS)Sn − V n, and Gaussian noise of power
1. Transmit the correspondingXn

V = Un
V − αV {(1 −

αS)Sn + V n} or Xn
V = Un

V − αV {(1− αS)Sn − V n},
with αV = P2/(P2 + 1). Time-share evenly between
these two possibilities. In each case the corresponding
rate is

RV =
1

2
log(1 + P2). (10)

4) Send the superpositionXn = Xn
S + Xn

V , which has
powerP over the channel.

The decoding exploits successive cancellation (stripping)
and proceeds as follows:

1) DecodeUn
S from Y n

1 or Y n
2 treatingXn

V as part of the
noise. The received signals are of the form

Y n
1 = Xn

S + Sn + (V n + Zn
1 + Xn

V )

= Un
S + (1 − αS)Sn + (V n + Zn

1 + Xn
V ),

Y n
2 = Xn

S + Sn + (−V n + Zn
2 + Xn

V )

= Un
S + (1 − αS)Sn + (−V n + Zn

2 + Xn
V ).

The rateRS in (9) ensures that the resultinĝWS equals
WS with high probability.

2) Subtract the decodedUn
S from each ofY n

1 andY n
2 , so

that the residual signals̃Y n
i = Y n

i −Un
S are of the form

Ỹ n
1 = Xn

V + ((1 − αS)Sn + V n) + Zn
1 , (11)

Ỹ n
2 = Xn

V + ((1 − αS)Sn − V n) + Zn
2 . (12)

The rateRV in (10) ensures thatXn
V can be decoded

from either Ỹ n
1 or Ỹ n

2 so that the resultinĝWV equals
WV with high probability at the corresponding receiver.
Specifically, for the fraction of time that the transmit-
ter encodesWV for interference(1 − αS)Sn + V n,
user 1 can recoverWV , while for the fraction of
time that the transmitter encodesWV for interference
(1 − αS)Sn − V n, user 2 can recoverWV .

From this coding strategy, we see that the average rate
delivered to each receiver is identical, i.e.,RS + (1/2)RV .
Maximizing this rate over the choices ofP1 and P2 subject
to the constraintP = P1 + P2 optimizes the lower bound,
whence (6a).
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Fig. 2. Upper and lower bounds on the capacity of the two-userGaussian
multicast channel, as a function of INRQ for an SNRP = 33 dB. The solid
curves depict the two bounds of (3). The horizontal dashed line indicates
the performance of time-sharing, while the other dashed curveindicates the
performance of a strategy in which the side information is treated by the
transmitter as additional noise on each link.

IV. D ISCUSSION

From (5), we obtain several useful insights. First, note that
whenQ/2 ≥ P +1, our lower bound reduces to time-sharing,
while if Q/2 ≤ 1 it reduces to dirty paper coding with respect
to Sn. In the moderate interference regime, our bound shows
that one can generally achieve a gain over these two strategies
by a superposition coding approach that combines them.

The behavior of the bounds as a function of INR is depicted
in Fig. 2 for a fixed SNR ofP = 33 dB. When the INR is
very small, Fig. 2 reflects that the side information can be
ignored by the transmitter without sacrificing rate. Similarly,
when the INR is large, Fig. 2 reflects that time-sharing is
capacity-achieving. Both these observations can be quantified.

For the low INR behavior, it suffices to note from (4) that

lim
Q→0

C ≤ lim
Q→0

R+ =
1

2
log(1 + P ), (13)

which is the same aslimQ→0 RIS, where RIS is the rate
achieved by ignoring the side-information, i.e.,

RIS =
1

2
log

(

1 +
P

Q + 1

)

. (14)

For the high INR behavior, it is suffices to note from (4)
that

lim
Q→∞

C ≤ lim
Q→∞

R+ =
1

4
log(1 + P ), (15)

which can be achieved by time-sharing between the two users
and doing Costa dirty paper coding for each user being served.
We note that this result settles the conjecture made in [10].

The behavior of the bounds as a function of SNR is depicted
in Fig. 3 for a fixed INR ofQ = 15 dB. When the SNR is
large, Fig. 2 reflects that having the transmitter ignore the
side information does not achieve a rate particularly close
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Fig. 3. Upper and lower bounds on the capacity of the two-userGaussian
multicast channel, as a function of SNRP for an INR Q = 15 dB.
The solid curves depict the two bounds of (3). The dashed curve indicates
the performance of time-sharing, while the dash-dotted curveindicates the
performance of a strategy in which the side information is treated by the
transmitter as additional noise on each link.

to capacity, but the superposition dirty paper coding strategy
corresponding to our lower bound does. More generally, the
difference between the upper bound and the lower bound can
be bounded as follows:

lim
P→∞

(C − R−) ≤ lim
P→∞

(R+ − R−)

=















1
4 Q ≥ 4
1
4 log

(

2Q
(1+Q/4)2

)

2 ≤ Q < 4

1
2 log

(

1 + Q
4+Q

)

Q < 2

(16)

Hence, for INR above 3 dB, our superposition dirty paper
code achieves within1/4 bit/symbol of capacity, while for
INR below 3 dB, the superposition part of the code does
not help, but the dirty paper code alone achieves within
1
2 log(4/3) = 0.2075 bit/symbol of capacity. It is straightfor-
ward to verify (16); a proof can be found in the full paper [7].

We conclude this section with a few additional observations.
Some Further Remarks:

1) Feedback does not help much. An upper bound when the
transmitter has perfect causal feedback from the receiver
is given by

RF
+ =

1

4
log (1 + P ) +

1

4
log

(

P + Q + 1 + 2
√

PQ

Q/2 + 1

)

.

(17)
Thus in the limit Q → ∞, feedback can gain by no
more than 1/4 bit/symbol over time-sharing.

2) Correlation among noise sequences does not matter, i.e.,
the upper bound in Theorem 1 is valid even when the
noisesZn

1 and Zn
2 are not independent. The argument
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is analogous to that for the standard broadcast channel
(e.g. [2, Ch. 14]).

A. Extensions for Robust Dirty Paper Coding

Consider the a memoryless Gaussian point-to-point channel
model with output

Y n = Xn + Sn + Zn, (18)

whereXn is the channel input subject to power constraintP ,
Sn is a white Gaussian interference sequence of powerQ not
known to decoder, andZn is a white Gaussian noise sequence
of unit power. When the interferenceSn is perfectly known to
the encoder, Costa’s dirty paper coding is capacity achieving.
However, in many applications, only imperfect knowledge
of Sn is available to the encoder. One special case is the
case ofcausal knowledge considered by Shannon. Another
is the case ofnoisy noncausal knowledge. For these kinds of
generalizations, there is interest in understanding the capacity
of such channels and the structure of the associated capacity-
achieving codes, which we refer to asrobust dirty paper codes.

It is often natural to analyze such problems via their equiv-
alent Gaussian multicast model. As an illustration, suppose
that the interference in (18) is of the formSn = βSn

0 where
Sn

0 ∼ N (0, QI) is known to the encoder butβ is not. Then if
β is from a finite alphabet (or can be approximated as being
so), i.e., β ∈ {β1, β2, . . . , βK}, the problem is equivalent
to a Gaussian multicast problem withK users where the
interference for thekth user isβkSn

0 .
From this example it is apparent that for at least some

applications, there is a need to accommodatecorrelated inter-
ferences in the Gaussian multicast model. While a thorough
treatment of such generalizations is beyond the scope of the
present paper, we note that our results can be used to establish
potentially useful lower bounds.

We illustrate such a bound for the caseK = 2 of the
example above. Specifically, consider a superposition dirty
paper coding strategy analogous to that in the proof of the
lower bound in Theorem 1, whereby we decompose the
interferences according to (7). In this case, we have that (8)
specializes to

Sn = βS Sn
0

V n = βV Sn
0 ,

(19)

where
βS = (β1 + β2)/2

βV = (β1 − β2)/2.
(20)

When we turn to implement step 2) of the encoding in
the proof of the lower bound of Theorem 1, in whichSn

is treated as inteference andV n as noise, the results of [1]
cannot be directly applied since the interferencesSn and
V n in (19) are correlated. However, the stronger version of
Costa’s results in [3] establishes that provided there is common
randomness at the transmitter and receivers, any correlation

between interference and noise can be ignored in encoding
and does not affect the (worst case) capacity.3

Thus, we obtain the following lower bound on capacity of
our example multicast channel with correlated interferences:

Cβ ≥ max
{(P1,P2):P1≥0,P2≥0,P1+P2≤P}

Rβ(P1, P2), (21a)

where

Rβ(P1, P2) =
1

2
log

(

1 +
P1

1 + (β1 − β2)2Q/4 + P2

)

+
1

4
log (1 + P2) .

(21b)
While the capacity of this channel remains unknown, we note
that the rate (21) is nontrivial. Indeed, it can be quite large
even when the INRsβ1Q and β2Q are each large, provided
that |β1 − β2| is small.

V. CONCLUDING REMARKS

The capacity of the common-message Gaussian broadcast
channel with transmitter side information is bounded. Our
results establish that in contrast to the single-user channel, the
lack of side information at receivers strongly limits capacity.
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