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Abstract — We propose a technique to derive an-
alytic upper bounds on channel capacity via its dual
expression. This is demonstrated on single- and multi-
antenna flat fading channels where the receiver has
no side information regarding the pathwise realiza-
tion of the fading process. The results indicate that
the capacity of such channels typically grows double-
logarithmically in the SNR and not logarithmically as
the piece-wise constant fading models predict.

I. The Dual Expression

For any input distribution Q to a DMC W (y|x) and any
distribution R(y) on its output the mutual information satis-
fies [1]:

I(Q, W ) ≤
X
x∈X

Q(x)D
�
W (·|x)‖R(·)�. (1)

This inequality can be shown to hold for more general alpha-
bets, and can also be used (either directly or via Lagrange
multipliers) to address input constraints. As we shall demon-
strate using some examples of flat fading channels, a judicious
choice of the probability measure R(·) may lead to useful an-
alytic upper bounds on channel capacity.

II. Channel Model

We consider a channel with nT transmit antennae and nR

receive antennae whose time-k output Yk ∈ C
nR is given by

Yk = H kxk + Zk =

nTX
t=1

x
(t)
k H

(t)
k + Zk, (2)

where xk = (x
(1)
k , . . . , x

(nT)
k )T ∈ C

nT denotes the time-k input
vector, the vectors {Zk} are spatially and temporally white
zero-mean variance-N circularly-symmetric Gaussians, and
the components of the random matrices {H k} are jointly sta-
tionary and ergodic stochastic processes independent of {Zk}.
We denote the capacity of this channel under the average

power constraint E
h
X†

kXk

i
≤ Es by C(Es).

Theorem 1. (Villa Serbelloni): If {H k} are IID,

E
h
tr(H †

kH k)
i

< ∞, and the differential entropy h(H k) exists

and is greater than −∞, then

lim sup
Es↑∞

�
C(Es) − log

�
1 + log

�
1 +

Es

N

���
< ∞. (3)

This theorem extends to Gaussian fading with memory:
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Theorem 2. Suppose now that the components of {H k −
E[H k ]} form jointly circularly-symmetric Gaussian stochastic
processes that are regular in the sense that the error-covariance
in estimating H k from its infinite past is non-singular. Then
(3) holds.

The proofs are based on the following convex-programming
bound for IID fading. (All logarithms are natural.)

C(Es) ≤ inf
α>0

sup
n

log Γ(α) − α log α

+ m log π − log Γ(m) + mE
�
log ||Y||2�− h(Y|X)

+ α
�
1 + log E

�||Y||2�− E
�
log ||Y||2� �o, (4)

where the supremum is over all input distributions satisfying
the average power constraint E

�||X||2� ≤ Es.
With the aid of (4) one can also obtain bounds on the

capacity of an IID multi-antenna Ricean channel where the
components of H − E[H ] are IID NC (0, 1), namely

C(Es) ≤ inf
0<α≤m
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where δ is the maximum eigenvalue of E[H ]† E[H ].
In the single-antenna IID Rayleigh fading case this bound

can be further tightened to

C(Es) ≤ inf
α,β>0

inf
δ≥0

(
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δ
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+ log Γ
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which gives the precise asymptotics

C(Es) = log
�
1 + log

�
1 + Es/N

��− γ − 1 + o(1), (7)

where γ is Euler’s constant, and the term o(1) tends to zero
as Es/N tends to infinity.
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