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Abstract — We propose a technique to derive an-
alytic upper bounds on channel capacity via its dual
expression. This is demonstrated on single- and multi-
antenna flat fading channels where the receiver has
no side information regarding the pathwise realiza-
tion of the fading process. The results indicate that
the capacity of such channels typically grows double-
logarithmically in the SNR and not logarithmically as
the piece-wise constant fading models predict.

I. THE DUAL EXPRESSION

For any input distribution @ to a DMC W (y|z) and any
distribution R(y) on its output the mutual information satis-
fies [1]:

QW) <) Q@)D(W(|2)l|IR()).- (1)

reX

This inequality can be shown to hold for more general alpha-
bets, and can also be used (either directly or via Lagrange
multipliers) to address input constraints. As we shall demon-
strate using some examples of flat fading channels, a judicious
choice of the probability measure R(-) may lead to useful an-
alytic upper bounds on channel capacity.

II. CHANNEL MODEL

We consider a channel with nt transmit antennae and ng
receive antennae whose time-k output Y, € C"R is given by

nr
Yi = Hixx + Zy = le(ct>H§:) + Zg, (2)
t=1

where x = ($}(€1)7 cee m,i"ﬂ)T € C"T denotes the time-k input

vector, the vectors {Z;} are spatially and temporally white
zero-mean variance-N circularly-symmetric Gaussians, and
the components of the random matrices {Hj } are jointly sta-
tionary and ergodic stochastic processes independent of {Zj}.
We denote the capacity of this channel under the average

power constraint E [XLX;C] < & by C(&).

Theorem 1. (Villa Serbelloni): If {Hj} IID,

E [tr(HL]HIk )] < oo, and the differential entropy h(Hy) exists
and is greater than —oo, then

s {016 1o (11t (14 5)) <. 0

This theorem extends to Gaussian fading with memory:
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Theorem 2. Suppose now that the components of {Hj —
E[Hk]} form jointly circularly-symmetric Gaussian stochastic
processes that are reqular in the sense that the error-covariance
in estimating Hy, from its infinite past is non-singular. Then
(8) holds.

The proofs are based on the following convex-programming
bound for IID fading. (All logarithms are natural.)

C(&) < inf sup { logT'(a) — alog
+mlogm — log T'(m) +mE [log || Y]|*] — h(Y|X)
+ a(1+10gE[I[YI?] —EQlogl Y] )}, @

where the supremum is over all input distributions satisfying
the average power constraint E [||X|[*] < &.

With the aid of (4) one can also obtain bounds on the
capacity of an IID multi-antenna Ricean channel where the
components of H — E[H] are IID N¢(0, 1), namely

C(&) < 0<i££ {logl“(a) —aloga —m — logT'(m)
Es 6&s
T a{l—i—log(m(l—i—ﬁ) N )}
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where § is the maximum eigenvalue of E[H]" E[H].
In the single-antenna IID Rayleigh fading case this bound
can be further tightened to

o

C(&) < inf inf { -1 —alogé +logI' <Q7B> + &+N

g
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+ %+log%+(a71)e%Ei (7%) }7 (6)

which gives the precise asymptotics
C(&) =log(1+1log(1+&/N)) —v—1+0(1), (7)
where v is Euler’s constant, and the term o(1) tends to zero

as &/N tends to infinity.
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