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Abstract — We propose to use an expression

of Csiszár & Körner’s to upper bound Gallager’s

E0(̺, Q, r) function. We demonstrate this approach

by computing the high SNR asymptotic expansion of

the computational cut-off rate of the peak- or average-

power limited discrete-time memoryless Ricean fading

channel with no — or with only partial — side infor-

mation at the receiver.

I. The Cut-Off Rate

Consider a discrete-time memoryless channel over the input
alphabet X and the output alphabet Y. For any input x ∈ X
let w(·|x) be the density, with respect to some fixed measure µ
on Y, of the output distribution that is induced by the input
x ∈ X . Let g : X → [0,∞) be some given cost function, and
let the allowed cost Υ ≥ 0 be fixed.

Following Gallager [1] we define for any probability measure
Q on X , for any ̺ ≥ 0, and for any r ≥ 0

E0(̺, Q, r) = − log

Z �Z
er(g(x)−Υ)w(y|x)

1
1+̺ dQ(x)

�̺+1

dµ(y).

We shall say that the cost constraint is active if

sup
Q:EQ[g(X)]≤Υ

E0(1, Q, 0) < sup
Q

E0(1, Q, 0)

in which case we define the cut-off rate R0(Υ) as:

R0(Υ) = sup
Q:EQ[g(X)]=Υ

sup
r≥0

E0(1, Q, r). (1)

II. A Dual Expression

Since the cut-off rate is expressed in (1) as a double maxi-
mization, any choice of an input distribution Q and of r ≥ 0
yields a lower bound on R0(Υ). To obtain an upper bound
on R0(Υ) we propose to extend to infinite alphabets the dual
expression of [2, p.192, ex.23]:

Proposition 1. Let fR be a probability density on Y. Then

for any input distribution Q on X satisfying the constraint

EQ[g(X)] ≥ Υ, any ̺ ≥ 0, and any r ≥ 0

E0(̺, Q, r) ≤ −(̺+1)

Z
log

Z
w(y|x)

1
1+̺ fR(y)

̺
1+̺ dµ(y) dQ(x).

III. Ricean Fading

For a Ricean fading channel X = Y = C , the output density
(w.r.t. the Lebesgue measure) corresponding to the input x is

w(y|x) =
1

π(σ2 + |x|2)e
−

|y−dx|2

σ2+|x|2 , x, y ∈ C

where σ2 > 0 is the variance of the additive Gaussian noise
and d ∈ C is the specular component. The cost function
is g(x) = |x|2, and Υ = Es is the allowed energy per symbol.
Irrespective of whether a peak- or an average-power constraint
is imposed we show

lim
Es/σ2↑∞

�
R0 − log log

Es

σ2

�
=

|d|2
2

− log(2π) − 2 log I0

�
|d|2
4

�
where I0(·) is the zero-th order modified Bessel function of the
first kind. In the special case of Rayleigh fading, i.e. d = 0,
the RHS of the above is − log 2π, in agreement with [4].

The upper bound is based on Proposition 1 with [3]

fR(y) =
(|y|2 + δ)α−1e−(|y|2+δ)/β

πβαΓ(α, δ/β)
, y ∈ C , α, β > 0, δ ≥ 0

where Γ(·, ·) denotes the incomplete Gamma function. The
lower bound is based on choosing r = 0 and the peak limited
input distribution Q under which X is circularly symmetric
with

log |X|2 ∼ Uniform (log log Es, log Es) .

Comparing with channel capacity [3]

lim
Es/σ2↑∞

�
C − log log

Es

σ2

�
= log |d|2 − 1 − Ei

�
−|d|2

�
where Ei(·) denotes the exponential-integral function, shows
that the asymptotic difference between the cut-off rate and
the channel capacity for the Ricean fading channel never ex-
ceeds 0.73 nats per channel use, irrespective of the specular
component d.

The asymptotic expansion can also be extended to the case
where the receiver has access to some side information S that
is jointly Gaussian with the fading. For d = 0 (Rayleigh)

lim
Es/σ2↑∞

�
R0(Es) − log log

Es

σ2

�
= − log 4ǫ − log K

�
i

2

1 − ǫ2

ǫ

�
where K(·) is the complete elliptic integral of the first kind, ǫ2

is the minimum mean squared-error in estimating the fading
from S and i =

√
−1.
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