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Abstract

We derive the fading number of a general (not necessar-
ily Gaussian) single-input multiple-output (SIMO) fad-
ing channel with memory, where the transmitter and
receiver—while fully cognizant of the probability law
governing the fading process—have no access to the
fading realization.

It is demonstrated that the fading number is
achieved by IID circularly-symmetric inputs of log
squared-magnitude that is uniformly distributed over
a signal-to-noise (SNR) dependent interval. The up-
per limit of the interval is the logarithm of the allowed
transmit power, and the lower limit tends to infinity
sub-logarithmically in the SNR. Among the new ingre-
dients in the proof is a new theorem regarding input
distributions that escape to infinity.

Upper and lower bounds on the fading number for
SIMO Gaussian fading are also presented. Those are
computed explicitly for stationary m-th order auto-
regressive AR(m) Gaussian fading processes.

Keywords: Auto-regressive process, channel capacity,
fading, fading number, high SNR, memory, multiple-
antenna, SIMO.

1. INTRODUCTION

We consider a single-input multiple-output (SIMO)
fading channel whose time-k output Yk ∈ CnR is given
by

Yk = Hkxk + Zk (1)

where xk ∈ C denotes the time-k channel input; the
random vector Hk ∈ C

nR denotes the time-k fading
vector; and where Zk denotes additive noise. Here C

denotes the complex field, CnR denotes the nR-dimen-
sional complex Euclidean space, and nR denotes the
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number of receive antennas. We assume that the ad-
ditive noise is a zero-mean temporally and spatially
white Gaussian process of covariance matrix σ2InR ,
where σ2 > 0 and where InR denotes the nR × nR

identity matrix. Thus, {Zk} is a zero-mean circularly-
symmetric stationary multi-variate Gaussian process
such that E

[
ZkZ

†
k+m

]
is the zero matrix if m 6= 0,

and is σ2InR for m = 0. Here ()† denotes Hermitian
conjugation.

As for the multi-variate fading process {Hk}, we
shall only assume that it is stationary, ergodic, of finite
second moment

E
[‖Hk‖2

]
<∞, (2)

and of finite differential entropy rate

h({Hk}) > −∞. (3)

Finally, we assume that the fading process {Hk}
and the additive noise process {Zk} are independent
and of a joint law that does not depend on the channel
input {xk}.

As for the input, we consider two different con-
straints: a peak-power constraint and an average-power
constraint. We use Es to denote the maximal allowed
instantaneous power in the former case, and to denote
the allowed average power in the latter case. For both
cases we set

SNR =
Es

σ2
.

The capacity of the channel C(SNR) is given by

C(SNR) = lim
n→∞

1
n

sup I (Xn
1 ;Yn

1 ) ,

where we use Xk
j to denote Xj , . . . , Xk and where the

supremum is over the set of all probability distributions
on Xn

1 satisfying the constraint, i.e.,

|Xk|2 ≤ Es, k = 1, 2, . . . , n for a peak constraint,



or

1
n

n∑
k=1

E
[|Xk|2

] ≤ Es for an average constraint.

It follows from the general results of [1] that—con-
trary to the case where the receiver has access to the
fading realization—at high SNR the capacity of this
channel grows only double-logarithmically in the SNR

lim
SNR↑∞

{
C(SNR) − log log SNR

}
<∞.

In an attempt to quantify the rates at which the
double-logarithmic asymptotics begin, [1] introduced
the fading number χ as

χ({Hk}) = lim
SNR↑∞

{
C(SNR) − log log SNR

}
. (4)

Among the fading numbers computed in [1] are the
fading number for single-input single-output (SISO)
fading channels with memory

χ({Hk}) = log π + E
[
log |H1|2

] − h
({Hk}

)
, (5)

where h
({Hk}

)
is the differential entropy rate of {Hk};

and the fading number for memoryless SIMO fading

χIID(H) = I
(
Û;HÛ) + E[log ‖H‖]

− h
(‖H‖ ∣∣ ĤÛ) − log 2, (6)

where Û is independent of H and uniformly distributed
over the complex sphere {z ∈ C : |z| = 1}, and where
Ĥ = H/‖H‖. Alternatively, χIID(H) can be expressed
as

χIID(H) = hλ(ĤÛ) − h(H) + nRE
[
log ‖H‖2

] − log 2,
(7)

where hλ is the differential entropy on the sphere, so
that if a random vector G takes value on the unit-
sphere and has the density fλ

G(g) with respect to the
surface-area measure λ, then

hλ(G) = −E
[
log fλ

G(G)
]
.

The above is extended [1] to the case where the re-
ceiver has access to some side-information S such that
(H,S) are independent of Z, the joint law of (H,S,Z)
does not depend on the input, and the mutual infor-
mation I(H;S) is finite,

I(H;S) <∞. (8)

In this case

χIID(H|S) = hλ(ĤÛ|S) − h(H|S)

+ nRE
[
log ‖H‖2

] − log 2. (9)

It is further shown in [1] that in the case of mem-
oryless multiple-input multiple-output (MIMO) fading
where the nR × nT random fading matrix H is of the
form

H = D + H̃,

where D is a deterministic nR × nT matrix and H̃ is a
random nR × nT matrix of IID NC(0, 1) components,
the fading number can be bounded as

χIID(D + H̃) ≥ log ‖D‖2 − Ei
(−‖D‖2

) − 1, (10)

χIID(D + H̃) ≤ min{nR, nT} log
(

1 +
‖D‖2

min{nR, nT}
)

+ nR lognR − nR − log Γ(nR), (11)

where ‖ · ‖ denotes the matrix operator norm. This
specializes for the SIMO case to

χIID(d + H̃) ≥ log ‖d‖2 − Ei
(−‖d‖2

) − 1, (12)

χIID(d + H̃) ≤ log(1 + ‖d‖2) + nR lognR

− nR − log Γ(nR), (13)

where the nR components of H̃ are IID NC(0, 1). More
generally, if

H ∼ NC(d,Σ) ,

where Σ has eigenvalues λ(1), . . . , λ(nR), then

χIID(H) ≥ log
nR∑
r=1

∣∣∣∣∣ (V
Td)(r)√
λ(r)

∣∣∣∣∣
2

− Ei


−

nR∑
r=1

∣∣∣∣∣ (V
Td)(r)√
λ(r)

∣∣∣∣∣
2

 − 1, (14)

χIID(H) ≤ log


1 +

nR∑
r=1

∣∣∣∣∣ (V
Td)(r)√
λ(r)

∣∣∣∣∣
2



+ nR lognR − nR − log Γ(nR), (15)

where V is unitary and diagonalizes Σ:

ΣV = V diag
(
λ(1), . . . , λ(nR)

)
.

This follows because for any non-singular deterministic
nR × nR matrix G,

χ(GH) = χ(H),

see [1, Lemma 4.7]. The choice

G = diag
(

1√
λ(1)

, . . . ,
1√
λ(nR)

)
· VT

leads to a fading vector GH with components that are
IID NC(0, 1).



In particular, if Σ is diagonal,

Σ = diag
(
λ(1), . . . , λ(nR)

)
,

then

χIID(H) ≥ log
nR∑
r=1

∣∣d(r)
∣∣2

λ(r)
− Ei

(
−

nR∑
r=1

∣∣d(r)
∣∣2

λ(r)

)
− 1,

(16)

χIID(H) ≤ log

(
1 +

nR∑
r=1

∣∣d(r)
∣∣2

λ(r)

)
+ nR lognR

− nR − log Γ(nR). (17)

In this contribution we shall extend these results
and compute the fading number for SIMO fading with
memory.

2. THE MAIN RESULT

Our main result is the fading number of general (not
necessarily Gaussian) SIMO channels with memory.

Theorem 1. Consider the SIMO fading channel with
memory (1), and assume that the stationary and er-
godic multi-variate fading process {Hk} satisfies the fi-
nite energy and finite differential entropy rate condi-
tions (2) and (3). Then irrespective of whether a peak-
or an average-power constraint is imposed, the capacity
of the channel is given at high SNR by

C(SNR) = log log SNR + χ
({Hk}

)
+ o(1), (18)

where the o(1) term tends to zero as the SNR tends to
infinity, and where the fading number χ

({Hk}
)

is given
by

χ
({Hk}

)
= χIID

(
H0

∣∣∣H−1
−∞, {Ĥ`Û`}∞`=1

)
. (19)

Here χIID

(
H0

∣∣S)
is given in (9), and the random pro-

cess {Ûk} is independent of {Hk} and constitutes of
IID random variables that are uniformly distributed
over the complex sphere, i.e.,

Ûk ∼ Uniform on {z ∈ C : |z| = 1}.
Moreover, this asymptotic behavior is achievable at high
SNR by IID circularly-symmetric inputs {Xk} such
that

log |Xk|2 ∼ Uniform on [log log Es, log Es].

Corollary 2. From Theorem 1 it follows that

χIID

(
H0

∣∣H−1
−∞

) ≤ χ({Hk}) ≤ χIID

(
H0

∣∣H−1
−∞,H

∞
1

)
.

(20)

Remark 3. Note that we can always find a lower bound
to a SIMO fading system with memory (even with cor-
relation between the antennas) by linear combining the
outputs of the nR receive antennas:

χ({Hk}) ≥ sup
{

log π + E
[
log |H̃1|2

]
− h

({H̃k}
)}
,

(21)
where H̃k =

∑nR
r=1 α

(r)H
(r)
k and where the supremum

is over all α(1), . . . , α(nR) that fulfill
∑nR

r=1 |α(r)|2 = 1.
This bound, however, is generally not tight.

3. INPUT DISTRIBUTIONS THAT ESCAPE
TO INFINITY

An important ingredient in the proof of Theorem 1
is a new theorem regarding “input distributions that
escape to infinity”. Under slightly more restrictive con-
ditions on the asymptotic behavior of channel capacity,
we strengthen the results of [1] in the following sense.
When specialized to the problem at hand, Theorem
4.13 of [1] demonstrates that the fading number can be
achieved by input distributions that escape to infinity.
That is, there exist input distributions satisfying the
cost constraint and escaping to infinity that induce mu-
tual informations whose difference from capacity tends
to zero. Our present result, when specialized to the
present setting, strengthens [1, Theorem 4.13] by show-
ing that a sequence of inputs distributions satisfying
the cost constraint must escape to infinity if it is to
induce mutual informations whose ratio to log log SNR
is to approach one. The new result implies the old one,
because if a sequence of input distributions induces mu-
tual informations whose difference to capacity tends to
zero, then the ratios to log log SNR must approach one,
and hence, by the new result, must escape to infinity.

It should, however, be noted that while the new
result—like [1, Theorem 4.13]— extends to general cost
constrained channels, the required assumptions on the
functional form of the capacity-cost function are some-
what more stringent.

To state the new result, assume that the input and
output alphabets X and Y of a memoryless channel
W : X 7→ Y are separable metric spaces, and that
for any set B ⊂ Y the mapping x 7→ W (B|x) from X
to [0, 1] is Borel measurable. Further assume that the
cost function g : X → [0,∞) is measurable. Recall
the following standard definition of the capacity-cost
function:

Definition 4. Given a channel W : X 7→ Y and given
some non-negative cost function g : X → R

+, we define
the capacity-cost function C : R+ → R+ by

C(Υ) = sup
Q:EQ[g(X)]≤Υ

I(Q,W ), Υ ≥ 0. (22)



Definition 5. Let {QΥ,Υ ≥ 0} be a family of input
distributions on X parameterized by the cost Υ such
that

EQΥ [g(X)] ≤ Υ, Υ ≥ 0. (23)

We say that the input distributions {QΥ,Υ ≥ 0} escape
to infinity if for any Υ0 > 0

lim
Υ↑∞

QΥ

({
x ∈ X : g(x) < Υ0

})
= 0. (24)

We now present the theorem that demonstrates that
if the ratio of mutual information to channel capacity
is to approach one, then the input distributions must
escape to infinity.

Theorem 6. Let the cost function g(·) and the channel
W : X 7→ Y be as above. Let the capacity-cost function
C(·) be finite but unbounded. Let Casy(·) be a function
of the cost that captures the asymptotic behavior of the
capacity-cost function C(·) in the sense that

lim
Υ↑∞

C(Υ)
Casy(Υ)

= 1. (25)

Assume that Casy(·) satisfies the growth condition

lim
Υ↑∞

{
sup

α∈(0,α0]

αCasy

(
Υ
α

)
Casy(Υ)

}
< 1, ∀ 0 < α0 < 1.

(26)
Let {QΥ,Υ ≥ 0} be a family of input distributions sat-
isfying (23) and

lim
Υ↑∞

I(QΥ,W )
Casy(Υ)

= 1. (27)

Then {QΥ,Υ ≥ 0} escapes to infinity.

In the proof of Theorem 1 we use Theorem 6 with
Casy(Es) = log log Es.

4. GAUSSIAN FADING WITH MEMORY

Since it is difficult to analytically evaluate the fad-
ing number given in (19) even for Gaussian fading, we
will next use the bounds (20) to approximate it.

Let then µ denote the mean-vector of the stationary
vector-valued fading process {Hk}, and assume that
{Hk − µ} is a stationary circularly symmetric vector-
valued Gaussian process with a diagonal spectral dis-
tribution matrix

F = diag
(

F(1), . . . ,F(nR)
)
.

Thus, the nR components of the vector-valued process
{Hk} are independent (corresponding to the case where

the fading {H(r)
k }∞k=−∞ experienced by the link be-

tween the transmitter antenna and the r-th receiver
antenna is statistically independent of the fading expe-
rienced by the links with the other receiver antennas),
and for each 1 ≤ r ≤ nR the process {H(r)

k −µ(r)}∞k=−∞
is a stationary circularly symmetric scalar Gaussian
process of spectral distribution F(r) so that

E
[(
H

(r)
k − µ(r)

) (
H

(r)
k+m − µ(r)

)∗]

=
∫ 1

2

− 1
2

ei2πmλ dF(r)(λ).

Denote the derivative of F(r)(·) by F′(r)(·).
The optimum prediction error in estimating H

(r)
0

from its infinite past {H(r)
` }−1

`=−∞ is the optimum linear
prediction error which is given by (see, e.g., [2], [3])

ε2pred,r = exp

(∫ 1
2

− 1
2

log F′(r)(λ) dλ

)
. (28)

The optimum interpolation error in estimating H
(r)
0

from its infinite past and future

({H(r)
` }−1

`=−∞, {H(r)
` }∞`=1)

is the optimum linear interpolation error given by (see
[3, Sec. 37.2], [4], [5])

ε2int,r =
4π2∫ 1

2
− 1

2

1
F′(r)(λ)

dλ
. (29)

Conditional on {H(r)
` = h

(r)
` }−1

`=−∞ the distribution

of H(r)
0 is Gaussian of mean

h
(r)
pred

({h(r)
` }−1

`=−∞
)

= E
[
H

(r)
0

∣∣∣ {H(r)
` = h

(r)
` }−1

`=−∞
]

and of variance ε2pred,r. Unconditionally, H(r)
pred is Gaus-

sian of mean µ(r) and of variance

Var
(
H

(r)
pred

)
= Var

(
H

(r)
0

)
− ε2pred,r

=
∫ 1

2

− 1
2

F′(r)(λ) dλ− ε2pred,r.

Similarly, conditional on({H(r)
` = h

(r)
` }−1

`=−∞, {H(r)
` = h

(r)
` }∞`=1

)
the distribution of H(r)

0 is Gaussian of mean

h
(r)
int

({h(r)
` }−1

`=−∞, {h(r)
` }∞`=1

)



= E
[
H

(r)
0

∣∣∣ {H(r)
` = h

(r)
` }−1

`=−∞, {H(r)
` = h

(r)
` }∞`=1

]
and of variance ε2int,r. Unconditionally, H(r)

int is Gaus-
sian of mean µ(r) and of variance

Var
(
H

(r)
int

)
= Var

(
H

(r)
0

)
− ε2int,r

=
∫ 1

2

− 1
2

F′(r)(λ) dλ− ε2int,r.

Since we have assumed that the components of Hk

are independent, we can use (16) and (17) to further
bound the expressions in (20). We start with the upper
bound:

χ({Hk})
≤ χIID

(
H0

∣∣H−1
−∞,H

∞
1

)

≤ E


log


1 +

nR∑
r=1

∣∣∣H(r)
int

∣∣∣2
ε2int,r







+ nR lognR − nR − log Γ(nR)

≤ log


1 +

nR∑
r=1

E

[∣∣∣H(r)
int

∣∣∣2]
ε2int,r




+ nR lognR − nR − log Γ(nR)

= log


1 +

nR∑
r=1

Var
(
H

(r)
0

)
− ε2int,(r) + |µ(r)|2
ε2int,r




+ nR lognR − nR − log Γ(nR). (30)

Here the first inequality is due to (20); the second in-
equality follows from (17); and the third inequality fol-
lows from Jensen’s inequality.

For the lower bound we get

χ({Hk}) ≥ χIID

(
H0

∣∣H−1
−∞

)

≥ E


log

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r




− E


Ei


−

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r





 − 1

≥ E


log

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r




− Ei


−

nR∑
r=1

E

[∣∣∣H(r)
pred

∣∣∣2]
ε2pred,r


 − 1, (31)

where the first inequality is due to (20); the second in-
equality follows from (16); and where the last inequality
follows from Jensen’s inequality. The analytic compu-
tation of the RHS of (31) is greatly simplified if each
component process {H(r)

k } of the vector-valued fading
process {Hk} is of an identical law, which in our case
means that

F = diag
(

F̃, . . . , F̃
)

(32)

for a scalar spectral distribution function F̃, and

µ =
(
µ(1), . . . , µ(nR)

)T

= (µ̃, . . . , µ̃)T (33)

for a mean µ̃. In that case (using the expectation of
the logarithm of a non-central χ2-distribution [1, Ap-
pendix X]) we obtain

χ({Hk}) ≥ log
Var

(
H

(1)
0

)
− ε2pred

ε2pred

− 1

+ gnR


 nR|µ̃|2(

Var
(
H

(1)
0

)
− ε2pred

)2




− Ei


−nR

Var
(
H

(1)
0

)
− ε2pred + |µ̃|2
ε2pred


 , (34)

where gm(·) is defined as [1]

gm(z) = log z − Ei(−z)

+
m−1∑
j=1

(−1)j

(
e−z(j − 1)! − (m− 1)!

j(m− 1 − j)!

)
z−j ,

z ≥ 0. (35)

Note that the simplifying assumptions (32) and (33)
are not necessary if one resorts to the weaker lower
bound described in Remark 3.

Example 7. Suppose the fading process {Hk} is spa-
tially IID so that the processes

{
H

(1)
k

}∞
k=−∞,

{
H

(2)
k

}∞
k=−∞, . . . ,

{
H

(nR)
k

}∞
k=−∞

are independent of each other and of identical (not
necessarily temporally IID) law. Suppose that under
this law {H(r)

k } is a stationary, unit-variance, zero-
mean, circularly symmetric, m-th order auto-regressive
AR(m) Gaussian process. We thus assume that for all
1 ≤ r ≤ nR,

H
(r)
k = W

(r)
k −a1H

(r)
k−1−a2H

(r)
k−2−· · ·−amH

(r)
k−m. (36)



Here {W (r)
k } is temporally IID NC

(
0, ε2

)
, where

ε2 denotes the innovation variance; the coefficients
a1, . . . , am satisfy the stability condition [6]

m∑
j=1

ajz
j 6= −1 ∀ |z| ≤ 1; (37)

and ε2 and a1, . . . , am are such that

Var
(
H

(r)
k

)
= 1. (38)

Then [6]

ε2pred,r = ε2, (39)

H
(r)
pred ∼ NC

(
0, 1 − ε2pred

)
, (40)

ε2int,r =
ε2

1 +
∑m

j=1 |aj |2 , (41)

H
(r)
int ∼ NC

(
0, 1 − ε2int

)
, (42)

which yields

χ({Hk}) ≥ log
1 − ε2

ε2
+ ψ(nR)

− Ei
(
−nR

1 − ε2

ε2

)
− 1, (43)

χ({Hk}) ≤ log

(
1 + nR

1 +
∑m

j=1 |aj |2 − ε2

ε2

)

+ nR lognR − nR − log Γ(nR), (44)

where ψ(·) denotes Euler’s psi function

ψ(nR) = −γ +
nR−1∑
j=1

1
j

and γ denotes Euler’s constant.
For the case of Gaussian-Markov fading (m = 1,

a1 = −√
1 − ε2) the lower bound (43) is unchanged

and the upper bound becomes

χ({Hk}) ≤ log
(

1 + 2nR
1 − ε2

ε2

)
+ nR lognR − nR − log Γ(nR). (45)

For ε2 ¿ 1 one obtains the asymptotic bounds

χ({Hk}) ≥ log
1
ε2

+ ψ(nR) − 1 + o(ε2), (46)

χ({Hk}) ≤ log
1
ε2

+ log 2 + (nR + 1) lognR

− nR − log Γ(nR) + o(ε2), (47)

where o(ε2) tends to zero as ε2 tends to zero.
For the case of two receive antennae nR = 2 these

bounds are depicted in Figure 1.
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Figure 1: Upper and lower bound of a zero-mean
SIMO Gaussian-Markov fading channel with memory
one (AR(1)) and two receiver antennas plotted in func-
tion of the prediction error ε2. Both components of the
fading vector Hk are assumed to be independent and
identically distributed with variance 1.

Acknowledgments
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