
ar
X

iv
:c

s.
IT

/0
50

30
19

 v
2 

  1
4 

M
ar

 2
00

5

Duality Bounds on the Cut-Off Rate with
Applications to Ricean Fading

Amos Lapidoth Natalia Miliou

Abstract

We propose a technique to derive upper bounds on Gallager’s
cost-constrained random coding exponent function. Applying this
technique to the non-coherent peak-power or average-power limited
discrete time memoryless Ricean fading channel, we obtain the high
signal-to-noise ratio (SNR) expansion of this channel’s cut-off rate.
At high SNR the gap between channel capacity and the cut-off rate
approaches a finite limit. This limit is approximately 0.26 nats per
channel-use for zero specular component (Rayleigh) fading and ap-
proaches 0.39 nats per channel-use for very large specular components.

We also compute the asymptotic cut-off rate of a Rayleigh fading
channel when the receiver has access to some partial side information
concerning the fading. It is demonstrated that the cut-off rate does
not utilize the side information as efficiently as capacity, and that the
high SNR gap between the two increases to infinity as the imperfect
side information becomes more and more precise.

Keywords: Asymptotic, channel capacity, cut-off rate, fading, high SNR,
Ricean fading.

1 Introduction

This paper addresses the computation of a function that is key to the evalu-
ation of both the random coding and sphere packing error exponents. This
function, often denoted E0(̺), is usually expressed as a maximization prob-
lem over input distributions. Consequently, it is conceptually easily bounded
from below: any feasible input distribution gives rise to such a bound. In
this paper we propose to use a dual expression for E0(̺) — an expression
that involves a minimization over output distributions — in order to derive
upper bounds on E0(̺). We shall demonstrate this approach by studying
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the cutoff rate of non-coherent Ricean fading channels. To that end we shall
have to study the appropriate modifications to the function E0(̺) that are
needed to account for input constraints and when the channel input and
output alphabets are infinite.

It should be noted that the dual expression we propose to use is not new
[1], [2, Ex. 23 in Ch. 2.5]. We merely extend it here to input constrained
channels over infinite alphabets and demonstrate how it can be used to derive
analytic upper bounds on the random coding and sphere packing error expo-
nents. For numerical procedures (for unconstrained finite alphabet channels)
see [3].

The rest of this introductory section is dedicated to the introduction of
the function E0(̺) for discrete memoryless channels. We first treat uncon-
strained channel and then introduce the modifications that are needed to
account for input constraints. We describe both the “method of types” ap-
proach and Gallager’s approach. We pay special attention to the modification
that Gallager introduced to account for cost constraints and to the duality
between the expressions derived using the two approaches. This introduction
is somewhat lengthy because, while the results are not new, we had difficulty
pointing to a publication that introduces the two approaches side by side and
that compares the two in the presence of cost constraints.

In Section 2 we extend the discussion to infinite alphabets and prove the
basic inequality on which our approach to upper bounding E0(̺) is based;
see Proposition 1. In Section 3 we introduce the discrete-time memoryless
Ricean fading channel with and without full or partial side information at
the receiver, and we describe our asymptotic results on this channel’s cutoff
rate. These asymptotic results are derived using duality in Section 4, which
concludes the paper.

1.1 Unconstrained Inputs

To motivate the interest in the function E0(̺) we shall begin by addressing
the case where there are no input constraints. The reliability function E(R)
corresponding to rate-R unconstrained communication over a discrete mem-
oryless channel (DMC) of capacity C ≥ R is the best exponential decay in
the blocklength n of the average probability of error that one can achieve
using rate-R blocklength-n codebooks. That is,

E(R) , lim
n→∞

−1

n
log Pe(n,R) (1)

where Pe(n,R) denotes the average probability of error of the best rate-R
blocklength-n codebook for the given channel.
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The problem of computing the reliability function of a general DMC over
the finite input and output alphabets X and Y and of a general law W(y|x) is
still open. Various upper and lower bounds are, however, known. To derive
lower bounds on the reliability function one must derive upper bounds on the
probability of error of the best rate-R blocklength-n code. This is typically
done by demonstrating the existence of good codes for which the average
probability of error is small. One such lower bound on E(R) is the random
coding lower bound [4]. By considering an ensemble of codebooks whose
codewords are chosen independently, each according to a product distribution
of marginal law Q, Gallager derived the lower bound

E(R) ≥ EG(R,Q) (2)

where
EG(R,Q) , max

0≤̺≤1
{EG,0(̺,Q) − ̺R} (3)

and

EG,0(̺,Q) , − log
∑

y∈Y

(

∑

x∈X
Q(x)W(y|x) 1

1+̺

)1+̺

. (4)

Since the law Q from which the ensemble of codebooks is constructed is
arbitrary, Gallager obtained the bound

E(R) ≥ EG,r(R) (5)

where EG,r(R) is Gallager’s random coding error exponent

EG,r(R) , max
Q

EG(R,Q) (6)

= max
Q

max
0≤̺≤1

{EG,0(̺,Q) − ̺R}. (7)

A different random coding lower bound on the reliability function can be
derived using the ensemble of codebooks where the codewords are still chosen
independently, but rather than according to a product distribution, each is
now chosen uniformly over a type class [2, 2.5], [1], [5]. With this approach
one obtains [2, 2.5], [1] the lower bound

E(R) ≥ ECK(R,Q) (8)

where
ECK(R,Q) , min

V(·|·)

{

D(V‖W|Q) + |I(Q,V) − R|+
}

. (9)
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Here the minimization is over all conditional laws

V(y|x) ≥ 0,
∑

y∈Y
V(y|x) = 1, ∀x ∈ X ; (10)

D(V‖W|Q) =
∑

x∈X
Q(x)D

(

V(·|x)‖W(·|x)
)

(11)

=
∑

x∈X
Q(x)

∑

y∈Y
V(y|x) log

V(y|x)
W(y|x); (12)

the term I(Q,V) denotes the mutual information corresponding to the chan-
nel V and the input distribution Q; and |ξ|+ stands for max{ξ, 0}. Again,
since the type Q according to which the ensemble is generated is arbitrary,
one obtains

E(R) ≥ ECK,r(R) (13)

where

ECK,r(R) , max
Q

ECK(R,Q) (14)

= max
Q

min
V(·|·)

{

D(V‖W|Q) + |I(Q,V) − R|+
}

. (15)

There is an alternative form for ECK(R,Q) that will be of interest to us
[1], [2, Ex. 23 in Ch. 2.5]. This form is more similar to (3):

ECK(R,Q) = max
0≤̺≤1

{ECK,0(̺,Q) − ̺R} (16)

where

ECK,0(̺,Q) , min
V(·|·)

{D(V‖W|Q) + ̺I(Q,V)} (17)

= min
R

{

−(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
W(y|x) 1

1+̺ R(y)
̺

1+̺

)}

(18)

and where the minimization in the latter is over the set of all distributions
R on the output alphabet Y .

In general, for any DMC W(y|x) and any input distribution Q [1], [2, Ex.
23 in Ch. 2.5]

ECK,0(̺,Q) ≥ EG,0(̺,Q), ̺ ≥ 0 (19)

and hence
ECK(R,Q) ≥ EG(R,Q) (20)
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with the inequalities typically being strict. These inequalities are a conse-
quence of the fact that the “average constant composition code” performs
better than the “average independent and identically distributed code” [6].
However, when optimized over the input distributions, the inequalities turn
into equalities [1], [7], [2, Ex. 23 in Ch. 2.5]

max
Q

ECK,0(̺,Q) = max
Q

EG,0(̺,Q), ̺ ≥ 0 (21)

and
max

Q
ECK(R,Q) = max

Q
EG(R,Q) (22)

i.e.,
ECK,r(R) = EG,r(R). (23)

In fact, as shown in Appendix A, the optimization problems appearing on
the LHS and on the RHS of (22) are Lagrange duals.

Consequently, we shall henceforth denote maxQECK,0(̺,Q) (= maxQEG,0(̺,Q))
by E0(̺) and refer to EG,r(R) (= ECK,r(R)) as the random coding error ex-
ponent and denote it by Er(R). In terms of the function E0(·) the random
coding error exponent Er(R) is thus given by

Er(R) = max
0≤̺≤1

{E0(̺) − ̺R}. (24)

The cut-off rate R0 is defined by

R0 = E0(̺)
∣

∣

∣

̺=1
. (25)

The function E0(̺) also plays an important role in the study of upper
bounds to the reliability function. In fact, the sphere packing error exponent
Esp(R) is given by [4]

Esp(R) = max
̺≥0

{E0(̺) − ̺R}. (26)

Combining (21) with (18) and (4) we obtain the two equivalent expres-
sions for E0(̺)

E0(̺) = max
Q







− log
∑

y∈Y

(

∑

x∈X
Q(x)W(y|x) 1

1+̺

)1+̺






(27)

E0(̺) = max
Q

min
R

{

−(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
W(y|x) 1

1+̺ R(y)
̺

1+̺

)}

. (28)
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We refer to the former expression as the “primal” expression and to the latter
as the “dual” expression. The primal expression is useful for the derivation
of lower bounds on E0(̺). Indeed, any distribution Q on the input alphabet
X induces the lower bound

E0(̺) ≥ − log
∑

y∈Y

(

∑

x∈X
Q(x)W(y|x) 1

1+̺

)1+̺

. (29)

On the other hand, the dual expression is useful for the derivation of upper
bounds. Any distribution R on the output alphabet Y yields the upper bound

E0(̺) ≤ max
Q

{

−(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
W(y|x) 1

1+̺ R(y)
̺

1+̺

)}

(30)

= max
x∈X

{

−(1 + ̺) log

(

∑

y∈Y
W(y|x) 1

1+̺ R(y)
̺

1+̺

)}

. (31)

1.2 Constrained Inputs

Before we can use the above bounds for fading channels we need to extend
the discussion to cost constrained channels and to channels over infinite input
and output alphabets where the method of types cannot be directly used.
For now we continue our assumption of finite alphabets and address the cost
constraint.

Suppose we limit ourselves to blockcode transmissions where we only
allow codewords (x1, . . . , xn) that satisfy

n
∑

ℓ=1

g(xℓ) ≤ nΥ (32)

where g : X → R+ is a cost function on the input alphabet X , Υ is some pre-
specified non-negative number, and n, as before, is the blocklength. The reli-
ability function E(R) is defined as in (1) with the modification that Pe(n,R)
should be now understood as the lowest average probability of error that can
be achieved using a rate-R blocklength-n codebook all of whose codewords
satisfy the cost constraint.

To obtain lower bounds on E(R) Gallager [4], [8] modified his random
coding argument in two ways. He introduced a new ensemble of codebooks
and introduced an improved technique to analyze the average probability of
error over this ensemble. For any probability law Q on the input alphabet
satisfying

EQ[g(X)] ≤ Υ (33)
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where
EQ[g(X)] ,

∑

x∈X
Q(x)g(x) (34)

define

EM
G,0(̺,Q) ,

{

EG,0(̺,Q) if EQ[g(X)] < Υ

max
r≥0

E0(̺,Q, r) if EQ[g(X)] = Υ
(35)

where

E0(̺,Q, r) , − log
∑

y∈Y

(

∑

x∈X
Q(x)er(g(x)−Υ)W(y|x) 1

1+̺

)1+̺

. (36)

Note that
E0(̺,Q, r)

∣

∣

∣

r=0
= EG,0(̺,Q) (37)

and hence
max
r≥0

E0(̺,Q, r) ≥ EM
G,0(̺,Q) ≥ EG,0(̺,Q). (38)

Thus, Gallager’s “modification” can only tighten the bound.
Gallager then showed that for any 0 ≤ ̺ ≤ 1 the exponent

EM
G,0(̺,Q) − ̺R

is achievable using block codes that satisfy the constraint.
(To prove this result when EQ[g(X)] < Υ he considered an ensemble

of codebooks where the codewords are chosen independently of each other,
each according to the a-posteriori law of a sequence X1, . . . , Xn drawn IID
according to Q conditional on

∑n
k=1 g(Xk) ≤ nΥ. To prove the result when

EQ[g(X)] = Υ he considered an ensemble similarly constructed but with the
distribution being conditional on nΥ − δ ≤∑n

k=1 g(Xk) ≤ nΥ.)
Consequently the error exponent

EM
G,r(R,Υ) , max

0≤̺≤1

{

EM
G,0(̺,Υ) − ̺R

}

(39)

where
EM

G,0(̺,Υ) , max
Q:EQ[g(X)]≤Υ

EM
G,0(̺,Q) (40)

is achievable.
It is instructive to distinguish between two types of constraints. We say

that the cost constraint is inactive if there exists some input distribution Q∗
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satisfying the constraint that achieves the global unconstrained maximum of
EG,0(̺,Q). That is,

∃Q∗ : EQ∗ [g(X)] ≤ Υ and EG,0(̺,Q
∗) = max

Q
EG,0(̺,Q) (41)

or equivalently

max
Q:EQ[g(X)]≤Υ

EG,0(̺,Q) = max
Q

EG,0(̺,Q). (42)

Otherwise, we say that the cost constraint is active. With these definitions
it can be shown that (40) simplifies to

EM
G,0(̺,Υ) =







max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r) cost active

max
Q

EG,0(̺,Q) cost inactive
. (43)

(The case where the cost constraint is active follows from Gallager’s obser-
vation that when the cost constraint is active, the maximum of E0(̺,Q, r)
over all r ≥ 0 and over all laws Q satisfying (33) is achieved by an input
distribution Q∗ satisfying the constraint with equality. The case where the
cost constraint is inactive follows by noting that by starting from (38) we
have for inactive cost constraints

max
Q:EQ[g(X)]≤Υ

EM
G,0(̺,Q) ≥ max

Q:EQ[g(X)]≤Υ
EG,0(̺,Q)

= max
Q

EG,0(̺,Q)

= max
Q

ECK,0(̺,Q)

≥ max
Q:EQ[g(X)]≤Υ

EM
G,0(̺,Q)

so that all inequalities must hold with equalities. Here the first inequal-
ity follows from (38); the subsequent equality because the cost constraint
is assumed inactive (42); the subsequent equality from (21); and the final
inequality from (46) ahead.)

An achievable error exponent can also be demonstrated using constant
composition codes. This yields that the error exponent

ECK,r(R,Υ) , max
0≤̺≤1

{ECK,0(̺,Υ) − ̺R} (44)

is achievable where

ECK,0(̺,Υ) , max
Q:EQ[g(X)]≤Υ

ECK,0(̺,Q). (45)
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The relation (38) not withstanding, it can be shown that for any law Q

satisfying (33) and any ̺ ≥ 0

ECK,0(̺,Q) ≥ EM
G,0(̺,Q) (46)

with the inequality being, in general, strict.1 Consequently, by (45) and (40)
we have ECK,0(̺,Υ) ≥ EM

G,0(̺,Υ). However, as shown in Appendix B this
holds with equality

ECK,0(̺,Υ) = EM
G,0(̺,Υ). (47)

Thus, denoting the two identical functions EM
G,0(̺,Υ) and ECK,0(̺,Υ) by

E0(̺,Υ) and the two identical functions ECK,r(R,Υ) and EM
G,r(R,Υ) by Er(R,Υ)

we have
Er(R,Υ) = max

0≤̺≤1
{E0(̺,Υ) − ̺R} (48)

where E0(̺,Υ) can be expressed either by (43) as

E0(̺,Υ) =







max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r) cost active

max
Q

EG,0(̺,Q) cost inactive
(49)

or, using (18), as

E0(̺,Υ) =

max
Q:EQ[g(X)]≤Υ

min
R

{

−(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
W(y|x) 1

1+̺ R(y)
̺

1+̺

)}

. (50)

The former, to which we refer as the “primal” expression, is useful for the
derivation of lower bounds on E0(̺,Υ) whereas the latter, the “dual”, is
useful for upper bounds.

2 Continuous Alphabets

We next extend the discussion to channels over infinite input and output
alphabets. Consider a channel W (·|·) whose inputs and outputs take value
in the separable metric spaces X and Y respectively. Thus for any input
x ∈ X and any Borel set B ⊂ Y the probability that in response to the input
x the channel will produce an output Y that lies in the set B is W (B|x). We

1In the case EQ[g(X)] < Υ this follows directly from (20). For a proof in the case
EQ[g(X)] = Υ see Proposition 1 ahead, which proves that the RHS of (18) is greater or
equal EM

G,0(̺, Q).
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assume that the mapping x 7→ W (B|x) from X to the interval [0, 1] is Borel
measurable. Finally assume the existence of an underlying positive measure
µ on Y with respect to which all the probability measures {W (·|x), x ∈ X}
are absolutely continuous. Denote the Radon-Nykodim derivative of W (·|x)
with respect to µ by

w(·|x) =
dW (·|x)

dµ
, x ∈ X .

Thus, w(y|x) is the density at y of the channel output corresponding to the
input x ∈ X . For any input x ∈ X and any Borel set B ⊂ Y

W (B|x) =

∫

B
w(y|x) dµ(y). (51)

As to the cost, we shall assume that the function g : X → R+ is mea-
surable and consider block codes that satisfy (32). We extend the definition
(34) to infinite alphabets as

EQ[g(X)] ,

∫

X
g(x) dQ(x). (52)

Definition (36) is extended for any probability law Q on X as

E0(̺,Q, r) , − log

∫

y∈Y

(∫

x∈X
er(g(x)−Υ)w(y|x) 1

1+̺ dQ(x)

)1+̺

dµ(y). (53)

For any input distribution Q satisfying the constraint EQ[g(X)] ≤ Υ we
extend (35) as follows:

EM
G,0(̺,Q) ,







sup
r≥0

E0(̺,Q, r) if EQ[g(X)] = Υ and EQ[g3(X)] <∞

E0(̺,Q, r)
∣

∣

∣

r=0
otherwise

. (54)

(Note that following Gallager [4], [8] we allow for the optimization over r only
when under the law Q the random variable g(X) has a finite third moment.)

With this definition we can now define

E0(̺,Υ) , sup
Q:EQ[g(X)]≤Υ

EM
G,0(̺,Q) (55)

and the cut-off rate as

R0(Υ) , E0(̺,Υ)
∣

∣

∣

̺=1
. (56)
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The random coding error exponent

sup
0≤̺≤1

{E0(̺,Υ) − ̺R}

is achievable with block codes satisfying the constraint (32) [4], [8].
The following proposition proves (46) in the more general case where the

alphabets may be continuous. It is particularly useful for the derivation of
upper bounds on EM

G,0(̺,Υ).

Proposition 1. Consider as above a discrete-time memoryless infinite al-

phabet channel w(y|x), an output measure µ, a measurable cost function

g : X → R+, and some arbitrary allowed cost Υ. Let fR be an arbitrary

density with respect to µ on the output alphabet Y. Then for any distribution

Q on X satisfying the cost constraint EQ[g(X)] ≤ Υ

EM
G,0(̺,Q) ≤

− (1 + ̺)

∫

x∈X
log

(
∫

y∈Y
w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x). (57)

Proof. Distinguish between the case where EQ[g(X)] < Υ and the case where
EQ[g(X)] = Υ and EQ[g3(X)] <∞. In the former case, by (54), EM

G,0(̺,Q) =
E0(̺,Q, 0) and the result follows by an application of Jensen’s inequality and
Hölder’s inequality:

−(1 + ̺)

∫

x∈X
log

(
∫

y∈Y
w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x)

≥ −(1 + ̺) log

∫

x∈X

∫

y∈Y
w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y) dQ(x)

= −(1 + ̺) log

∫

y∈Y

(
∫

x∈X
w(y|x) 1

1+̺ dQ(x)

)

·
(

fR(y)
̺

1+̺

)

dµ(y)

≥ − log

∫

y∈Y

(
∫

x∈X
w(y|x) 1

1+̺ dQ(x)

)1+̺

dµ(y)

= E0(̺,Q, 0).

As for the case where EQ[g(X)] = Υ (and EQ[g3(X)] < ∞) we have for
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any r ≥ 0

−(1 + ̺)

∫

x∈X
log

(
∫

y∈Y
w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x)

= r(1 + ̺) (EQ[g(X)] − Υ)

− (1 + ̺)

∫

x∈X
log

(
∫

y∈Y
er(g(x)−Υ)w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x)

= −(1 + ̺)

∫

x∈X
log

(
∫

y∈Y
er(g(x)−Υ)w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x)

≥ −(1 + ̺) log

∫

x∈X

∫

y∈Y
er(g(x)−Υ)w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y) dQ(x)

≥ − log

∫

y∈Y

(
∫

x∈X
er(g(x)−Υ)w(y|x) 1

1+̺ dQ(x)

)1+̺

dµ(y)

= E0(̺,Q, r). (58)

where the second equality follows because in the case we are considering now
EQ[g(X)] = Υ; the first inequality by Jensen’s inequality, and the subsequent
by Hölder’s inequality. The result for this case now follows because r ≥ 0 in
the above is arbitrary.

To conclude, to derive lower bounds on E0(̺,Υ) we can choose any input
distribution Q satisfying the constraint EQ[g(X)] ≤ Υ to obtain the lower
bound:

E0(̺,Υ) ≥ EM
G,0(̺,Q) (59)

where EM
G,0(̺,Q) is defined in (54).

To derive upper bounds on E0(̺,Υ) we can use the above proposition by
choosing some arbitrary output density fR(y) to obtain

E0(̺,Υ) ≤

sup
Q:EQ[g(X)]≤Υ

{

−(1 + ̺)

∫

x∈X
log

(
∫

y∈Y
w(y|x) 1

1+̺fR(y)
̺

1+̺ dµ(y)

)

dQ(x)

}

.

(60)

3 Ricean Fading Channels

The discrete-time memoryless Ricean fading channel with partial receiver
side information is a channel whose input x takes value in the complex field
C and whose corresponding output constitutes of a pair of complex random
variables Y and S. We shall refer to Y as “the received signal” and to S
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as the “side information (at the receiver)”. The joint distribution of Y, S
corresponding to the input x ∈ C is best described using the fading complex
random variable H and the additive noise complex random variable Z.

The joint distribution of H , S, and Z does not depend on the input x.
The additive noise Z is independent of the pair (H,S) and has a circularly
symmetric complex Gaussian distribution of positive variance σ2. The fading
H is of mean d ∈ C — the “specular component” — and it is assumed that
H − d is a unit-variance circularly symmetric complex Gaussian random
variable.2 The pair S and H − d are jointly circularly symmetric Gaussian
random variables. We denote the conditional variance of H given S by ǫ2.

The received signal Y corresponding to the input x ∈ C is given by

Y = Hx+ Z. (61)

The case where ǫ2 = 1 corresponds to the case where H and S are inde-
pendent, in which case the receiver can discard S without loss in information
rates. This case corresponds to “non-coherent” fading. In the case ǫ2 = 0
the receiver can precisely determine the realization of H from S. This cor-
responds to “coherent detection”. Finally, the case 0 < ǫ < 1 corresponds to
“partially coherent” communication. In this case S carries some information
about H , but it does not fully determine H . In this paper we shall only
consider the case where ǫ2 > 0. The case ǫ2 = 0 is much easier to analyze
and has already received considerable attention in the literature. See for
example, [9], [10], [11] and the references in the latter.

The special case of Ricean fading with zero specular component d is called
“Rayleigh fading”. The non-coherent (ǫ2 = 1) capacity of this channel was
studied in [12], [13] and [14]. The coherent case (ǫ2 = 0) was studied in [9].
The capacity of the non-coherent Ricean channel (ǫ2 = 1 and d 6= 0) was
studied in [15]-[16] and [14].

Unless some restrictions are imposed on the input x, the capacity and cut-
off rate of this channel are infinite. Two kinds of restrictions are typically
considered. The first corresponds to an average power constraint. Here only
blockcodes where each codeword satisfies (32) with

g(x) = |x|2 (62)

2We shall sometimes refer to such Ricean fading as “normalized Ricean fading” to
make it explicit that the fading is of unit variance. “Un-normalized” Ricean fading need
not have unit-variance. Those can be normalized by scaling the fading and absorbing the
scaling into the input power. Note also that there is no loss in generality in assuming that
d is real and non-negative. The more general complex case can be treated by rotating the
output.
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are allowed. In this context rather than denoting the allowed cost by Υ
we shall use the more common symbol E , which stands here for the average
energy per symbol. That is, we only allow blocklength-n codes in which every
codeword x1, . . . , xn satisfies

1

n

n
∑

ℓ=1

|xℓ|2 ≤ E . (63)

The second type of constraint is a peak power constraint. Here we only
allow channel inputs that satisfy

|x|2 ≤ E (64)

where E now stands for the allowed peak power. Such a constraint is best
treated by considering the channel as being free of constraints but with the
input alphabet now being {z ∈ C : |z|2 ≤ E}.

For both the average and peak power constraints we define the signal-to-
noise ratio (SNR) as

SNR ,
E
σ2
. (65)

Any codebook satisfying the peak power constraint (64) also satisfies the
average power constraint hence the capacity and reliability function under
the peak constraint cannot exceed those under the average constraint.

Irrespective of whether an average power or a peak power constraint is
imposed, at high SNR the capacity C(SNR|S) of this channel is given asymp-
totically as

C(SNR|S) = log log SNR + log |d|2 − Ei
(

−|d|2
)

− 1 + log
1

ǫ2
+ o(1) (66)

where the correction term o(1) depends on the SNR and tends to zero as the
SNR tends to infinity. Here Ei(·) denotes the Exponential Integral function

Ei(−ξ) = −
∫ ∞

ξ

e−t

t
dt, ξ > 0 (67)

and we define the value of the function log(ξ) − Ei(−ξ) at ξ = 0 as −γ,
where γ ≈ 0.577 denotes Euler’s constant. (With this definition the function
log(ξ) − Ei(−ξ) is continuous from the right at ξ = 0.)

Here we shall study the cutoff rate in two cases. First, in the absence of
side information (ǫ2 = 1) we will show that irrespective of whether a peak or
average power constraint is imposed

R0(SNR) = log log SNR +
|d|2
2

− log(2π) − 2 log I0

( |d|2
4

)

+ o(1). (68)
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Figure 1: The second order terms of C(SNR) and R0(SNR) and their differ-
ence as functions of the specular component |d| for ǫ = 1, i.e., in the absence
of side information. Upper curve depicts lim

SNR→∞
{C(SNR) − log log SNR},

followed by the analogous term for the cutoff rate and their difference.

Here I0(·) denotes the zero-th order modified Bessel function of the first kind,
which is given by

I0(ξ) =
1

2π

∫ π

−π

eξ cos θ dθ, ξ ∈ R (69)

and the o(1) term is a correction term that depends on the SNR and that
approaches zero as the SNR tends to infinity.

Figure 1 depicts the second order term (the constant term) in the high
SNR expansion of channel capacity (66) and of the cutoff rate (68) as a
function of the specular component d in the absence of side information. For
a zero specular component the difference between the two second order terms
is log(2π)−1−γ ≈ 0.26 nats; for very large specular components (|d| → ∞)
this difference approaches log(4/e) ≈ 0.39 nats.3

For the case where the side information is present but is not perfect
(0 < ǫ2 < 1) we only treat the case of zero specular component (d = 0, i.e.,

3All logarithms in this paper are natural logarithms.
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Rayleigh fading). We obtain the expansion

R0(SNR|S) = log log SNR + log
1

ǫ2
− log K

(√
1 − ǫ4

)

− log 4 + o(1)

0 < ǫ2 < 1, d = 0 (70)

where K(·) is the complete elliptic integral of the first kind:

K(ξ) =

∫ 1

0

1√
1 − t2

√

1 − ξ2t2
dt, ξ2 < 1. (71)

For the case of Rayleigh fading with perfect side information (ǫ2 = 0) see
[10]. For the case of “almost perfect side information” (0 < ǫ2 ≪ 1) we note
the expansion

log
1

ǫ2
− log K

(√
1 − ǫ4

)

− log 4 = log
1

ǫ2
− log log

4

ǫ2
− log 4 + o(ǫ4)

0 < ǫ2 ≪ 1. (72)

which follows from the approximation [17]

K(k) =
1

1 − θ
log

4√
1 − k2

, 0 ≤ k < 1 (73)

for some

0 < θ <
1 − k2

4
. (74)

Figure 2 depicts the second order terms of channel capacity (66) and the
cutoff rate (70) as a function of the estimation error ǫ2 in estimating the
fading from the side information for Rayleigh fading channels (d = 0).

4 Derivations for Ricean Channels

4.1 The Cut-Off Rate in Absence of Side Information

4.1.1 Upper Bound

To derive an upper bound on the cut-off rate of the Ricean channel in the
absence of side information we use Proposition 1 with the density (w.r.t. the
Lebesgue measure µ on C)

fR(y) =
(|y|2 + δ)α−1e−

|y|2+δ

β

πβαΓ(α, δ/β)
, y ∈ C. (75)
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Figure 2: The second order terms of C(SNR), R0(SNR) and their difference
as functions of the minimum mean squared error ǫ2 in estimating the fading
from the side information. Rayleigh fading (d = 0) is assumed.

17



Here the parameters δ ≥ 0, α > 0, and β > 0 can be chosen freely in order
to obtain the tightest bound, and Γ(α, ξ) denotes the incomplete Gamma
function,

Γ(α, ξ) =

∫ ∞

ξ

tα−1e−t dt, α > 0, ξ ≥ 0. (76)

(This family of densities was introduced in [14] for the purpose of studying
the fading number.)

By Proposition 1 applied with ̺ = 1 we obtain for any law Q under which

EQ

[

|X|2
]

≤ E (77)

the upper bound

EM
G,0(1,Q) ≤ −2

∫

x∈C

logψ(x) dQ(x) (78)

where

ψ(x) ,

∫

y∈C

√

w(y|x) · fR(y) dµ(y) (79)

=
2e

−δ
2β e

− |d|2|x|2

2(|x|2+σ2)

√

Γ(α, δ
β
)β

α
2

√

|x|2 + σ2
ℓ(x;α, β, δ) (80)

and from [18, 3.338]

ℓ(x;α, β, δ) =

∫ ∞

0

e
− ρ2(β+|x|2+σ2)

2β(|x|2+σ2) ρ(ρ2 + δ)
α−1

2 I0

( |d| · |x| · ρ
|x|2 + σ2

)

dρ. (81)

For our high SNR analysis it will suffice to consider (for sufficiently large
powers E) the possibly sub-optimal choice of the parameters

β = E log E α =
δ

log β
(82)

and to consider the limiting behavior of the bound as E → ∞. After taking
this limit with δ > 0 held fixed we shall consider the additional limit of
δ → 0.

The analytic computation of ℓ(x;α, β, δ) is difficult. Note, however, that
any lower bound to this quantity will yield an upper bound on EM

G,0(1,Q).
Also, the integral is computable when both α and δ are formally set to zero.4

4In fact, it suffices that δ be set to zero.
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We can thus use a limiting argument to study ℓ(x;α, β, δ) for α, δ very small.
Indeed, in Appendix C it is shown that

ℓ(x;α, β, δ) ≥ a(α, β, δ,m1) · ℓ(x;α = 0, β, δ = 0) (83)

where

a(α, β, δ,m1) = δα/2

√

m1

m1 + 1



1 −
√
m1δ · I0

(

|d|
√

m1δ
2σ

)

√

πβσ2

2(β+σ2)



 (84)

m1 > 0 being some constant. As we shall see, the term a(α, β, δ,m1) will
have a negligible asymptotic contribution to our bound.

The term ℓ(x;α = 0, β, δ = 0) can be computed analytically [18, 6.618]:

ℓ(x;α = 0, β, δ = 0) =

√

π

2

√

β(|x|2 + σ2)

β + |x|2 + σ2

· e
β|d|2|x|2

4(|x|2+σ2)(β+|x|2+σ2) I0

(

β|d|2|x|2
4(|x|2 + σ2)(β + |x|2 + σ2)

)

. (85)

We thus conclude from (78) , (80), (83), and (85)

EM
G,0(1,Q) ≤ δ

β
− 2 log a(α, β, δ,m1) + α log β

+ log Γ

(

α,
δ

β

)

− log(2π)

+ EQ

[

log

(

1 +
|X|2 + σ2

β

)]

+ |d|2EQ

[ |X|2
|X|2 + σ2

·
(

1 − β

β + |X|2 + σ2

)]

+ EQ

[ |d|2
2

|X|2
|X|2 + σ2

β

β + |X|2 + σ2
− 2 log I0

( |d|2
4

|X|2
|X|2 + σ2

β

β + |X|2 + σ2

)]

.

The expectations in the above cannot be computed without knowledge of
the law Q. We thus proceed to upper bound the expectations using the
average power constraint (77). The expectation of the logarithm is up-
per bounded using Jensen’s inequality and the power constraint (77); the
following expectation is upper bounded using the point-wise upper bound
|x|2/(|x|2 + σ2) < 1, Jensen’s inequality, and the power constraint (77); and
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the final expectation by noting that the function ξ 7→ ξ − 2 log I0(ξ/2) is
monotonically increasing and by noting that

|d|2
2

|X|2
|X|2 + σ2

β

β + |X|2 + σ2
<

|d|2
2
.

We thus conclude that with the allowed average power E the cut-off rate
satisfies:

R0(E) − log log
E
σ2

≤ δ

β
− 2 log a(α, β, δ,m1) + α log β

+ log Γ

(

α,
δ

β

)

− log log
E
σ2

+ log

(

1 +
E + σ2

β

)

+ (1 − β

β + E + σ2
)|d|2

+
|d|2
2

− 2 log I0

( |d|2
4

)

− log(2π).

Holding δ > 0 (small) and m1 > 0 (large) fixed, and letting E → ∞ with
α = α(E) and β = β(E) as in (82) we obtain from the above and (84)

lim
E→∞

{R0(E) − log log
E
σ2

} ≤ log

(

m1 + 1

m1

)

− 2 log



1 −
√
m1δ · I0

(

|d|
√

m1δ
2σ

)

√

πσ2

2





+ log
1 − e−δ

δ

+
|d|2
2

− 2 log I0

( |d|2
4

)

− log(2π)

where in computing the limiting difference between the Incomplete Gamma
function and log log E we used [14, Appendix XI]. Holding m1 fixed and
letting δ → 0 we obtain

lim
E→∞

{R0(E) − log log
E
σ2

} ≤ log

(

m1 + 1

m1

)

+
|d|2
2

− 2 log I0

( |d|2
4

)

− log(2π).
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Letting now m1 tend to infinity we obtain the desired asymptotic upper
bound

lim
E→∞

{R0(E) − log log
E
σ2

} ≤ |d|2
2

− 2 log I0

( |d|2
4

)

− log(2π). (86)

4.1.2 Lower Bound

Any input distribution satisfying the cost constraint (possibly strictly) in-
duces a lower bound on the cut-off rate (56). Indeed, for any input distribu-
tion Q̃ satisfying the cost constraint

R0(Υ) ≥ EM
G,0(̺, Q̃)

∣

∣

∣

̺=1
(87)

≥ E0(̺, Q̃, r)
∣

∣

∣

̺=1,r=0
(88)

where the first inequality follows by the definition of the cut-off rate (56)
(and holds with equality if Q̃ achieves the cut-off rate) and where the second
inequality follows from (54) (and holds with equality if Q̃ satisfies the cost
constraint with strict inequality).

We thus proceed to lower bound E0(1, Q̃, 0) for a law Q̃ of our choice.
Under this law, X is a circularly symmetric random variable with

log |X|2 ∼ Uniform (log log E , log E) . (89)

The motivation for using this law is that it is known to achieve the asymptotic
capacity [14]. Moreover, this law also satisfies the peak power constraint
|X|2 ≤ E , so that the lower bound on the cut-off rate we compute will also
be valid as a lower bound for the cut-off rate under a peak constraint. Finally,
as the next proposition shows, the fact that under Q̃ the input X satisfies,
with probability one, |X| ≥ xmin, where xmin → ∞ greatly simplifies our
analysis. It allows us to asymptotically ignore the additive noise.

Proposition 2. Let E0(1,Q, 0) denote the function E0(ρ,Q, r) evaluated at

ρ = 1, r = 0 for the input law Q to the Ricean channel of specular component

d and additive noise variance σ2. Let Eσ=0
0 (1,Q, 0) be similarly defined for the

Ricean channel with the same specular component but without any additive

noise. If under the law Q the input X ∈ C satisfies with probability one

|X| ≥ xmin

for some xmin > 0 then

E0(1,Q, 0) ≥ Eσ=0
0 (1,Q, 0) −O

( |d|2 + 1

x2
min

)

. (90)
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Proof. For any input probability distribution Q, the term E0(1,Q, 0) can be
expressed

E0(1,Q, 0) = − log

∫

x

∫

x′

∫

y

√

w(y|x)w(y|x′) dµ(y) dQ(x′) dQ(x)

= − log

∫

x

∫

x′

B(x, x′; σ) dQ(x′) dQ(x) (91)

where

B(x, x′; σ) ,

∫

y

√

w(y|x)w(y|x′) dµ(y) (92)

and where for the Ricean fading channel with additive noise of variance σ2

B(x, x′; σ) =
2
√

|x|2 + σ2
√

|x′|2 + σ2

|x′|2 + |x|2 + 2σ2
e

−|d|2·|x−x′|2

2(|x|2+|x′|2+2σ2) . (93)

Comparing B(x, x′; σ) with the corresponding term in the absence of noise
B(x, x′; 0) we obtain

B(x, x′; σ)

≤ B(x, x′; 0)
√

1 + σ2/|x|2
√

1 + σ2/|x′|2e|d|
2σ2 |x−x′|2

(|x|2+|x′|2+2σ2)(|x|2+|x′|2) (94)

≤ B(x, x′; 0)
√

1 + σ2/|x|2
√

1 + σ2/|x′|2e|d|
2σ2 (|x|+|x′|)2

(|x|2+|x′|2+2σ2)(|x|2+|x′|2) (95)

where the last inequality follows by the triangle inequality. It thus follows
from (91) and (95) that if under the law Q the random variable X satisfies
with probability one |X| ≥ xmin then

E0(1,Q, 0) ≥ Eσ=0
0 (1,Q, 0)

− sup
|x|,|x′|≥xmin

{

log
√

1 + σ2/|x|2 + log
√

1 + σ2/|x′|2

+ |d|2σ2 (|x| + |x′|)2

(|x|2 + |x′|2 + 2σ2)(|x|2 + |x′|2)

}

= Eσ=0
0 (1,Q, 0) −O

(

(|d|2 + 1)/x2
min

)

.

Using this proposition with the law Q̃ under which X is distributed ac-
cording to (89) we obtain that

lim
E→∞

{

R0(E) − Eσ=0
0 (1, Q̃, 0)

}

≥ 0. (96)
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Computing Eσ=0
0 (1, Q̃, 0) from (91) and (93) we obtain

Eσ=0
0 (1, Q̃, 0) = − log 8 +

|d|2
2

+ 2 log log
E

log E

− log

∫

√
E

√
log E

∫

√
E

√
log E

1

ρ2 + ρ′2
I0

( |d|2ρρ′
ρ2 + ρ′2

)

dρ dρ′. (97)

The last term on the RHS of the above is difficult to evaluate precisely.
However, since the integrand is positive, the double integral can be upper
bounded by inflating the region of integration to the region

{ρ, ρ′ ≥ 0 : 2 log E ≤ ρ2 + ρ′2 ≤ 2E}.

The integral over this larger set can be now computed analytically by chang-
ing to polar coordinates to obtain

∫

√
E

√
log E

∫

√
E

√
log E

1

ρ2 + ρ′2
I0

( |d|2ρρ′
ρ2 + ρ′2

)

dρ dρ′ ≤ π

2
I20

( |d|2
4

)

· log

√

E
log E (98)

where we have used the identity

2

π

∫ π
2

0

I0
(

ξ sinϕ
)

dϕ = I20(ξ/2), ξ ∈ R (99)

which follows from [18, 6.567]. Consequently, by (97) and (98)

Eσ=0
0 (1, Q̃, 0) ≥ log log

E
log E +

|d|2
2

− log(2π) − 2 log I0

( |d|2
4

)

(100)

so that by (96)

lim
E→∞

{

R0(E) − log log
E
σ2

}

≥ |d|2
2

− log(2π) − 2 log I0

( |d|2
4

)

. (101)

4.2 The Cut-Off Rate in the Presence of Receiver Side

Information

We next consider the case where the fading H is of zero-mean (Rayleigh)
and where the receiver has access to some side-information S that is jointly
Gaussian with H . We assume that the pair (H,S) is independent of the
additive noise Z and that the joint law of (H,S) and Z does not depend on
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the channel input x ∈ C. We denote the conditional mean of H given S = s
by

d̂s , E[H|S = s] (102)

and the estimation error by

ǫ2 , E

[

|H − d̂s|2|S = s
]

. (103)

Note that unconditionally, d̂s is a zero-mean circularly-symmetric Gaussian
random variable of variance 1 − ǫ2:

d̂s ∼ NC(0, 1 − ǫ2). (104)

Recall also that we only treat here the case ǫ2 > 0. Denoting the conditional
density of (Y, S) corresponding to the input x ∈ C by w(y, s|x), we have by
the independence of the side information S and the input that

w(y, s|x) = fS(s)w(y|x, s) (105)

where fS is the density of the side information and where w(y|x, s) is the
conditional law of Y given the input x and the side information s. Note that,
because (H,S) are jointly Gaussian, the density w(y|x, s) is the Gaussian
density of mean d̂s · x and variance ǫ2 · |x|2 + σ2. Consequently,

E0(1,Q, r)

= − log

∫

y

∫

s

(
∫

x

er(|x|2−E)
√

w(y, s|x) dQ(x)

)2

dµ(y) dµ(s)

= − log

∫

s

fS(s)

∫

y

(
∫

x

er(|x|2−E)
√

w(y|x, s) dQ(x)

)2

dµ(y) dµ(s) (106)

= − log

∫

s

fS(s) · Exp (−E0(1,Q, r|s)) ds (107)

where (106) follows from (105) and where (107) follows by defining

E0(1,Q, r|s) , − log

∫

y

(
∫

x

er(|x|2−E)
√

w(y|x, s) dQ(x)

)2

dµ(y) (108)

as the E0 function corresponding to the channel w(y|x, s) for S = s fixed.
(This channel is a Ricean fading channel, except that the fading is not nor-
malized to have unit variance.)
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The cut-off rate R0(E|S) in the presence of the side information S can be
thus upper bounded by

R0(E|S) ≤ sup
Q:EQ[|X|2]≤E

sup
r≥0

{

− log

∫

s

fS(s) · Exp (−E0(1,Q, r|s)) ds

}

(109)

≤ − log

∫

s

fS(s) · Exp

(

− sup
Q:EQ[|X|2]≤E

sup
r≥0

E0(1,Q, r|s)
)

ds (110)

= − log

∫

s

fS(s) · Exp (−R0(E|S = s)) (111)

where
R0(E|S = s) , sup

Q:EQ[|X|2]≤E
sup
r≥0

E0(1,Q, r|s) (112)

is the cut-off rate corresponding to power E communication over the channel
w(y|x, s) for fixed S = s. 5

It now follows from (111) that

R0(E|S) − log log
E
σ2

≤ − log

∫

s

fS(s) · Exp
(

−
(

R0(E|S = s) − log log
E
σ2

)

)

and consequently

lim
E→∞

{R0(E|S) − log log
E
σ2

}

≤ lim
E→∞

{

− log

∫

s

fS(s) · Exp
(

−
(

R0(E|S = s) − log log
E
σ2

)

)

ds

}

(113)

= − log lim
E→∞

∫

s

fS(s) · Exp
(

−
(

R0(E|S = s) − log log
E
σ2

)

)

ds (114)

≤ − log

∫

s

fS(s) lim
E→∞

Exp
(

−
(

R0(E|S = s) − log log
E
σ2

)

)

ds (115)

= − log

∫

s

fS(s) · Exp
(

− lim
E→∞

{

R0(E|S = s) − log log
E
σ2

}

)

ds (116)

= − log

∫

s

fS(s) · Exp

(

−|d̂s|2
2ǫ2

+ log(2π) + 2 log I0

(

|d̂s|2
4ǫ2

))

ds (117)

= log
1

ǫ2
− log K

(√
1 − ǫ4

)

− log 4. (118)

5This definition is consistent with (55) since the cost constraint on the cut-off rate is
always active for the Ricean fading channel.
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Here the swapping of the limit and the expectation (second inequality) is
justified using Fatou’s lemma and we use the result

lim
E→∞

{

R0(E|S = s) − log log
E
σ2

}

=
|d̂s|2
2ǫ2

− log(2π) − 2 log I0

(

|d̂s|2
4ǫ2

)

(119)

which follows from (68) applied to the un-normalized Ricean fading channel
whose specular component is d̂s and whose granular component is of variance
ǫ2. The evaluation of the last integral is based on an identity combining [18,
6.612] and [19, 160.02]

∫ ∞

0

e−αx(I0(βx))
2 dx =

2

πα
K

(

2β

α

)

, α, β > 0

and the identity for the elliptic function [20, Eq. (3.2.4)]

K(k) =
2

1 + k′
K

(

1 − k′

1 + k′

)

, k2 + k′2 = 1, 0 < k, k′ < 1. (120)

In view of (118), to establish (70) it now suffices to show

lim
E→∞

{R0(E|S) − log log
E
σ2

} ≥ log
1

ǫ2
− log K

(√
1 − ǫ4

)

− log 4. (121)

To this end we note that by (107) and (108) evaluated at r = 0

R0(E|S) ≥ − log

∫

s

fS(s) · Exp
(

−E0(1, Q̃, 0|s)
)

ds (122)

for any law Q̃ satisfying E
Q̃
[|X|2] ≤ E . We next choose, as before, Q̃ to be a

law under which X is circularly symmetric with

log |X|2 ∼ Uniform (log log E , log E) (123)

whence by Proposition 2 and (100) applied to the Ricean channel of fading
mean d̂s and granular component ǫ2 and the tightness of the lower bound

lim
E→∞

{

E0(1, Q̃, 0|s) − log log
E
σ2

}

=
|ds|2
2ǫ2

− log(2π)− 2 log I0

( |ds|2
4ǫ2

)

(124)

for every s. The desired result (121) now follows from (122) and (124) using
the Dominated Convergence Theorem and (104).
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A A Lagrange Duality

In this appendix we prove the following Lagrange duality:

Proposition 3. For any discrete memoryless channel and any ̺ > 0, the

problem

min
Q
e−ECK,0(̺,Q) (125)

is a Lagrange dual of the problem

min
Q
e−EG,0(̺,Q) (126)

where Q is a distribution on the input alphabet. In particular, since strong

duality holds,

max
Q

EG,0(̺,Q) = max
Q

ECK,0(̺,Q)

Proof. Consider a discrete memoryless channel W(y|x) with input X ∈ X ,
|X | = N and output Y ∈ Y , |Y| = M . We henceforth introduce the more
standard, for optimization problems, vector notation for functions on discrete
domains. Hence, let q ∈ R1×N be a probability distribution on X and w ∈
RN×M be a matrix whose (i,j)-th element is given by

wij = W(yj|xi)
1

̺+1 , xi ∈ X , yj ∈ Y , ̺ > 0.

Hence, (126) can be written as:

min
q,f

∑

j

f 1+̺
j

s.t. qw = f , q � 0, q1 = 1,

where f ∈ R1×M is an auxiliary vector that we introduce in this problem.
The domain D of this optimization problem is D = {(q, f)|q � 0}. For any
̺ > 0 the objective function is convex in D. Furthermore, all equality and
inequality constraints are affine. Hence, the problem is a convex optimization

problem. We will perform a relaxation, which is nevertheless tight for the
optimal values of f and q, to the constraint qw = f , namely

min
q,f

∑

j

f 1+̺
j

s.t. f � qw, q � 0, q1 = 1.

The Lagrangian function of this problem is

L(q, f ,ν, µ,λ) =
∑

j

f 1+̺
j + (qw − f)ν + (1 − q1)µ− qλ,
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where λ � 0 ∈ RN×1, ν � 0 ∈ RM×1, f ∈ R1×M , µ ∈ R and (q, f) ∈ D.
Since the Lagrangian function is affine with respect to q, we impose the dual
inequality constraint µ1 � wν, minimize the Lagrangian over f and obtain
the Lagrange dual problem

max
ν,µ

{

−̺
∑

j

(

νj

1 + ̺

)
1+̺

̺

+ µ

}

s.t. µ1 � wν, ν � 0.

This is a concave problem, with the objective function being monotonic with
respect to all the optimization variables. Since we maximize it in a polyhe-
dron, the optimum will be on the boundary, of maximum distance from the
hyperplane µ = 0 and of minimum distance from all hyperplanes that define
the polyhedron. Therefore, some dual constraint has to be active, i.e.,

min
i

∑

j

wijνj = µ.

Consequently, the dual problem becomes

max
ν�0

{

−̺
∑

j

(

νj

1 + ̺

)
1+̺

̺

+ min
i

{

∑

j

wijνj

}}

.

We perform the transformation of variables
νj

1+̺
= r

̺
1+̺

j α, j = 1, . . . ,M ,

where r ∈ R1×M is chosen to be a probability distribution and α ∈ R+ is the
appropriate normalizing scalar. Optimizing over α yields

max
r







(

min
i

∑

j

wijr
̺

̺+1

j

)̺+1






s.t. r � 0, r1 = 1

which, because of the fact that
(

∑

j wijr
̺

̺+1

j

)̺+1

is concave with respect to

r and monotonic with respect to
∑

j wijr
̺

̺+1

j , concludes the proof.

B Proof of (47)

Proof. We begin with the case where the cost constraint is active. Fix some
̺ ≥ 0 and let Q∗ and r∗ achieve

max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r)
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so that
E0(̺,Q∗, r∗) = max

Q:EQ[g(X)]=Υ
max
r≥0

E0(̺,Q, r). (127)

Following [4, Eq. (7.3.26)] we define

α(y) ,
∑

x∈X
Q∗(x)e

r∗(g(x)−Υ)W(y|x) 1
1+̺ , y ∈ Y . (128)

With this definition we have by (127) and (36)

max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r) = E0(̺,Q∗, r∗)

= − log
∑

y∈Y
α1+̺(y). (129)

Also, by [4, Eq. (7.3.28)]

∑

y∈Y
α̺(y)er∗(g(x)−Υ)W(y|x) 1

1+̺ ≥
∑

y∈Y
α1+̺(y), ∀x ∈ X . (130)

Consider now the distribution R∗ on Y given by

R∗(y) =
α1+̺(y)

∑

y′∈Y α
1+̺(y′)

, y ∈ Y . (131)

We now have by (18) that for any distribution Q

ECK,0(̺,Q) ≤ −(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
W(y|x) 1

1+̺ R∗(y)
̺

1+̺

)

(132)

and if EQ[g(X)] = Υ then

ECK,0(̺,Q)

≤ −(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
er∗(g(x)−Υ)W(y|x) 1

1+̺ R∗(y)
̺

1+̺

)

= −(1 + ̺)
∑

x∈X
Q(x) log

(

∑

y∈Y
er∗(g(x)−Υ)W(y|x) 1

1+̺α̺(y)

)

+ ̺ log
∑

y∈Y
α1+̺(y)

≤ − log
∑

y∈Y
α1+̺(y)

= max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r).

29



Here the first inequality follows from (132) because the condition EQ[g(X)] =
Υ guarantees that the introduction of the exponential term exp{r∗(g(x) −
Υ)} has zero net effect; the subsequent equality by (131); the subsequent
inequality by (130); and the final equality by (127). It thus follows upon
taking the supremum in the above over all laws Q satisfying EQ[g(X)] = Υ
that

max
Q:EQ[g(X)]=Υ

ECK,0(̺,Q) ≤ max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r). (133)

On the other hand, by (46) we obtain

max
Q:EQ[g(X)]=Υ

ECK,0(̺,Q) ≥ max
Q:EQ[g(X)]=Υ

max
r≥0

E0(̺,Q, r) (134)

which combines with (133) to prove the claim for active cost constraints.
For the case of inactive cost constraints we have

max
Q:EQ[g(X)]≤Υ

ECK,0(̺,Q) ≤ max
Q

ECK,0(̺,Q)

= max
Q

EG,0(̺,Q)

= max
Q:EQ[g(X)]≤Υ

EM
G,0(̺,Q).

Here the first inequality follows by relaxing the constraint; the subsequent
equality by (21); and the final equality by (43). This combines with (46) to
conclude the proof.

C Derivation of (83)

To derive (83) we begin by noting that for ρ ≥ 1 the integrand can be lower
bounded by its value when α = 0 because

(

ρ2 + δ
)

α−1
2 ≥

(

ρ2 + δ
)− 1

2 , α, δ ≥ 0, ρ ≥ 1.

In the region 0 ≤ ρ ≤ 1 we can use the inequality

(

ρ2 + δ
)

α−1
2 ≥ δ

α
2

(

ρ2 + δ
)− 1

2 , α, δ > 0, 0 ≤ ρ ≤ 1.

Combining the above two bounds we obtain that throughout the region of
integration

(

ρ2 + δ
)

α−1
2 ≥ δ

α
2

(

ρ2 + δ
)− 1

2 , α > 0, 0 < δ < 1, 0 ≤ ρ <∞

and hence
ℓ(x;α, β, δ) ≥ δ

α
2 · ℓ(x;α = 0, β, δ). (135)
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We next relate ℓ(x;α = 0, β, δ) to ℓ(x;α = 0, β, δ = 0). To that end
denote the integrand in ℓ(x;α = 0, β, δ) by

η(ρ; x, β, δ, d) = e
−ρ2 β+|x|2+σ2

2β(|x|2+σ2)

√

ρ2

ρ2 + δ
I0

( |d| · |x| · ρ
|x|2 + σ2

)

.

We now write the integral as

ℓ(x;α = 0, β, δ) =

∫

√
m1δ

0

+

∫ ∞

√
m1δ

η(ρ; x, β, δ, d) dρ.

In the region ρ ≥
√
m1δ we have

√

ρ2

ρ2 + δ
≥
√

m1

m1 + 1

and hence
∫ ∞

√
m1δ

η(ρ; x, β, δ, d) dρ ≥
√

m1

m1 + 1

∫ ∞

√
m1δ

η(ρ; x, β, δ = 0, d) dρ. (136)

We next show that when
√
m1δ is small, the integral over the interval

[0,
√
m1δ] is also small. Indeed,

|x|
|x|2 + σ2

≤ 1

2σ
, x ∈ C

which combines with the monotonicity of I0(·) and the fact that the argument
to the exponential function is negative to demonstrate that

0 ≤ η(ρ; x, β, δ = 0, d) ≤ I0

( |d| · ρ
2σ

)

and hence that

0 ≤
∫

√
m1δ

0

η(ρ; x, β, δ = 0, d) dρ ≤
√

m1δ · I0
( |d|√m1δ

2σ

)

. (137)

On the other hand a straightforward calculation demonstrates that
∫ ∞

0

η(ρ; x, β, δ = 0, d) dρ ≥
∫ ∞

0

η(ρ; x, β, δ = 0, d = 0) dρ

=

√

π

2
·
√

β(|x|2 + σ2)

β + |x|2 + σ2

≥
√

πβσ2

2(β + σ2)
(138)
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where the first inequality follows from the monotonicity of I0(·) and the final
inequality follows from simple algebra. We thus conclude that

ℓ(x;α = 0, β, δ)

=

∫ ∞

0

η(ρ; x, β, δ, d) dρ

≥
∫ ∞

√
m1δ

η(ρ; x, β, δ, d) dρ

≥
√

m1

m1 + 1

∫ ∞

√
m1δ

η(ρ; x, β, δ = 0, d) dρ

=

√

m1

m1 + 1

(

∫ ∞

0

−
∫

√
m1δ

0

η(ρ; x, β, δ = 0, d) dρ

)

=

√

m1

m1 + 1

(

1 −
∫

√
m1δ

0
η(ρ; x, β, δ = 0, d) dρ

∫∞
0
η(ρ; x, β, δ = 0, d) dρ

)

·
∫ ∞

0

η(ρ; x, β, δ = 0, d) dρ

≥
√

m1

m1 + 1



1 −
√
m1δ · I0

(

|d|
√

m1δ
2σ

)

√

πβσ2

2(β+σ2)



 ℓ(x;α = 0, β, δ = 0) (139)

where the first inequality follows from the non-negativity of the integrand;
the subsequent inequality from (136); and the final inequality from (137) &
(138). The desired bound (83) now follows from (139) and (135).
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