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Abstract—We propose a technique to derive upper bounds on
Gallager’s cost-constrained random coding exponent function. Ap-
plying this technique to the noncoherent peak-power or average-
power limited discrete time memoryless Ricean fading channel,
we obtain the high signal-to-noise ratio (SNR) expansion of this
channel’s cutoff rate. At high SNR, the gap between channel ca-
pacity and the cutoff rate approaches a finite limit. This limit is
approximately 0.26 nats per channel-use for zero specular compo-
nent (Rayleigh) fading and approaches 0.39 nats per channel-use
for very large values of the specular component.

We also compute the asymptotic cutoff rate of a Rayleigh-fading
channel when the receiver has access to some partial side informa-
tion concerning the fading. It is demonstrated that the cutoff rate
does not utilize the side information as efficiently as capacity, and
that the high SNR gap between the two increases to infinity as the
imperfect side information becomes more and more precise.

Index Terms—Asymptotic, channel capacity, cutoff rate, duality,
fading, high signal-to-noise ratio (SNR), Lagrange, Ricean fading,
Rician fading.

I. INTRODUCTION

THIS paper addresses the computation of a function that
is key to the evaluation of both the random coding and

the sphere packing error exponents. This function, often de-
noted , is usually expressed as a maximization problem
over input distributions. Consequently, it is conceptually easily
bounded from below: any feasible input distribution gives rise
to such a bound. In this paper, we propose to use a dual ex-
pression for —an expression that involves a minimiza-
tion over output distributions—in order to derive upper bounds
on . We shall demonstrate this approach by studying the
cutoff rate of noncoherent Ricean (or “Rician”) fading channels.
To that end, we shall have to study the appropriate modifications
to the function that are needed to account for input con-
straints and for infinite input and output alphabets.

It should be noted that the dual expression we propose to use
is not new [1], [2, Ch. 2.5, Problem 23]. We merely extend it here
to input constrained channels over infinite alphabets and demon-
strate how it can be used to derive analytic upper bounds on the
random coding and sphere packing error exponents. For numer-
ical procedures (for unconstrained finite alphabet channels) see
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[3] and the Geometric Programming approach surveyed in [4]
and references therein.

The rest of this section is dedicated to the introduction of the
function for discrete memoryless channels. We first treat
unconstrained channels and demonstrate the Lagrange duality
between Gallager’s and Csiszár and Körner’s expressions for
the random coding error exponent. We then introduce the mod-
ifications that are needed to account for input constraints. We
describe both the “method of types” approach and Gallager’s
approach. We pay special attention to the modification that Gal-
lager introduced to account for cost constraints. This introduc-
tion is somewhat lengthy because, while the results are not new,
we had difficulty pointing to a publication that introduces the
two approaches side by side and that compares the two in the
presence of cost constraints.

In Section II, we extend the discussion to infinite alphabets
and prove the basic inequality on which our technique for upper
bounding is based: Proposition 2. In Section III, we intro-
duce the discrete-time memoryless Ricean fading channel with
and without full or partial side information at the receiver, and
we describe our asymptotic results on this channel’s cutoff rate.
These asymptotic results are derived using duality in Section IV,
which concludes the paper.

A. Unconstrained Inputs

To motivate the interest in the function we shall begin
by addressing the case where there are no input constraints.
The reliability function corresponding to rate- uncon-
strained communication over a discrete memoryless channel
(DMC) of capacity is the best exponential decay in the
blocklength of the average probability of error that one can
achieve using rate- block-length- codebooks. That is,

(1)

where denotes the average probability of error of the
best rate- block-length- codebook for the given channel.

The problem of computing the reliability function of a gen-
eral DMC of law over the finite input and output alpha-
bets and is still open. Various upper and lower bounds are,
however, known. To derive lower bounds on the reliability func-
tion one must derive upper bounds on the probability of error
of the best rate- block-length- code. This is typically done
by demonstrating the existence of good codes for which the av-
erage probability of error is small. One such lower bound on

is the random coding lower bound [5]. By considering an
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ensemble of codebooks whose codewords are chosen indepen-
dently, each according to a product distribution of marginal law

, Gallager derived the lower bound

(2)

where

(3)

and

(4)

Since the law from which the ensemble of codebooks is con-
structed is arbitrary, Gallager obtained the bound

(5)

where , Gallager’s random coding error exponent, is
given by

A different random coding lower bound on the reliability
function can be derived using the ensemble of codebooks where
the codewords are still chosen independently, but rather than ac-
cording to a product distribution, each is now chosen uniformly
over a type class [2, Ch. 2.5], [1], [6]. With this approach one
obtains [2, Ch. 2.5], [1] the lower bound

(6)

where

(7)

Here the minimization is over all conditional laws

the term denotes the mutual information corresponding
to the channel and the input distribution ; and stands
for . Again, since the type according to which the
ensemble is generated is arbitrary, one obtains

where

There is an alternative form for that will be of
interest to us [1], [2, Ch. 2.5, Problem 23]. This form is more
similar to (3)

(8)

where

(9)

(10)

and where the minimization in the latter is over the set of all
distributions on the output alphabet .

In general, for any DMC and any input distribution
[1], [2, Ch. 2.5, Problem 23]

(11)

and hence,

(12)

with the inequalities typically being strict. These inequalities are
a consequence of the fact that the “average constant composi-
tion code” performs better than the “average independently and
identically distributed code” [7].

However, when optimized over the input distribution, the in-
equalities turn into equalities [1], [8], [2, Ch. 2.5, Problem 23]

(13)

and

(14)

i.e.,

(15)

In fact, the optimization problems appearing on the left-hand
side (LHS) and on the right-hand side (RHS) of (13) are La-
grange duals.

Proposition 1: For any discrete memoryless channel with un-
constrained input sequences and any , the two maximiza-
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tion problems in (13) are related by strong Lagrange duality.
More specifically, the problem

(16)

is a strong Lagrange dual of the problem

(17)

Proof: For the purposes of this proof, we replace the infor-
mation-theoretic notation we have used so far with a notation
that is more standard for optimization problems. Namely, let the
row vector denote a probability vector on , and let

be the matrix whose th element is given by

and are the distinct
elements of the sets and , respectively. We reformulate
(17) by using (4) and introducing the auxiliary row vector

, given by , as follows:

s.t. (18)

where the domain of this optimization problem is
, and where and denote the all-one and

all-zero vectors of a size specified by the context. Here we use
to indicate that each component of the vector is

nonnegative. For any , the objective function is convex
in . Furthermore, all equality and inequality constraints are
affine. Hence, the problem is a convex optimization problem.

Since the objective of the problem is nondecreasing in
and constant in , we re-

place the equality constraints with without
decreasing the value of the solution. Therefore, the problem is
restated as follows:

s.t.

The Lagrangian function of this problem is [9, Ch. 5]

where and are the Lagrange dual
variables, and . The Lagrange dual function [9]

is, by calculation, given by

if

otherwise.

This is best seen by writing

and by then noting that if then an optimal choice
for is and that otherwise is .

The Lagrange dual problem is then

i.e.,

s.t.

Note that in the above Lagrange dual problem the constraint

(19)

is equivalent to the constraint

(20)

In fact, there is no loss in optimality by insisting that

(21)

because if (20) is satisfied with a strict inequality, then can be
scaled by , for sufficiently small (with fixed), and
this increases the value of the function . Consequently, upon
replacing (19) with (21), we obtain

We next perform the transformation of variables
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where is a probability vector on and is
the appropriate normalizing scalar parameter. Optimizing over

yields

(22)

s.t. (23)

The primal problem (18) is a convex optimization problem sat-
isfying Slater’s condition. Hence, its dual problem given in (22)
and (23) is a strong dual problem and provides a solution to (18)
with no loss in optimality. We shall now conclude the proof by
showing that the problem stated in (22) and (23) is equivalent to
(16). Beginning with (16) we have

where the first equality follows from (10); the second by the
minimax theorem; the third by the monotonicity of the exponen-
tial function; the fourth by computing the minimum; the fifth by
the monotonicity of the logarithm; and the last equality by al-
gebra.

In view of (13)–(15), we shall henceforth denote
by and re-

fer to as the random coding error expo-
nent and denote it by . In terms of the function ,
the random coding error exponent is thus given by

(24)

The cutoff rate is defined by

(25)

The function plays an important role not only in the
study of lower bounds on the reliability function but also
in the study of upper bounds. In fact, the sphere packing error
exponent is given by [5]

(26)

Combining (13) with (10) and (4) we obtain the two equivalent
expressions for

(27)

(28)

We refer to the former expression as the “primal” expression and
to the latter as the “dual” expression. The primal expression is
useful for the derivation of lower bounds on . Indeed, any
distribution on the input alphabet induces the lower bound

On the other hand, the dual expression is useful for the deriva-
tion of upper bounds. Any distribution on the output alphabet

yields the upper bound

B. Constrained Inputs

Before we can use the above bounds for fading channels, we
need to extend the discussion to cost-constrained channels and
to channels over infinite input and output alphabets, where the
method of types cannot be directly used. For now, we continue
our assumption of finite alphabets and address the cost con-
straint. The case of infinite input and output alphabets is treated
in Section II.

Suppose we restrict ourselves to block code transmissions
where we only allow codewords that satisfy

(29)
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where is a cost function on the input alphabet ;
the allowed average cost is some prespecified number;
and , as before, is the block length. The reliability function,
denoted now , is defined as in (1) with the modifica-
tion that should be now understood as the lowest av-
erage probability of error that can be achieved using a rate-
block-length- codebook all of whose codewords satisfy the
cost constraint.

To obtain lower bounds on , Gallager [5], [10] mod-
ified his random coding argument in two ways. He introduced a
new ensemble of codebooks and introduced an improved tech-
nique to analyze the average probability of error over this en-
semble. For any probability law on the input alphabet satis-
fying

(30)

where denotes expectation with respect to the law , so
that

(31)

define

if
if (32)

where

(33)

Note that

(34)

and hence,

(35)

Thus, Gallager’s “modification” can only tighten the bound.
Gallager then showed that for any , the exponent

is achievable using block codes that satisfy the constraint. (To
prove this result when , he considered an en-
semble of codebooks where the codewords are chosen indepen-
dently of each other, each according to the a posteriori law of
a sequence drawn independent and identically dis-
tributed according to conditional on To

prove the result when , he considered an en-
semble similarly constructed but with the distribution being con-
ditional on .)

Consequently, the error exponent

(36)

where

(37)

is achievable.
It is instructive to distinguish between two types of con-

straints. We say that the cost constraint is inactive if there
exists some input distribution satisfying the constraint that
achieves the global unconstrained maximum of .
That is, the cost is inactive if

and

(where the maximization in the above is over all input distribu-
tions on ) or, equivalently, if

(38)

Otherwise, we say that the cost constraint is active. With these
definitions it can be shown that (37) simplifies to

cost active

cost inactive.
(39)

(The case where the cost constraint is active follows from Gal-
lager’s observation that when the cost constraint is active, the
maximum of over all and over all laws
satisfying (30) is achieved by an input distribution satisfying
the constraint with equality. The case where the cost constraint
is inactive follows by noting that by starting from (35) we have
for inactive cost constraints

so that all inequalities must hold with equalities. Here, the first
inequality follows from (35); the subsequent equality because
the cost constraint is assumed inactive (38); the subsequent
equality from (13); and the final inequality from (42) ahead.)
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An achievable error exponent can also be established using
constant composition codes. This yields that the error exponent

(40)

is achievable where

(41)

The relation (35) notwithstanding, it can be shown that for
any law satisfying (30) and any

(42)

with the inequality being, in general, strict.1 Consequently, by
(41) and (37), we have . However,
as shown in Appendix I, this holds with equality

(43)

Thus, denoting the two identical functions and
by and the two identical functions
and by , we have

(44)

where can be expressed either, using (39), as

cost active

cost inactive

(45)
or, using (10), as

(46)

1In the case [g(X)] < �, this follows directly from (12). For a proof in
the case [g(X)] = � see Proposition 2 ahead, which proves that the RHS
of (10) is greater or equal to E (%; ).

The former expression, to which we refer as the “primal”
expression, is useful for the derivation of lower bounds on

, whereas the latter, the “dual,” is useful for upper
bounds.

II. CONTINUOUS ALPHABETS

We next extend the discussion to channels with infinite input
and output alphabets. Consider a channel whose input
and output take value in the separable metric spaces and , re-
spectively. Thus, for any input and any Borel set ,
the probability that in response to the input the channel will
produce an output that lies in the set is . We as-
sume that the mapping from to the interval

is Borel measurable. Finally, assume the existence of an
underlying positive measure on with respect to which all
the probability measures are absolutely con-
tinuous. Denote the Radon-Nykodim derivative of with
respect to by

Thus, is the density at of the channel output corre-
sponding to the input . For any input and any
Borel set

As to the cost, we shall assume that the function
is measurable and consider block codes that satisfy (29). We
extend the definition (31) to infinite alphabets as

(47)

Definition (33) is extended for any probability law on as
shown in the first equation at the bottom of the page. For any
input distribution satisfying the constraint we
extend (32) as shown in (48) at the bottom of the page. (Note
that following Gallager [5], [10] we allow for the optimization
over only when under the law the random variable
has a finite third moment.)

With this definition we can now define

(49)

if and

otherwise.
(48)
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and the cutoff rate as

(50)

The random coding error exponent

is achievable with block codes satisfying the constraint (29) [5],
[10].

The following proposition extends (42) to the more general
case where the alphabets may be continuous. It is particularly
useful for the derivation of upper bounds on and, in
particular, on the cutoff rate .

Proposition 2: Consider as above a discrete-time memory-
less infinite alphabet channel , an output measure , a
measurable cost function , and some arbitrary al-
lowed cost . Let be an arbitrary probability distribution
on of density with respect to . Then for any distribution

on satisfying the cost constraint we have

(51)

Proof: Distinguish between the case where
and the case where and . In the
former case, by (48), and the result
follows by an application of Jensen’s inequality and Hölder’s
inequality as in [2, Ch. 2.5, Problem 23]

As for the case where (and )
we have for any

where the second equality follows because in the case we are
considering now ; the first inequality by Jensen’s
inequality, and the subsequent by Hölder’s inequality. The result
for this case now follows because in the above is arbitrary.

To conclude, to derive lower bounds on we can
choose any input distribution satisfying the constraint

to obtain the lower bound

(52)

where is defined in (48).
To derive upper bounds on we can use the above

proposition by choosing some arbitrary output density to
obtain

(53)

III. RICEAN FADING CHANNELS AND THEIR CUTOFF RATES

The discrete-time memoryless Ricean fading channel with
partial receiver side information is a channel whose input takes
value in the complex field and whose corresponding output
constitutes of a pair of complex random variables and . We
shall refer to as “the received signal” and to as the “side
information (at the receiver).” The joint distribution of ,
corresponding to the input is best described using the
fading complex random variable and the additive noise com-
plex random variable . The received signal corresponding
to the input is given by

(54)

where the joint distribution of , , and does not depend
on the input . The additive noise is independent of the
pair and has a circularly symmetric complex Gaussian
distribution of positive variance . The fading is of mean

—the “specular component”—and it is assumed that
is a unit-variance circularly symmetric complex Gaussian
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random variable.2 (The specular component is a measure of
the “extent” to which the channel is fading. An extremely large
value of corresponds to a channel that is almost an additive
noise channel without fading. The case corresponds to
a severely fading channel, a case that is also called “Rayleigh”
fading.) The pair and are jointly circularly symmetric
Gaussian random variables. We denote the conditional variance
of given by . The case where corresponds to
the case where and are independent, in which case the
receiver can discard without loss in information rates. This
case corresponds to “noncoherent” fading. In the case ,
the receiver can precisely determine the realization of from

. This corresponds to “coherent detection.” Finally, the case
corresponds to “partially coherent” communication.

In this case, carries some information about , but it does
not fully determine . In this paper, we shall only consider the
case where . The case is much easier to analyze
and has already received considerable attention in the literature.
See for example, [11]–[13], and the references in the latter.

The special case of Ricean fading with zero specular com-
ponent is called “Rayleigh fading.” The noncoherent

capacity of this channel was studied in [14]–[16]. The
coherent case was studied in [11]. The capacity of the
noncoherent Ricean channel ( and ) was studied in
[16]–[18].

Unless some restrictions are imposed on the input , the ca-
pacity and cutoff rate of this channel are infinite. Two kinds of
restrictions are typically considered. The first corresponds to an
average power constraint. Here, only block codes where each
codeword satisfies (29) with

(55)

are allowed. In this context, rather than denoting the allowed
cost by we shall use the more common symbol , which
stands here for the average energy per symbol. That is, we
only allow block-length- codes in which every codeword

satisfies

(56)

The second type of constraint is a peak power constraint. Here
we only allow channel inputs that satisfy

(57)

where now stands for the allowed peak power. Such a con-
straint is best treated by considering the channel as being free
of constraints but with the input alphabet now being the set

.

2We shall sometimes refer to such Ricean fading as “normalized Ricean
fading” to make it explicit that the fading is of unit variance. “Un-normalized”
Ricean fading need not have unit variance. Those can be normalized by scaling
the fading and absorbing the scaling into the input power. Note also that there
is no loss in generality in assuming that d is real and nonnegative. The more
general complex case can be treated by rotating the output.

For both the average and peak power constraints we define
the signal-to-noise ratio (SNR) as

SNR (58)

Any codebook satisfying the peak power constraint (57)
also satisfies the average power constraint (56). Consequently,
the capacity and reliability function under the peak constraint
cannot exceed those under the average constraint.

Irrespective of whether an average power or a peak power
constraint is imposed, at high SNR the capacity SNR
of this channel is given asymptotically as [16]

SNR SNR

(59)

where the correction term depends on the SNR and tends
to zero as the SNR tends to infinity. Here, denotes the
Exponential Integral function

(60)

and we define the value of the function at
as , where denotes Euler’s constant. (With this
definition the function is continuous from the
right at .)

Here we shall study the cutoff rate in two cases: in the absence
of side information but where the specular component

is arbitrary, and in the presence of (imperfect) side information
but where the specular component is zero. For the

former case we have the following.

Proposition 3: Consider a discrete-time memoryless Ricean
fading channel of unit fading variance and of specular compo-
nent . Assume that neither transmitter nor receiver have any
side information about the fading realization but that both know
its law. Then, irrespective of whether a peak or an average power
constraint is imposed, the channel’s cutoff rate SNR is
given by

SNR SNR

(61)
Here denotes the zeroth-order modified Bessel function of
the first kind, which is given by

(62)

and the term is a correction term that depends on the SNR
and that approaches zero as the SNR tends to infinity.

Proof: See Section IV-A.

Fig. 1 depicts the SNR-independent term (i.e., the second-
order term) in the high-SNR expansion of channel capacity (59)
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Fig. 1. The SNR-independent terms (i.e., the second-order terms in the
high-SNR expansion) of C(SNR; d; 1) and R (SNR; d; 1) and their difference
as a function of the specular component jdj for � = 1, i.e., in the absence of
side information.

and of the cutoff rate (61) as functions of the specular compo-
nent in the absence of side information. For zero specular com-
ponent the difference between the two SNR-independent terms
is 0.26 nats; for very large specular com-
ponents this difference approaches 0.39
nats.3

For the case where the side information is present but is not
perfect we only treat the case of zero specular
component ( , i.e., Rayleigh fading).

Proposition 4: Consider a discrete-time memoryless Ricean-
fading channel of unit fading variance and of zero specular com-
ponent . Assume that available to the receiver, but not
to the transmitter, is some side information that is jointly
Gaussian with the fading such that is independent of
the additive noise and such that the joint law of does
not depend on the channel input. Let denote the least
estimation variance in estimating the fading based on the side
information . Let SNR denote the channel’s cutoff
rate. Then, irrespective of whether a peak or an average power
constraint is imposed

SNR SNR

(63)
where is the complete elliptic integral of the first kind

(64)

Proof: See Section IV-B.

3All logarithms in this paper are natural logarithms.

Fig. 2. The SNR-independent terms ofC(SNR; 0; � ), ofR (SNR; 0; � ), and
of their differenceC(SNR; 0; � )�R (SNR; 0; � ) as functions of log 1=� ,
where � is the minimum mean squared error in estimating the fading from the
side information. Rayleigh fading (d = 0) is assumed.

For the case of Rayleigh fading with perfect side information
see [12]. For the case of “almost perfect side informa-

tion” we note the expansion

which follows from the approximation [19]

(65)

for some

(66)

Fig. 2 depicts the SNR-independent terms of the channel ca-
pacity (59) when , i.e.,

SNR SNR

and the cutoff rate (63) as a function of the estimation error
in estimating the fading from the side information for Rayleigh-
fading channels .

We were unable to find an explicit expansion for the cutoff
rate in the general case where and because
we encountered some complicated integrals that did not seem
tractable.

IV. DERIVATIONS OF THE RICEAN CUTOFF RATE EXPANSIONS

In this section, we shall present the derivation of the
high-SNR asymptotic expansion of the cutoff rate in the case
where side information is absent and the specular
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component is arbitrary (61) and in the case where side infor-
mation is present and the specular component
is zero (63). We begin with the former.

A. The Cutoff Rate in the Absence of Side Information

The derivation of (61) is performed by deriving upper and
lower bounds that asymptotically coincide. We begin with the
upper bound.

1) Upper Bound: To derive an upper bound on the cutoff
rate of the Ricean channel in the absence of side information we
use Proposition 2 with the density (with respect to the Lebesgue
measure on )

(67)

Here the parameters , , and can be chosen
freely in order to obtain the tightest bound, and denotes
the incomplete Gamma function

(68)

This family of densities was introduced in [16] for the pur-
pose of studying the channel capacity and the fading number.
Since any choice of in Proposition 2 leads to an upper bound
on the cutoff rate, this choice requires no mathematical jus-
tification. The intuition for this choice is that this family of
distributions was shown in [16] to be rich enough to approxi-
mate the capacity-achieving output distribution of the Ricean-
fading channel at high SNR. It is thus also natural to hope that it
may also be rich enough to yield asymptotically optimal upper
bounds on the cutoff rate. Not less importantly, for the case at
hand where side information is absent, it also leads to tractable
analytic calculations.

By Proposition 2 applied with we obtain for any law
under which

(69)

the upper bound

(70)

where

(71)

(72)

and where [20, Sec. 3.338]

(73)

For our high-SNR analysis it will suffice to consider (for suf-
ficiently large powers ) the possibly suboptimal choice of the
parameters

(74)

and to consider the limiting behavior of the bound as .
After taking this limit with held fixed we shall consider
the additional limit of .

The analytic computation of is difficult. Note,
however, that any lower bound to this quantity will yield an
upper bound on . Also, the integral is computable
when both and are formally set to zero.4 We can thus use
a limiting argument to study for , very small.
Indeed, in Appendix II it is shown that for any

(75)

where

(76)

As we shall see, the term will have a negligible
asymptotic contribution to our bound.

The term can be computed analytically [20,
Sec. 6.618]

(77)

We thus conclude from (70), (72), (75), and (77)

4In fact, it suffices that � be set to zero.
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The expectations in the above cannot be computed without
knowledge of the law . We thus proceed to upper-bound
the expectations using the average power constraint (69). The
expectation of the logarithm is upper-bounded using Jensen’s
inequality and the power constraint (69); the following ex-
pectation is upper-bounded using the point-wise upper bound

, Jensen’s inequality, and the power
constraint (69); and the final expectation by noting that the
function is monotonically increasing
and by noting that

We thus conclude that with the allowed average power the
cutoff rate satisfies

Holding (small) and (large) fixed, and letting
with and as in (74), we obtain

from the above and (76)

where in computing the limiting difference between the Incom-
plete Gamma function and we used [16, Appendix XI].
Holding fixed and letting we obtain

Letting now tend to infinity we obtain the desired asymptotic
upper bound

(78)

2) Lower Bound: Any input distribution satisfying the cost
constraint (possibly strictly) induces a lower bound on the cutoff
rate (50). Indeed, for any input distribution satisfying the cost
constraint

where the first inequality follows by the definition of the cutoff
rate (50) (and holds with equality if achieves the cutoff rate)
and where the second inequality follows from (48) (and holds
with equality if satisfies the cost constraint with strict in-
equality).

We thus proceed to lower-bound for a law of
our choice. Under this law, is a circularly symmetric random
variable with

(79)

The motivation for using this law is that it is known to asymp-
totically achieve capacity [16]. Moreover, this law also satisfies
the peak power constraint , so that the lower bound on
the cutoff rate we compute will also be valid as a lower bound
for the cutoff rate under a peak constraint. Finally, as the next
proposition shows, the fact that under the input satisfies,
with probability one, , where greatly
simplifies our analysis. It allows us to asymptotically ignore the
additive noise.

Proposition 5: Let denote the function
evaluated at , for the input law

to the Ricean channel of specular component and additive
noise variance . Let be similarly defined for
the Ricean channel with the same specular component but
without any additive noise. If under the law the input
satisfies with probability one

for some then

(80)

where the term depends on and and tends to zero
as tends to infinity with held fixed.
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Proof: For any input probability distribution , the term
can be expressed as

(81)

where

and where for the Ricean-fading channel with additive noise of
variance

(82)

Comparing with the corresponding term in the ab-
sence of noise we obtain

(83)

where the last inequality follows by the triangle inequality. It
thus follows from (81) and (83) that if under the law the
random variable satisfies with probability one
then

Using this proposition with the law under which is dis-
tributed according to (79) we obtain that

(84)

Computing from (81) and (82) we obtain

(85)

The last term on the RHS of the above is difficult to evaluate
precisely. However, since the integrand is positive, the double
integral can be upper-bounded by inflating the region of inte-
gration to the region

The integral over this larger set can be now computed analyti-
cally by changing to polar coordinates to obtain

(86)

where we have used the identity

(87)

which follows from [20, Sec. 6.567]. Consequently, by (85) and
(86)

(88)

so that by (84)

(89)

B. The Cutoff Rate in the Presence of Receiver Side
Information

We next consider the case where the specular component
is zero (Rayleigh fading) and where the receiver has access to
some side information that is jointly Gaussian with . We
assume that the pair is independent of the additive noise

and that the joint law of and does not depend on
the channel input . We denote the conditional mean of
given by

(90)
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and the estimation error by

(91)

Note that unconditionally, is a zero-mean circularly sym-
metric Gaussian random variable of variance

(92)

Recall also that we only treat here the case . Denoting the
conditional density of corresponding to the input
by , we have by the independence of the side informa-
tion and the input that

(93)

where is the density of the side information and where
is the conditional law of given the input and

the side information . Note that, because are jointly
Gaussian, the density is the Gaussian density of mean

and variance . Consequently

(94)

(95)

where (94) follows from (93) and where (95) follows by defining

(96)

as the function corresponding to the channel ,
being fixed. (This channel is a Ricean-fading channel, except
that the fading is not normalized to have unit variance.)

1) Upper Bound: Using (95) and (96), we can upper-bound
the cutoff rate in the presence of the side infor-
mation by (97) at the bottom of the page, where we define

Note that is the cutoff rate corresponding to power
communication over the channel for fixed .5

It now follows from (97) that

and consequently see equation (98) at the top of the following
page. Here the swapping of the limit and the expectation (second
inequality) is justified using Fatou’s lemma and we use the result

which follows from (61) applied to the un-normalized
Ricean-fading channel whose specular component is
and whose granular component is of variance . The evalua-
tion of the last integral is based on an identity combining [20,
Sec. 6.612] and [21, Sec. 160.02]

and the identity for the elliptic function [22, eq. (3.2.4)]

(99)

5This definition is consistent with (49) since the cost constraint on the cutoff
rate is always active for the Ricean-fading channel.

(97)
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(98)

2) Lower Bound: In view of (98), to establish (63) it now
suffices to show

(100)

To this end, we note that by (95) and (96) evaluated at

(101)
for any law satisfying . We next choose, as
before, to be a law under which is circularly symmetric
with

whence, by Proposition 5 and (88) applied to the Ricean channel
of fading mean and granular component and the tightness
of the lower bound

(102)

for every . The desired result (100) now follows from (101) and
(102) using the Dominated Convergence Theorem and (92).

APPENDIX I
PROOF OF (43)

Proof: We begin with the case where the cost constraint is
active. Fix some and let and achieve

so that

(103)

Following [5, eq. (7.3.26)] we define

(104)
With this definition, we have by (103) and (33)

(105)

Also, by [5, eq. (7.3.28)]

(106)
Consider now the distribution on given by

(107)

We now have by (10) that for any distribution

(108)

and if then
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Here, the first inequality follows from (108) because the condi-
tion guarantees that the introduction of the ex-
ponential term has zero net effect; the sub-
sequent equality by (107); the subsequent inequality by (106);
and the final equality by (103). It thus follows upon taking the
supremum in the above over all laws satisfying

that

(109)
On the other hand, by (42) we obtain

(110)
which combines with (109) to prove the claim for active cost
constraints.

For the case of inactive cost constraints we have

Here the first inequality follows by relaxing the constraint; the
subsequent equality by (13); and the final equality by (39). This
combines with (42) to conclude the proof.

APPENDIX II
DERIVATION OF (75)

To derive (75), we begin by noting that for the integrand
can be lower-bounded by its value when because

In the region we can use the inequality

Combining the above two bounds we obtain that throughout the
region of integration

and hence,

(111)

We next relate to . To that end, denote
the integrand in by

(112)

and express the integral as

In the region , we have

and hence,

(113)

We next show that when is small, the integral over the
interval is also small. To that end, we upper-bound

in (112) by upper-bounding the exponential by
(its argument is negative); by upper-bounding by

; and by using the monotonicity of and the inequality

to obtain

Consequently, we have for any

(114)
On the other hand, a straightforward calculation demonstrates
that

(115)
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where the first inequality follows from the monotonicity of
and the final inequality follows from simple algebra. We thus
conclude that

(116)

where the first inequality follows from the nonnegativity of the
integrand; the subsequent inequality from (113); and the final
inequality from (114) and (115). The desired bound (75) now
follows from (116) and (111).
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