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o N _ independent messages over a discrete memoryless broadcast
Abstract— A generalization of the problem of writing on dirty  channel with noncausal state knowledge at the transmitter.

paper is considered in which one transmitter sends a common Tpe cage of two-user Gaussian channels with jointly and in-
message to mUltlple receivers. Each receiver experiences on its

link an additive interference, which is known noncausally to the .d'V'dua”y independent _'de,ntlca”y d'Str!bUted ,(""anus,SIan
transmitter but not to any of the receivers. interferences on each link is also considered in [10], foicvh

In this work, we focus on the Gaussian case with two users it is conjectured that in the limit of large interferencané-
and independent interferences. We provide upper and lower gharing between the two receivers is optimum even when both
bounds on capacity. At high interference-to-noise ratios, we sho are only interested in a common message. In this paper we

that time-sharing is (asymptotically) optimal. This settles the . . . )
conjecture by Steinberg and Shamai [10]. At high signal-to-noise establish that this conjecture is true. We upper bound the

ratios, we propose a superposition dirty paper code that achieves capacity of the Gaussian channel and show that it approaches
within 1/4 bit/symbol of capacity. An extension to the case of the time-sharing rate in this limit. In addition, we also seat
correlated interferences is also discussed. a coding scheme that achieves within 1/4 bit/symbol of the
capacity in the high signal to noise ratio (SNR) limit for any

L interference power.
The study of communication over channels controlled by P

a random state parameter known only to the transmitter has 1. CHANNEL MODEL

received renewed attention due to emerging applicatiook su The two user memory|ess Gaussian case is depicted in
as digital watermarking and broadcasting over multi-inpufig. 1. It consists of one transmitter and two receivers \aith
multi-output (MIMO) channels. The case of point to poinjdditive white Gaussian noise of variandeon each link. In
channels with random parameters has been studied in [3], [3lddition, each link also experiences an additive white Gians
[5], [9] in several different scenarios. In particular, @$1] interferenceSy, k = 1,2 of variance@. Unless otherwise
considers a model in which there is an additive white GaDSSiQtated, we assume that the two interference sequencessare al

interference (“dirt”), which constitutes the state, in aideh to  mutually independent. Thus, the observation at recditakes
independent additive white Gaussian noise. The key resultihe form

this “dirty paper coding” scenario is that there is no loss in . . . N
capacity if the interference is known only to the transmitte Vit = X"+ 50 + Zy, k=1,2. 1)
This paper examines themmon-message broadcast chan-  The transmitted sequencé” is a function of the message

we consider a scenario in which one transmitter broadcagishstraint

a common message to multiple receivers over Gaussian chan-

nels. In the case of interest, associated with the link th eac B
ceiver is a corresponding additive white Gaussian interfee,

in addition white Gaussian noise. The transmitter has perf here the expectation is over the message and the state
noncausal knowledge of all these interference sequenues,?equences_ Finally, note that without loss of generalitg, w
none of the receivers have knowledge of any of them. Tmﬁay setN — 1 an,d interpretP as the signal-to-noise ra£i0
model and its generalizations arise rather naturally not ion (SNR), andQ a's the interference-to-noise ratio (INR)

a variety of multi-antenna wireless multicasting probleimg ' '

also in applications of dirty paper coding where only impetf [1l. CAPACITY BOUNDS

knowledge of the state is available to the transmitter. For this channel, we have the following bounds on capacity.

The capacity of some binary versions of such multicast Theorem 1: The Gaussian multicast channel capacity is
channels is reported in [6], [8]. For more general channelspunded according to:

[10] reports achievable rates for broadcasting common and

I. INTRODUCTION

1 n
~ > XP(W.ST,55)

=1

<P, )

R_ S C S R-‘ra (3)
This work was supported in part by NSF Grant No. CCF-0515408, by
the HP/MIT Alliance. 1Throughout this work, symbol refers toreal symbol.

182
1-4244-0092-9/06/$20.00 (©)2006 IEEE.



,,,,,,,,,,,,,, St

1

Decoder 1 - W,

W —

2)

) Decoder 2~ W,

Sy 23

Fig. 1.  Two-user Gaussian multicast channel model with adgitn-
terference. The encoder maps messdfjeinto codeword X™. The state

takes the form of interference sequenc#s and S3. Each channel output
Y = X"+ 87 + Z}} is decoded to produce message estinidig

3)
where
ilog(1+P)+§log(P+Q$“ vPQ Q>4
P P+Q+142VPQ
7 log (Ql/JZH) +log ( Q/at1 ) Q<4
4

M)—Filog(%) 1<Q/2<P+1

Q
tlog(1+ P) Q/2>P+1.

4)

5 log

Proof: A proof for the upper bound is presented in the &

full paper [7]. Our approach involves bounding the rate of
the two-interference channel in terms of that for a single-
interference channel. The lower bound (5) is an explicit
expression of the following maximization:

= P, P
{(Pl,P2>:P125?1%}§0,P1+P1gP}R( 1 P2) (6a)
with 2)
Al P1 1
PLP)2log(14+—"1 )4+ Zlog(1+ P).
RP, P 2 Glog (14 gl ) + 0w (14 )

(6b)
Accordingly, we show the achievability of (6b). The pro-
posed scheme, combines superposition coding, dirty paper
coding, and time-sharing, and exploits a representaticthef
interferences in the form

St =8"+Vv"
Siz _ Sn Vn (7)
2 — - )
where
S" = (57 +5%)/2
(ST +83)/ )

V"= (57 - 55)/2.
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Decompose the messayé into two submessagdd’s
and Wy and divide the powelP into two powerspP;
and P, so thatP = P, + P,.

Use dirty paper coding [1] to (independently) encode
messagelVg into a codewordU¢ in a (random i.i.d.
Gaussian) codebooks using powerP; for a channel
with interferenceS™ and Gaussian noise of pow&s +
Q/2 + 1. Transmit X g Ug — asS™, whereag =
Pi/(P+Q/2+1). The corresponding rate is

1 Py
RS_210g<1+P2—|—Q/2+1>' 9)

Use dirty paper coding to encode mess&fjg into a
codewordUy; in a codebookCy using powerPs for

a channel with interference eithét — ag)S™ + V"

or (1 — ag)S™ — V", and Gaussian noise of power
1. Transmit the corresponding s = Uy — ay{(1 —
ag)S"+ V" or Xp =Uy —ay{(1l—ag)S"—-V"},

with ay = P»/(P, + 1). Time-share evenly between
these two possibilities. In each case the corresponding
rate is

1
Ry = 3 log(1 + Py). (10)

Send the superpositioX”™ = Xg + X{;, which has
power P over the channel.

The decoding exploits successive cancellation (strigping
and proceeds as follows:

DecodeU¢ from Y* or YJ* treating X{; as part of the
noise. The received signals are of the form

Y"=Xg+S"+ (V" + 27 + X))
=Ug+(1—ag)S"+ (V" + 27 + Xy),

Yy =Xg+ 5"+ (=V"+ 23 + Xy)

G+ (1—as)S"+ (=V"+Z3 + X7).

The rateRg in (9) ensures that the resultin§js equals
Wg with high probability.

Subtract the decoded? from each ofY* andYy?, so
that the residual signal§” = Y;* — U2 are of the form

Y'=XP+((L-as)S" + V") + 27, (1)
VP = X0 4 (1 —ag)S™ — V™) + Z3. (12)

The rateRy in (10) ensures thak{, can be decoded
from eitherY;” or Y3 so that the resulting’y equals
Wy with high probability at the corresponding receiver.
Specifically, for the fraction of time that the transmit-
ter encodesWWy for interference(l — ag)S™ + V",
user 1 can recoveiVy, while for the fraction of
time that the transmitter encodégy, for interference
(1 —ag)S™— V™, user 2 can recovely .

From this coding strategy, we see that the average rate

delivered to each receiver is identical, i.&g + (1/2)Ry.

Specifically, the encoding is as follows:

2We can also tighten the upper bound further by considerin
min (R+, % log (1 + P)), where the second expression corresponds to t
multicasting rate when the interference is absent.

Maximizing this rate over the choices @} and P, subject
to the constraintP = P; + P, optimizes the lower bound,
pﬁéhence (6a).
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Fig. 2. Upper and lower bounds on the capacity of the two-@&aussian

multicast channel, as a function of INR for an SNRP = 33 dB. The solid
curves depict the two bounds of (3). The horizontal dashee indicates
the performance of time-sharing, while the other dashed cindieates the
performance of a strategy in which the side information iste@ay the
transmitter as additional noise on each link.

6
s
~—~ ar
S
o)
€
>
&
2 3f
2
Q
T
214 ok
ik
—010 -5 (‘)‘ - -‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 40
Signal-to—Noise Ratio (dB)
Fig. 3. Upper and lower bounds on the capacity of the two-@&murssian

multicast channel, as a function of SNR for an INR @ = 15 dB.
The solid curves depict the two bounds of (3). The dashedecirdicates
the performance of time-sharing, while the dash-dotted cindéecates the
performance of a strategy in which the side information iste@ay the
transmitter as additional noise on each link.

IV. DisCcussION to capacity, but the superposition dirty paper coding styat
From (5), we obtain several useful insights. First, note theorresponding to our lower bound does. More generally, the
when@/2 > P+ 1, our lower bound reduces to time-sharinggifference between the upper bound and the lower bound can
while if /2 < 1 it reduces to dirty paper coding with respecbe bounded as follows:
to S™. In the moderate interference regime, our bound shows
that one can generally achieve a gain over these two steategi

by a superposition coding approach that combines them. PIEI;O(C —R-) < F}EHOO(RJF —R-)
The behavior of the bounds as a function of INR is depicted 1 Q>4
in Fig. 2 for a fixed SNR ofP = 33 dB. When the INR is 1 20 h
: e i : = h1og (2an) 2<Q <4 (1)
very small, Fig. 2 reflects that the side information can be 4 (1+Q/4)
ignored by the transmitter without sacrificing rate. Simjla %10g 14+ &) Q<2

when the INR is large, Fig. 2 reflects that time-sharing is
capacity-achieving. Both these observations can be digghti  Hence, for INR above 3 dB, our superposition dirty paper
For the low INR behavior, it suffices to note from (4) thatcode achieves withirl/4 bit/symbol of capacity, while for
INR below 3 dB, the superposition part of the code does
not help, but the dirty paper code alone achieves within
3 log(4/3) = 0.2075 bit/symbol of capacity. It is straightfor-
ward to verify (16); a proof can be found in the full paper [7].
We conclude this section with a few additional observations
Some Further Remarks:
1) Feedback does not help much. An upper bound when the
transmitter has perfect causal feedback from the receiver
is given by

lim C
Q—0

which is the same a$img_.o Ris, where Rig is the rate
achieved by ignoring the side-information, i.e.,

1 P
R18210g<1+62—i-1>

For the high INR behavior, it is suffices to note from (4)
that

1
< 1 — _
hmo R+ = B 10g(1 + P), (13)

(14)

1
lim C < lim Ry = - log(l+ P), (15)
Q—o00 4

Q—o0

1

which can be achieved by time-sharing between the two users RL = 4 log (1+P) 4 Q/2+1
and doing Costa dirty paper coding for each user being served a7
We note that this result settles the conjecture made in [10]. Thus in the limitQ — oo, feedback can gain by no

The behavior of the bounds as a function of SNR is depicted  more than 1/4 bit/symbol over time-sharing.
in Fig. 3 for a fixed INR of@ = 15 dB. When the SNR is Correlation among noise sequences does not matter, i.e.,
large, Fig. 2 reflects that having the transmitter ignore the the upper bound in Theorem 1 is valid even when the
side information does not achieve a rate particularly close noisesZ}" and Z7 are not independent. The argument

+110g<P+Q+1+2«/_PQ>.

2)
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is analogous to that for the standard broadcast chanbetween interference and noise can be ignored in encoding

(e.g. [2, Ch. 14]). and does not affect the (worst case) capatity.
Thus, we obtain the following lower bound on capacity of
A. Extensions for Robust Dirty Paper Coding our example multicast channel with correlated interfeesnc
i i int-to-poi Cg > Rsz(Py, P 21a

Consujer the a memoryless Gaussian point-to-point channel Cg = {(P17P2)1P12(151%5;07P1+P2§P} 5(P1, P2), (21a)

model with output
where
Y"=X"+ 85"+ 2", (18) 1 Py
Rﬁ(Pl,PQ) = — 10g (1 + >
i ; ; 2 14+ (61— B2)2Q/4 + P

whereX™ is the channel input subject to power constramt 1 (B = 32/ 2
S™ is a white Gaussian interference sequence of pawenot + 1 log (14 P).
known to decoder, and™ is a white Gaussian noise sequence (21b)

of unit power. When the interferencg” is perfectly known to  While the capacity of this channel remains unknown, we note
the encoder, Costa’s dirty paper coding is capacity achigvi that the rate (21) is nontrivial. Indeed, it can be quite darg
However, in many applications, only imperfect knowledgeven when the INR$;,Q and 3,Q are each large, provided
of S™ is available to the encoder. One special case is thgat|3; — 3| is small.
case ofcausal knowledge considered by Shannon. Another
is the case ohoisy noncausal knowledge. For these kinds of
generalizations, there is interest in understanding tpaadty =~ The capacity of the common-message Gaussian broadcast
of such channels and the structure of the associated cgpadihannel with transmitter side information is bounded. Our
achieving codes, which we refer to mbust dirty paper codes. results establish that in contrast to the single-user atiattme

It is often natural to analyze such problems via their equilack of side information at receivers strongly limits caipac
alent Gaussian multicast model. As an illustration, suppos
that the interference in (18) is of the for81" = 353 where

n ; ; ; [1] M. H. M. Costa, “Writing on dirty paper,|EEE Trans. Inform. Theory,
S~ N(0,QI) is known to the encoder but is not. Then if Vol. 29, no. 3, pp. 439-441, May 1983,

B is from a finite alphabet (or can be approximated as being) T. M. Cover and J. A. ThomasElements of Information Theory. New
s0), i.e.,8 € {B1,02,...,0k}, the problem is equivalent York, NY: Wiley, 1991.

to a Gaussian multicast problem With  users where the [3] U.Erez, S._ Shamai (S_hitz), and R. Zamir, “Capacity anddatstrategies
. . " for cancelling known interferencelEEE Trans. Inform. Theory, vol. 51,
interference for thesth user isg;.S; . no. 11, pp. 3820-3833, Nov. 2005.

From this examp|e it is apparent that for at least somé&l S. |. Gelfand and M. S. Pinsker, “Coding for channel witandom

L ) : . parameters,Probl. Peredachi Inform. (Probl. Inform. Trans), vol. 9,
applications, there is a need to accommodateelated inter no. 1, pp. 19-31, 1980.

ferences in the Gaussian multicast model. While a thorougis] c. Heegard and A. E. Gamal, “On the capacity of computer memory
treatment of such generalizations is beyond the scope of the Wwith defects"IEEE Trans. Inform. Theory, vol. 29, pp. 731-739, Sep.

. 1983.
present paper, we note that our results can be used to ebtabl['6] A. Khisti, “Coding techniques for multicasting,” Mastetthesis, M.1.T,

potentially useful lower bounds. Cambridge, MA, 2004, http://web.mit.edu/khisti/www/SMEiepdf.
We illustrate such a bound for the cageé = 2 of the [7]1 A Khisti, U. Erez, A. Lapidoth, and G. Wornell, “Carborofying onto

L . . . Dirty Paper,”|EEE Trans. Inform. Theory, submitted, November 2005,
example above. Specifically, consider a superpositiory dirt ;155 available, http://de.arxiv.org/abs/cs.IT/0511095

paper coding strategy analogous to that in the proof of thgg] A. Khisti, U. Erez, and G. Wornell, “Writing on two pieces dirty
lower bound in Theorem 1, whereby we decompose the Paper at once,” irProc. Int. Symp. Inform. Theory, June 2004.

. . . 9] C. E. Shannon, “Channels with side information at the graitter,” |BM
interferences according to (7). In this case, we have that (é] J. Res. Dev,, vol. 2, pp. 289-293, Oct. 1958.

V. CONCLUDING REMARKS
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specializes to [10] V. Steinberg and S. Shamai (Shitz), “Achievable ratesttie broadcast
gn — gn channel with states known at the transmitter,Pioc. Int. Symp. Inform.
= Bs 5o (19) Theory, 2005.
V" =By Sy,
where

Bs = (b1 + P2)/2
Bv = (B1 — B2)/2.

When we turn to implement step 2) of the encoding in
the proof of the lower bound of Theorem 1, in whidf
is treated as inteference and® as noise, the results of [1]
cannot be directly applied since the interferencgs and
V™ in (19) are correlated. However, the stronger version of
Costa’s results in [3] establishes that provided thereiisroon 3The common randomness enables the channel input to be stljstic
randomness at the transmitter and receivers, any cooelatindependent of the effective noise.
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