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Abstract

We derive the fading number of stationary and ergodic (not necessarily Gaussian)
single-input multiple-output (SIMO) fading channels with memory. This is the second
term, after the double logarithmic term, of the high signal-to-noise ratio (SNR) expan-
sion of channel capacity. The transmitter and receiver are assumed to be cognizant of
the probability law governing the fading but not of its realization.

It is demonstrated that the fading number is achieved by IID circularly symmetric
inputs of squared-magnitude whose logarithm is uniformly distributed over an SNR
dependent interval. The upper limit of the interval is the logarithm of the allowed
transmit power, and the lower limit tends to infinity sub-logarithmically in the SNR.
The converse relies inter alia on a new observation regarding input distributions that
escape to infinity.

Lower and upper bounds on the fading number for Gaussian fading are also pre-
sented. These are related to the mean squared-errors of the one-step predictor and
the one-gap interpolator of the fading process respectively. The bounds are computed
explicitly for stationary m-th order auto-regressive AR(m) Gaussian fading processes.

Keywords: Auto-regressive process, channel capacity, fading, fading number, high SNR,
memory, multiple-antenna, SIMO.

1 Introduction

It has been recently shown in [1] that, whenever the matrix-valued fading process is of
finite differential entropy rate, the capacity of multiple-input multiple-output (MIMO)
fading channels typically grows only double-logarithmically in signal-to-noise ratio (SNR).
To quantify the rates at which this poor power efficiency begins, [1] introduced the fading
number as the second term in the high SNR asymptotic expansion of channel capacity.
Explicit expressions for the fading number were then given for a number of memoryless
fading models. For channels with memory, only the fading number of single-input single-
output (SISO) channels was derived.

In this paper we extend the results of [1] and derive the fading number for single-input
multiple-output (SIMO) fading channels with memory.

What makes SIMO channels difficult to analyze is the fact that even at asymptotically
high SNR, the capacity achieving output distribution is not memoryless. This makes it
critical in the direct part to utilize future outputs even if the channel inputs associated
with them are unknown. In the converse things are even more complicated because a naive
application of the chain rule yields an upper bound that is not tight. One must first argue
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that capacity can be achieved by “almost” stationary channel inputs, and one must then
use a new result about input distributions that escape to infinity. This new result holds
for general channels and not only for fading channels. It is hoped that it may be of some
independent interest and that it may find applications in the study of other channels as
well.

The paper is structured as follows. After concluding this introductory section with
some notes on notation, we proceed in Section 2 to introduce the channel model and to
define the fading number. Section 3 summarizes some relevant known results, while Sec-
tion 4 provides the main new result, i.e., the fading number of a general SIMO fading
channel with memory. The special case of Gaussian fading is then discussed in Section 5,
which also includes the example of stationary m-th order auto-regressive AR(m) Gaussian
fading processes. Finally, Section 6 contains the proof of the main result. The new obser-
vation regarding “input distributions that escape to infinity” can be found in Section 6.3.3,
which is essentially self contained.

Throughout the paper Û denotes a complex random variable that is uniformly dis-
tributed over the unit circle

Û ∼ Uniform on {z ∈ C : |z| = 1}. (1)

When it appears in formulas with other random variables, Û is always assumed to be
independent of these other variables. Similarly, we use {Û`} to denote an IID sequence
of complex random variables, each of which is uniformly distributed on the set {z ∈ C :
|z| = 1}. In any expression involving this sequence of random variables it is assumed that
the sequence is independent of any other variables appearing with it.

We generally try to denote random variables and random vectors by upper case letters
and to denote their realization as well as deterministic constants by lower case letters. An
exception is the signal-to-noise ratio SNR that we capitalize and the energy-per-symbol,
which we denote by Es. Both are deterministic. We use boldface fonts to denote vec-
tors, e.g., x for a deterministic vector and X for a random vector. We use the short-
hand Hb

a for (Ha, Ha+1, . . . , Hb). In case the expression is more complicated like, e.g.,
(HaÛa, Ha+1Ûa+1, . . . , HbÛb), we use the dummy variable ` to clarify notation: {H`Û`}b

`=a.

2 The Channel Model and the Fading Number

We consider a single-input multiple-output (SIMO) fading channel whose time-k output
Yk ∈ C

nR is given by
Yk = Hkxk + Zk (2)

where xk ∈ C denotes the time-k channel input; the random vector Hk ∈ C
nR denotes the

time-k fading vector; and where Zk denotes additive noise. Here C denotes the complex
field, C

nR denotes the nR-dimensional complex Euclidean space, and nR denotes the num-
ber of receive antennas. We assume that the additive noise is a zero-mean temporally and
spatially white Gaussian process of covariance matrix σ2InR , where σ2 > 0 and where InR

denotes the nR × nR identity matrix. Thus, {Zk} is a zero-mean, circularly symmetric,
stationary, multi-variate, Gaussian process such that E

[
ZkZ

†
k+m

]
is the zero matrix if

m 6= 0, and is σ2InR for m = 0. Here ()† denotes Hermitian conjugation.
As for the multi-variate fading process {Hk}, we shall only assume that it is stationary,

ergodic, of finite second moment

E
[‖Hk‖2

]
<∞, (3)

and of finite differential entropy rate

h({Hk}) > −∞. (4)
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Finally, we assume that the fading process {Hk} and the additive noise process {Zk}
are independent and of a joint law that does not depend on the channel input {xk}.

As for the input, we consider two different constraints: a peak-power constraint and an
average-power constraint. We use Es to denote the maximal allowed instantaneous power
in the former case, and to denote the allowed average power in the latter case. For both
cases we set

SNR , Es

σ2
.

The capacity C(SNR) of the channel (2) is given by

C(SNR) = lim
n→∞

1
n

sup I (Xn
1 ;Yn

1 ) ,

where the supremum is over the set of all probability distributions on Xn
1 satisfying the

constraints, i.e.,
|Xk|2 ≤ Es, almost surely, k = 1, 2, . . . , n (5)

for a peak constraint, or
1
n

n∑
k=1

E
[|Xk|2

] ≤ Es (6)

for an average constraint.
Specializing [1, Theorem 4.2] to SIMO fading, we have

lim
SNR↑∞

{
C(SNR) − log log SNR

}
<∞. (7)

The fading number χ is now defined as in [1, Definition 4.6] by

χ({Hk}) = lim
SNR↑∞

{
C(SNR) − log log SNR

}
. (8)

Prima facie the fading number depends on whether a peak-power constraint (5) or an
average-power constraint (6) is imposed on the input. However, as we shall see, for SIMO
fading channels the two constraints lead to identical fading numbers.

3 Previous Results

Among the fading numbers computed in [1] are the fading numbers of SISO fading channels
with memory [1, Theorem 4.41]

χ({Hk}) = log π + E
[
log |H1|2

] − h
({Hk}

)
, (9)

and the fading number for memoryless SIMO fading [1, Proposition 4.30]

χIID(H) = I
(
Û;HÛ) + E[log ‖H‖] − h

(‖H‖ ∣∣ ĤÛ) − log 2, (10)

where Û is defined in (1), and where Ĥ = H/‖H‖. Alternatively, χIID(H) can be expressed
as

χIID(H) = hλ(ĤÛ) − h(H) + nRE
[
log ‖H‖2

] − log 2, (11)

where hλ is the differential entropy on the sphere, so that if a random vector G takes value
on the unit-sphere and has the density fλ

G(g) with respect to the surface-area measure λ,
then

hλ(G) = −E
[
log fλ

G(G)
]
.
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The above is extended in [1, Note 4.31] to the case where the receiver has access to
some side-information S such that (H,S) are independent of Z, the joint law of (H,S,Z)
does not depend on the input, and the mutual information I(H;S) is finite

I(H;S) <∞. (12)

In this case

χIID(H|S) = hλ(ĤÛ|S) − h(H|S) + nRE
[
log ‖H‖2

] − log 2. (13)

Here hλ(ĤÛ|S) should be interpreted as the expectation over S of hλ(ĤÛ|S = s), where
hλ(ĤÛ|S = s) is the differential entropy on the sphere of the conditional law of ĤÛ given
S = s. That is, if G takes value on the unit sphere and if conditional on S = s it has the
density fλ

G|S(g|s) with respect to the surface-area measure λ on the sphere, then

hλ(G|S = s) = −
∫
fG|S(g|s) log fG|S(g|s) dλ(g) (14)

and
hλ(G|S) =

∫
hλ(G|S = s) dP (s). (15)

It is further shown in [1, Section IV-D.8] that for the case of MIMO fading where the
nR × nT random fading matrix H is of the form

H = D + H̃,

where D is a deterministic nR × nT matrix and H̃ is a random nR × nT matrix of IID
NC(0, 1) components, the fading number can be bounded as [1, Eq. (124) & (128)]

χIID(D + H̃) ≥ log ‖D‖2 − Ei
(−‖D‖2

) − 1, (16)

χIID(D + H̃) ≤ min{nR, nT} log
(

1 +
‖D‖2

min{nR, nT}
)

+ nR log nR − nR − log Γ(nR), (17)

where ‖ · ‖ denotes the matrix operator norm; Ei(·) denotes the exponential integral func-
tion

Ei(−ξ) = −
∫ ∞

ξ

e−t

t
dt, ξ > 0; (18)

Γ(·) denotes the Gamma function so that Γ(nR) = (nR−1)!; and the term log(ξ)−Ei(−ξ)
is understood to take on the value −γ at ξ = 0. (Here γ ≈ 0.577 denotes Euler’s constant.)
This specializes for the SIMO case to

χIID(d + H̃) ≥ log ‖d‖2 − Ei
(−‖d‖2

) − 1, (19)

χIID(d + H̃) ≤ log(1 + ‖d‖2) + nR log nR − nR − log Γ(nR), (20)

where the nR components of H̃ are IID NC(0, 1). More generally, if H is a multi-variate
circularly symmetric complex Gaussian of mean d and covariance Σ

H ∼ NC(d,Σ) ,

where Σ has eigenvalues λ(1), . . . , λ(nR), then

χIID(H) ≥ log
nR∑
r=1

∣∣∣∣∣(V
Td)(r)√
λ(r)

∣∣∣∣∣
2

− Ei


−

nR∑
r=1

∣∣∣∣∣(V
Td)(r)√
λ(r)

∣∣∣∣∣
2

 − 1, (21)

χIID(H) ≤ log


1 +

nR∑
r=1

∣∣∣∣∣(V
Td)(r)√
λ(r)

∣∣∣∣∣
2

 + nR log nR − nR − log Γ(nR), (22)
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where V is unitary and diagonalizes Σ:

ΣV = V diag
(
λ(1), . . . , λ(nR)

)
.

This follows because, by [1, Lemma 4.7], for any non-singular deterministic nR×nR matrix
G

χ(GH) = χ(H).

The choice

G = diag
(

1√
λ(1)

, . . . ,
1√
λ(nR)

)
· VT

leads to a fading vector GH with components that are IID NC(0, 1), to which the above
results can be applied.

In particular, if Σ is diagonal,

Σ = diag
(
λ(1), . . . , λ(nR)

)
,

then by (21) and (22)

χIID(H) ≥ log
nR∑
r=1

∣∣d(r)
∣∣2

λ(r)
− Ei

(
−

nR∑
r=1

∣∣d(r)
∣∣2

λ(r)

)
− 1, Σ = diag

(
{λ(r)}nR

r=1

)
, (23)

χIID(H) ≤ log

(
1 +

nR∑
r=1

∣∣d(r)
∣∣2

λ(r)

)
+ nR log nR − nR − log Γ(nR),

Σ = diag
(
{λ(r)}nR

r=1

)
. (24)

4 Main Result

Theorem 1. Consider a SIMO fading channel with memory (2) where the fading pro-
cess {Hk} takes value in CnR and satisfies h({Hk}) > −∞ and E

[‖Hk‖2
]
< ∞. Then,

irrespective of whether a peak-power constraint (5) or an average-power constraint (6) is
imposed on the input, the limsup in (8) is in fact a limit, and the fading number χ({Hk})
is given by

χ
({Hk}

)
= χIID

(
H0

∣∣∣H−1
−∞, {Ĥ`Û`}∞`=1

)
. (25)

Here χIID

(
H0

∣∣S)
is given in (13), the random process {Û`} is independent of {Hk} and

constitutes of IID random variables that are uniformly distributed over the complex sphere,
i.e.,

Û` ∼ Uniform on {z ∈ C : |z| = 1},
and Ĥ` is defined as

Ĥ` , H`

‖H`‖ , ∀` ∈ Z.

Equivalently, the fading number is given by

χ({Hk}) = χIID(H0) + I(H0;H−1
−∞) − I

(
Ĥ0Û0; {Ĥ`Û`}−1

`=−∞
)
, (26)

where χIID(H0) is defined in (11).
Moreover, this asymptotic behavior is achievable at high SNR by IID circularly sym-

metric inputs {Xk} such that

log |Xk|2 ∼ Uniform on [log log Es, log Es].
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Proof. See Section 6.

Corollary 2. From Theorem 1 it follows that

χIID

(
H0

∣∣H−1
−∞

) ≤ χ({Hk}) ≤ χIID

(
H0

∣∣H−1
−∞,H

∞
1

)
. (27)

Remark 3. We can always lower bound the capacity of a SIMO fading channel with
memory (even with correlation between the antennas) by linearly combining the outputs
of the nR receive antennas and by then lower bounding the capacity of the resulting SISO
channel. In this way we can use the expression for the fading number of SISO channels
with memory (9) to obtain a lower bound on the fading number of a SIMO system:

χ({Hk}) ≥ sup
{
log π + E

[
log |H̃1|2

]
− h

({H̃k}
)}
, (28)

where H̃k =
∑nR

r=1 α
(r)H

(r)
k and where the supremum is over all linear combiners, i.e., over

all α(1), . . . , α(nR) that fulfill
∑nR

r=1 |α(r)|2 = 1. This bound is generally not tight.

5 Gaussian Fading with Memory

Since it is difficult to evaluate analytically the fading number (25) even for Gaussian
fading, we shall next use the bounds (27) to approximate it. We shall only treat here the
case where the fading processes experienced by the different links between the transmit
antenna and the different receive antennas are statistically independent. That is, the nR

processes
{H(1)

k }∞k=−∞, {H(2)
k }∞k=−∞, . . . , {H(nR)

k }∞k=−∞
are independent.1

Let then µ ∈ CnR denote the mean-vector of the stationary vector-valued fading pro-
cess {Hk}, and assume that {Hk − µ} is a stationary circularly symmetric vector-valued
Gaussian process with a diagonal spectral distribution matrix

F = diag
(

F(1), . . . ,F(nR)
)
.

Thus, the nR components of the vector-valued process {Hk} are independent and for each
1 ≤ r ≤ nR the process {H(r)

k − µ(r)}∞k=−∞ is a stationary circularly symmetric scalar
Gaussian process of spectral distribution F(r) so that

E
[(
H

(r)
k − µ(r)

)(
H

(r)
k+m − µ(r)

)∗]
=

∫ 1
2

− 1
2

ei2πmλ dF(r)(λ).

Denote the derivative of F(r)(·) by F′(r)(·).
To evaluate the lower bound of (27) on the fading number we shall need the conditional

law of the present fading given its past. To this end we recall that the optimum prediction
error in estimating H(r)

0 from its infinite past {H(r)
` }−1

`=−∞ is the optimum linear prediction
error which is given by (see, e.g., [2], [3])

ε2pred,r = exp

(∫ 1
2

− 1
2

log F′(r)(λ) dλ

)
. (29)

Moreover, conditional on {H(r)
` = h

(r)
` }−1

`=−∞, the distribution of H(r)
0 is Gaussian of mean

h
(r)
pred

({h(r)
` }−1

`=−∞
)

= E
[
H

(r)
0

∣∣∣ {H(r)
` = h

(r)
` }−1

`=−∞
]

1In the more general case one may still resort to (28) which is, however, not tight.
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and of variance ε2pred,r. Unconditionally, H(r)
pred is Gaussian of mean µ(r) and of variance

Var
(
H

(r)
pred

)
= Var

(
H

(r)
0

)
− ε2pred,r

= F(r)(1/2) − F(r)(−1/2) − ε2pred,r.

Similarly, to evaluate the upper bound of (27) on the fading number we shall need the
conditional law of the present fading given its past & future. To this end we recall that
the optimum interpolation error in estimating H(r)

0 from its infinite past and future

({H(r)
` }−1

`=−∞, {H(r)
` }∞`=1)

is the optimum linear interpolation error given by (see [3, Sec. 37.2], [4], [5])

ε2int,r =
4π2∫ 1

2

− 1
2

1
F′(r)(λ)

dλ
. (30)

Moreover, conditional on ({H(r)
` = h

(r)
` }−1

`=−∞, {H(r)
` = h

(r)
` }∞`=1

)
the distribution of H(r)

0 is Gaussian of mean

h
(r)
int

({h(r)
` }−1

`=−∞, {h(r)
` }∞`=1

)
= E

[
H

(r)
0

∣∣∣ {H(r)
` = h

(r)
` }−1

`=−∞, {H(r)
` = h

(r)
` }∞`=1

]
and of variance ε2int,r. Unconditionally, H(r)

int is Gaussian of mean µ(r) and of variance

Var
(
H

(r)
int

)
= Var

(
H

(r)
0

)
− ε2int,r

= F(r)(1/2) − F(r)(−1/2) − ε2int,r.

Since we have assumed that the components of Hk are independent, we can use (23)
and (24) to further bound the expressions in (27). We start with the upper bound:

χ({Hk}) ≤ χIID

(
H0

∣∣H−1
−∞,H

∞
1

)
≤ E


log


1 +

nR∑
r=1

∣∣∣H(r)
int

∣∣∣2
ε2int,r





 + nR log nR − nR − log Γ(nR)

≤ log


1 +

nR∑
r=1

E

[∣∣∣H(r)
int

∣∣∣2]
ε2int,r


 + nR log nR − nR − log Γ(nR)

= log


1 +

nR∑
r=1

Var
(
H

(r)
0

)
− ε2int,(r) + |µ(r)|2
ε2int,r


 + nR log nR

− nR − log Γ(nR). (31)

Here the first inequality is due to (27); the second inequality follows from (24); and the
third inequality follows from Jensen’s inequality.
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For the lower bound we get

χ({Hk}) ≥ χIID

(
H0

∣∣H−1
−∞

)
≥ E


log

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r


 − E


Ei


−

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r





 − 1

≥ E


log

nR∑
r=1

∣∣∣H(r)
pred

∣∣∣2
ε2pred,r


 − Ei


−

nR∑
r=1

E

[∣∣∣H(r)
pred

∣∣∣2]
ε2pred,r


 − 1, (32)

where the first inequality is due to (27); the second inequality follows from (23); and where
the last inequality follows from Jensen’s inequality. The analytic computation of the RHS
of (32) is greatly simplified if each component process {H(r)

k } of the vector-valued fading
process {Hk} is of an identical law, which in our case means that

F = diag
(

F̃, . . . , F̃
)

(33)

for a scalar spectral distribution function F̃, and

µ =
(
µ(1), . . . , µ(nR)

)T

= (µ̃, . . . , µ̃)T (34)

for a mean µ̃. In that case (using the expectation of the logarithm of a non-central χ2-
distribution [1, Appendix X]) we obtain

χ({Hk}) ≥ log
Var

(
H

(1)
0

)
− ε2pred

ε2pred

− 1 + gnR


 nR|µ̃|2

Var
(
H

(1)
0

)
− ε2pred




− Ei


−nR

Var
(
H

(1)
0

)
− ε2pred + |µ̃|2
ε2pred


 , (35)

where gm(·) is defined as [1]

gm(z) = log z − Ei(−z) +
m−1∑
j=1

(−1)j

(
e−z(j − 1)! − (m− 1)!

j(m− 1 − j)!

)
z−j , z ≥ 0. (36)

(Here, as before, the term log z − Ei(−z) should be interpreted as minus Euler’s constant
at z = 0.)

Note that the simplifying assumptions (33) and (34) are not necessary if one resorts
to the weaker lower bound described in Remark 3.

Example 4. Suppose that the fading process {Hk} is spatially IID so that the processes{
H

(1)
k

}∞
k=−∞,

{
H

(2)
k

}∞
k=−∞, . . . ,

{
H

(nR)
k

}∞
k=−∞

are independent of each other and of identical (not necessarily temporally IID) law. Sup-
pose that under this law {H(r)

k } is a stationary, unit-variance, zero-mean, circularly sym-
metric, m-th order auto-regressive AR(m) Gaussian process. That is, for all 1 ≤ r ≤ nR,

H
(r)
k = W

(r)
k − a1H

(r)
k−1 − a2H

(r)
k−2 − · · · − amH

(r)
k−m. (37)
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Here {W (r)
k } is temporally IID NC

(
0, ε2

)
, where ε2 denotes the innovation variance; the

coefficients a1, . . . , am satisfy the stability condition [6]

m∑
j=1

ajz
j 6= −1 ∀ |z| ≤ 1; (38)

and ε2 and a1, . . . , am are such that

Var
(
H

(r)
k

)
= 1. (39)

Then [6]

ε2pred,r = ε2, (40)

H
(r)
pred ∼ NC

(
0, 1 − ε2pred,r

)
, (41)

ε2int,r =
ε2

1 +
∑m

j=1 |aj |2 , (42)

H
(r)
int ∼ NC

(
0, 1 − ε2int,r

)
, (43)

which yields

χ({Hk}) ≥ log
1 − ε2

ε2
+ ψ(nR) − Ei

(
−nR

1 − ε2

ε2

)
− 1, (44)

χ({Hk}) ≤ log

(
1 + nR

1 +
∑m

j=1 |aj |2 − ε2

ε2

)
+ nR log nR − nR − log Γ(nR), (45)

where ψ(·) denotes Euler’s psi function

ψ(nR) = −γ +
nR−1∑
j=1

1
j

and γ denotes Euler’s constant.
For the case of Gauss-Markov fading (m = 1, a1 = −√

1 − ε2) the lower bound (44) is
unchanged and the upper bound becomes

χ({Hk}) ≤ log
(

1 + 2nR
1 − ε2

ε2

)
+ nR log nR − nR − log Γ(nR). (46)

For ε2 ¿ 1 one obtains the asymptotic bounds

χ({Hk}) ≥ log
1
ε2

+ ψ(nR) − 1 + o(ε2), (47)

χ({Hk}) ≤ log
1
ε2

+ log 2 + (nR + 1) log nR − nR − log Γ(nR) + o(ε2), (48)

where o(ε2) tends to zero as ε2 tends to zero. Further specializing to the case of two receive
antennas (nR = 2) we obtain the bounds that are depicted in Figure 1.

6 Proof of Theorem 1

6.1 Proof Outline

The proof of Theorem 1 has three components. The first is an achievability result (“direct
part”) (Section 6.2) which provides a lower bound on channel capacity and hence a lower

9
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Bounds to Fading Number of Gaussian AR(1) Fading

Figure 1: Upper and lower bound of a zero-mean SIMO Gaussian-Markov fading channel
with memory 1 (AR(1)) and two receive antennas plotted in function of the prediction
error ε2. Both components of the fading vector Hk are assumed to be independent and
identically distributed with variance 1.

bound on the fading number. This lower bound is the RHS of (25). The second component
is a “converse” (Section 6.3), which provides for an upper bound on channel capacity, and
hence for an upper bound on the fading number. This upper bound is the RHS of (26).
Finally, the last component (Appendix A) is a demonstration that the lower and upper
bounds are in fact identical.

The inputs that are used to demonstrate the achievability of RHS of (25) are peak-
limited, whereas the converse is proved under an average-power constraint. Thus, the
result for the fading number does not depend on the type of power constraint that is
imposed.

6.2 The Direct Part

6.2.1 An Overview

The lower bound is based on choosing the input symbols to be IID, circularly symmetric,
with

log |Xk|2 ∼ Uniform on [log x2
min, log Es],

where we choose x2
min as2

x2
min = log Es.

The motivation for using IID inputs is that it greatly simplifies the analysis and that
our intuition (gained from the study of additive colored Gaussian noise channels [7] and
from the study of SISO fading channels with memory [1]) is that at high SNR very little

2In fact, any choice of xmin = xmin(Es) such that xmin(Es) → ∞ as Es → ∞ and such that
log x2

min(Es)/ log Es → 0 as Es → ∞ would work.

10



is to be gained from introducing memory into the input. In fact, we suspect that this is
the case also for MIMO fading, but we have no proof of that.

The choice of the marginal distribution is motivated by two nice properties that it
possesses. The first is that—irrespective of the partial side-information at the receiver
(assumed of finite mutual information with the fading)—this input distribution has been
shown [1] to achieve the fading number of the memoryless SIMO fading channel. The
second property has to do with “identification”. Because with probability one |Xk| ≥ xmin

and because xmin tends to infinity (albeit slowly), it follows that at very high SNR we can
identify the time-k fading vector with great accuracy by observing the time-k input Xk

and the time-k output Yk. Indeed, in this regime, an excellent estimator for Hk is the
estimator Yk/Xk. The other “identification” that this input distribution allows has to
do with inference on Hk based on the channel output Yk alone, i.e., when we know
the channel output but not the corresponding input. In this scenario our chosen input
distribution allows us (at high SNR) to accurately estimate the “direction” of Hk, namely
Hk/‖Hk‖, to within a multiple by a scalar complex random variable of unit magnitude and
uniform phase. For this identification the estimator Yk/‖Yk‖ is most suitable. Indeed,
while the circular symmetry of the input Xk renders the phase information in Yk useless,
the fact that Xk is, with probability one, very large guarantees that the additive noise has
hardly any detrimental effect on the estimator, and the direction of Hk is—to within a
random phase—almost identical to the direction of Yk.

The proof of the lower bound thus proceeds heuristically as follows: since the inputs
are IID, it follows from the chain rule that

1
n
I
(
Xn

1 ;Yn
1

)
=

1
n

n∑
k=1

I
(
Xk;Yn

1 |Xk−1
1

)
=

1
n

n∑
k=1

I
(
Xk;Yn

1 , X
k−1
1

)
.

We now analyze the individual terms in the sum:

I
(
Xk;Yn

1 , X
k−1
1

) ≈ I
(
Xk;Hk−1

1 , {Ĥ`Û`}n
`=k+1,Y

n
1 , X

k−1
1

)
= I

(
Xk;Hk−1

1 , {Ĥ`Û`}n
`=k+1,Yk

)
= I

(
Xk;Yk

∣∣Hk−1
1 , {Ĥ`Û`}n

`=k+1

)
which has the general form of a memoryless SIMO fading channel with side-information
consisting of the past fading vectors and the future fading “directions” corrupted by a
random phase. The key here is the above approximation, which hinges on estimating
the past fading Hk−1

1 from the past inputs & outputs (Xk−1
1 ,Yk−1

1 ), and on estimating
the future “directions” {Ĥ`Û`}n

`=k+1 based on the available future outputs Yn
k+1 (without

their corresponding inputs). Note that if we were to ignore these future outputs we would
not attain the fading number.

6.2.2 Proof of the Lower Bound

In this section we derive a lower bound to capacity and use it to show that the RHS of
(25) is a lower bound to the fading number. Let {Xk} be IID circularly symmetric random
variables with

log |Xk|2 ∼ Uniform on [log x2
min, log Es], (49)

where
x2

min = log Es. (50)
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Fix some (large) positive integer κ and use the chain rule and the non-negativity of mutual
information to obtain:

1
n
I
(
Xn

1 ;Yn
1

)
=

1
n

n∑
k=1

I
(
Xk;Yn

1 |Xk−1
1

)
(51)

≥ 1
n

n−κ∑
k=κ+1

I
(
Xk;Yn

1 |Xk−1
1

)
. (52)

Then for any κ + 1 ≤ k ≤ n − κ, we can use the fact that {Xk} are IID and circularly
symmetric to lower bound I

(
Xk;Yn

1 |Xk−1
1

)
as follows:

I
(
Xk;Yn

1

∣∣Xk−1
1

)
= I

(
Xk;Xk−1

1 ,Yn
1

)
(53)

≥ I
(
Xk;Xk−1

k−κ,Y
k−1
k−κ,Yk,Yk+κ

k+1

)
(54)

= I
(
Xk;Xk−1

k−κ,Y
k−1
k−κ,Z

k−1
k−κ,Yk,Yk+κ

k+1

) − I
(
Xk;Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,Yk,Yk+κ

k+1

)︸ ︷︷ ︸
≤ε1(xmin,κ)

(55)

≥ I
(
Xk;Xk−1

k−κ,Y
k−1
k−κ,Z

k−1
k−κ,Yk,Yk+κ

k+1

) − ε1(xmin, κ) (56)

= I
(
Xk;Hk−1

k−κ,Yk,Yk+κ
k+1

) − ε1(xmin, κ) (57)

= I
(
Xk;Hk−1

k−κ,Yk,Yk+κ
k+1 ,Z

k+κ
k+1

) − I
(
Xk;Zk+κ

k+1

∣∣Hk−1
k−κ,Yk,Yk+κ

k+1

)︸ ︷︷ ︸
≤ε2(xmin,κ)

−ε1(xmin, κ) (58)

≥ I
(
Xk;Hk−1

k−κ,Yk,Yk+κ
k+1 ,Z

k+κ
k+1

) − ε1(xmin, κ) − ε2(xmin, κ) (59)

= I
(
Xk;Hk−1

k−κ,Yk, {H`X`}k+κ
`=k+1

) − ε1(xmin, κ) − ε2(xmin, κ) (60)

= I

(
Xk;Hk−1

k−κ,Yk,

{
H`X`

‖H`X`‖
}k+κ

`=k+1

, {‖H`X`‖}k+κ
`=k+1

)
− ε1(xmin, κ)

− ε2(xmin, κ) (61)
= I

(
Xk;Hk−1

k−κ,Yk, {Ĥ`Û`}k+κ
`=k+1, {‖H`X`‖}k+κ

`=k+1

) − ε1(xmin, κ) − ε2(xmin, κ) (62)

≥ I
(
Xk;Hk−1

k−κ,Yk, {Ĥ`Û`}k+κ
`=k+1

) − ε1(xmin, κ) − ε2(xmin, κ) (63)

= I
(
Xκ+1;Hκ

1 ,Yκ+1, {Ĥ`Û`}2κ+1
`=κ+2

) − ε1(xmin, κ) − ε2(xmin, κ) (64)

= I
(
Xκ+1;Yκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

`=κ+2

) − ε1(xmin, κ) − ε2(xmin, κ),
κ+ 1 ≤ k ≤ n− κ. (65)

Here the first equality follows because {Xk} is chosen to be IID; in the subsequent in-
equality we have dropped some arguments which reduces the mutual information; next we
have used the chain rule; in (56) we lower bound the second term by −ε1(xmin, κ) that—as
shown in Appendix B—depends only on xmin and κ and tends to zero as xmin ↑ ∞; in
the subsequent equality we used Xk−1

k−κ and Zk−1
k−κ in order to extract Hk−1

k−κ from Yk−1
k−κ

and then we dropped {X`,Y`,Z`}k−1
`=k−κ since given Hk−1

k−κ it is independent of the other
random variables; the subsequent three steps are analogous to (55)–(57), where again it
is shown in Appendix B that ε2(xmin, κ) depends only on xmin and κ and tends to zero as
xmin ↑ ∞; in (62) Ĥ denotes H/‖H‖; and the equality before last follows from stationarity.

From (65) and (52) we obtain
1
n
I
(
Xn

1 ;Yn
1

)
≥

(
1 − 2κ

n

)(
I
(
Xκ+1;Yκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

κ+2

) − ε1(xmin, κ) − ε2(xmin, κ)
)
. (66)

Letting n tend to infinity we obtain

C(SNR) ≥ I
(
Xκ+1;Yκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

κ+2

) − ε1(xmin, κ) − ε2(xmin, κ), (67)
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where the first term can be viewed as mutual information across a memoryless SIMO
fading channel in the presence of the side-information

(
Hκ

1 , {Ĥ`Û`}2κ+1
κ+2

)
.

We next let the power grow to infinity Es ↑ ∞. Since the circular-symmetric law (49)
achieves the fading number of IID SIMO fading with side-information [1, Note 4.31] and
since our choice (50) guarantees that ε1(xmin, κ) and ε2(xmin, κ) tend to zero as Es ↑ ∞
(see Appendix B) we obtain the bound

χ({Hk}) ≥ χIID

(
Hκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

κ+2

)
. (68)

Upon letting κ in the above tend to infinity we obtain the desired result, i.e., that the
RHS of (25) is a lower bound to χ({Hk}).

6.3 The Converse

Before presenting the derivation of the upper bound we begin with an overview of the
proof.

6.3.1 An Overview

To upper bound capacity we use the chain rule

1
n
I(Xn

1 ;Yn
1 ) =

1
n

n∑
k=1

I(Xn
1 ;Yk|Yk−1

1 ), (69)

and upper bound each term on the RHS of the above by

I(Xn
1 ;Yk|Yk−1

1 ) = I(Xn
1 ,Y

k−1
1 ;Yk) − I(Yk;Yk−1

1 )
= I(Xk−1

1 ,Yk−1
1 , Xk;Yk) − I(Yk;Yk−1

1 )
≤ I(Xk−1

1 ,Yk−1
1 ,Hk−1

1 , Xk;Yk) − I(Yk;Yk−1
1 )

= I(Hk−1
1 , Xk;Yk) − I(Yk;Yk−1

1 )
= I(Xk;Yk) + I(Hk−1

1 ;Yk|Xk) − I(Yk;Yk−1
1 )

= I(Xk;Yk) + I(Hk−1
1 ;Xk,Yk) − I(Yk;Yk−1

1 )
≤ I(Xk;Yk) + I(Hk−1

1 ;Hk, Xk,Yk) − I(Yk;Yk−1
1 )

= I(Xk;Yk) + I(Hk−1
1 ;Hk) − I(Yk;Yk−1

1 )
≤ I(Xk;Yk) + I(H0;H−1

−∞) − I(Yk;Yk−1
1 ). (70)

Here, the first equality follows from the chain rule; the second because we prohibit feed-
back; the subsequent inequality from the inclusion of the additional random variables Hk−1

1

in the mutual information term; the subsequent equality because, conditional on the past
fading Hk−1

1 and on the present input Xk, the past inputs & outputs (Xk−1
1 ,Yk−1

1 ) are
independent of the present output Yk; the subsequent equality by the chain rule; the
subsequent equality from the independence of the inputs and the fading; the subsequent
inequality from the inclusion of the random vector Hk in the mutual information term;
the subsequent equality because conditional on the present fading, the past fading Hk−1

1

is independent of the present input & output (Xk,Yk); and the final inequality from the
stationarity of the fading.

A trivial upper bound can be now obtained from (70) by lower bounding I(Yk;Yk−1
1 )

by zero. This bound is, however, not tight. The main difficulty in the proof is that
if we fix some k and maximize I(Xk;Yk) − I(Yk;Yk−1

1 ) over all joint distributions on
X1, . . . , Xn (satisfying the average power constraint), then this non-tight bound would
be achievable. For example, we could choose X1, . . . , Xk−1 to be deterministically zero
so that I(Yk;Yk−1

1 ) = I(Yk;Zk−1
1 ) = 0 and choose Xk to maximize I(Xk;Yk), i.e., to
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achieve the IID capacity. (The resulting average mutual information n−1I(Xn
1 ;Yn

1 ) would,
of course, be very low but the single term I(Xn

1 ;Yk|Yk−1
1 ) would achieve this non-tight

bound.)
It would thus seem that to obtain an asymptotically tight upper bound on channel

capacity we cannot upper bound each of the individual terms in (69) in isolation. There
is, however, a way to do just that. The trick is to consider only joint distributions on
(X1, . . . , Xn) that are stationary. In fact, it suffices to limit ourselves to joint distributions
under which the random variables X1, . . . , Xn all have the same law. The first step in the
proof will thus be to show that one can approach capacity arbitrarily closely using such
inputs. This is done in Lemma 5 in Section 6.3.2. (Actually, the inputs we use will not
quite have equal marginals. Only Xη, . . . , Xn−2η+2 will have equal marginals, where η is
a fixed integer that depends on the SNR and on the required gap between capacity and
mutual information but not on the blocklength n. The edge-effects will wash out when we
let n→ ∞ with η held fixed.)

Assume now that, except for some edge effects, we can get to within arbitrary ε > 0 of
capacity using inputs {Xk} of marginal Q (where the law Q depends on the SNR and on
the gap to capacity ε, but not on n). Let I(Q) denote I(Xk;Yk) when Xk is distributed
according to Q. Thus, for such inputs

C ≤ lim
n→∞

1
n
I(Xn

1 ;Yn
1 ) + ε. (71)

By (69) and (70) we also have for such inputs

1
n
I(Xn

1 ;Yn
1 ) ≤ 1

n

n∑
k=1

(
I(Xk;Yk) − I(Yk;Yk−1

1 )
)

+ I(H0;H−1
−∞)

≈ I(Q) − 1
n

n∑
k=1

I(Yk;Yk−1
1 ) + I(H0;H−1

−∞) (72)

where the approximation results from ignoring the edge effects, i.e., from ignoring the fact
that only Xη, . . . , Xn−2η+2 are of marginal Q. In fact, as we let n tend to infinity the edge
effects wash out and we obtain that for such marginal-Q inputs {Xk}

lim
n→∞

1
n
I(Xn

1 ;Yn
1 ) ≤ I(Q) − lim

n→∞
1
n

n∑
k=1

I(Yk;Yk−1
1 ) + I(H0;H−1

−∞). (73)

The choice of Q (the distribution of Xk) affects the RHS of (72) and (73) in two
different ways. It determines I(Q) but it also influences the terms I(Yk;Yk−1

1 ). There is
thus a tension between choosing Q to maximize I(Q) (i.e., to make I(Q) close to the IID
channel capacity) and choosing Q to minimize the I(Yk;Yk−1

1 ) terms. It is important to
note that at high SNR the relative importance of these conflicting objectives are vastly
different. From I(Q) stems the double-logarithmic growth of channel capacity, whereas
the sum on the RHS of (72) and (73) merely influences the fading number. No matter
how we choose Q, this sum cannot be smaller than zero.

We next study the input marginals Q. We note that for the marginal-Q input {Xk}
to satisfy (71) we must have

lim
SNR→∞

I(Q)
log log SNR

= 1. (74)

This can be argued as follows. Because C ≥ I(Q) it follows by (7) that

lim
SNR→∞

I(Q)
log log SNR

≤ 1.
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On the other hand, from (73) and the non-negativity of mutual information we obtain
that for the marginal-Q input {Xk} to satisfy (71) the marginal law Q must satisfy

I(Q) ≥ C − ε− I(H0;H−1
−∞), (75)

which combines with
C ≥ log log SNR +O(1) (76)

(where the O(1) term is bounded in the SNR) to imply

lim
SNR→∞

I(Q)
log log SNR

≥ 1.

Here the lower bound (76) follows, for example, from [1, Theorem 4.41], e.g., by considering
the use of only one transmit antenna and only one receive antenna.

The next step in the proof of the converse is to show that (74) implies that Q “escapes
to infinity”, i.e., that

lim
SNR→∞

Q({x : |x| ≥ ξmin}) = 1, for any fixed ξmin. (77)

This is proven in greater generality for general cost-constrained channels in Section 6.3.3,
where we also discuss how this result relates to the notion of “capacity achieving input
distributions that escape to infinity” of [1].

It is thus seen that at high SNR the marginal Q guarantees that with very high
probability only very large inputs are used. In fact, using the union-bound we can infer
that the probability that a finite number of inputs will all exceed ξmin also tends to one.
The final step in the proof is then to show that if the inputs are large with high probability,
then

I(Yk;Yk−1
1 ) ≈ I(ĤkÛk; {Ĥ`Û`}k−1

`=1 ), (78)

where {Ûj} are IID uniformly distributed on the complex unit-circle independently of the
fading process (as described in (1)).

The intuition behind (78) is quite simple. If the inputs Xk
1 are guaranteed to be very

large with probability one, then we should be able from the past outputs Yk−1
1 to learn

the past “direction” (corrupted by random rotations) {Ĥ`Û`}k−1
`=1 . Similarly, there would

be an almost deterministic relationship between the present output Yk and the present
fading “direction” (again corrupted by a random phase) ĤkÛk.

Of course the escape to infinity does not guarantee that the inputs exceed ξmin with
probability one but only with probability approaching one. To address this difficulty we
introduce the binary random variable Ek in that part of the proof.

6.3.2 Stationarity Considerations

Lemma 5. Fix some power Es with corresponding SNR of Es/σ
2. Let C(SNR) denote

the corresponding channel capacity under an average power Es constraint. Then for any
ε > 0 there corresponds some positive integer η = η(SNR, ε) and some distribution Q =
Q(SNR, ε) on C such that for any blocklength n sufficiently large there exists some input
Xn

1 satisfying the following:

1. The input Xn
1 nearly achieves capacity in the sense that

1
n
I
(
Xn

1 ;Yn
1

) ≥ C(SNR) − ε; (79)
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2. except for the first η − 1 symbols Xη−1
1 and for at most the last 2(η − 1) symbols

Xn
n−2η+3 the symbols

Xη, Xη+1, . . . , Xn−2η+2 (80)

all have the same distribution Q;

3. this marginal distribution Q gives rise to a second moment Es

E
[|X`|2

]
= Es, ` = η, . . . , n− 2η + 2; (81)

4. and the first η− 1 symbols and the last 2(η− 1) symbols satisfy the power constraint
possibly strictly

E
[|X`|2

] ≤ Es, ` ∈ {1, . . . , η − 1} ∪ {n− 2η + 3, . . . , n}. (82)

Proof. The proof is by a simple shift-and-mix argument. Recalling that

C(SNR) = lim
n→∞

1
n

sup
PX1,...,Xn

I(X1, . . . , Xn;Y1, . . . ,Yn)

where the supremum is over all joint distributions on the random variables X1, . . . , Xn

under which
∑n

`=1 E
[|X`|2

]
= nEs, we conclude that there must exist some integer η ≥ 1

and some joint distribution P ∗ on Cη such that if (X1, . . . , Xη) ∼ P ∗ then

1
η

η∑
`=1

E
[|X`|2

]
= Es and

1
η
I(X1, . . . , Xη;Y1, . . . ,Yη) > C(SNR) − ε

2
. (83)

Let Q be the probability law on C that is the mixture of the η different marginals of P ∗.
That is, for any Borel set B ⊂ C

Q(B) =
1
η

η∑
`=1

P ∗(X` ∈ B). (84)

By (83) we have ∫
C

|x|2 dQ(x) = Es. (85)

Let n now be given. We shall next describe the required input distribution as follows. Let

ν =
⌊
n− η + 1

η

⌋

and let the infinite random sequence X̃ be defined by

X̃ = (0, . . . , 0︸ ︷︷ ︸
η−1

,Ξ(1)
1 , . . . ,Ξ(1)

η︸ ︷︷ ︸
η

, . . . , . . . ,Ξ(ν)
1 , . . . ,Ξ(ν)

η︸ ︷︷ ︸
η

, 0, 0, . . .

so that

X̃` =




0 if 1 ≤ ` ≤ η − 1,
Ξb`/ηc

(` mod η)+1 if η ≤ ` ≤ (ν + 1)η − 1,

0 if ` ≥ (ν + 1)η.

Here {(
Ξ(j)

1 , . . . ,Ξ(j)
η

)}ν

j=1
∼ IID P ∗.
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Notice that since the lead-in and trailing zeros have no effect on our channel, the
unnormalized mutual information induced by X̃ is lower bounded by νη(C(SNR) − ε/2).
Again, since the lead-in and trailing zeros are of no consequence, this same mutual infor-
mation results if we shift X̃ by t, (provided that 0 ≤ t ≤ η−1). Consequently, if we define
X1, . . . , Xn by the mixture of the time shift of X̃, i.e.,

X` = X̃`+T , 1 ≤ ` ≤ n,

where
T ∼ Uniform on {0, . . . , η − 1}

is independent of X̃, then by the concavity of mutual information in the input distribution
we obtain that the unnormalized mutual information induced by Xn

1 is lower bounded by
νη(C(SNR) − ε/2), so that the normalized mutual information satisfies

1
n
I (Xn

1 ;Yn
1 ) ≥ ην

n
(C(SNR) − ε/2)

=
η

⌊
n−η+1

η

⌋
n

(C(SNR) − ε/2) ,

which exceeds C(SNR) − ε for sufficiently large n.
Except at the edges, the above mixture guarantees that all marginals are Q, and hence

by (85) of average power Es. The power in the edges can be smaller than Es because of
the mixture with deterministic zeros.

6.3.3 Input Distributions that Escape to Infinity Revisited

In this section we revisit the notion of “capacity achieving input distributions that escape
to infinity” that was introduced in [1]. Under slightly more restrictive conditions on the
asymptotic behavior of channel capacity, we shall strengthen the results of [1] in the follow-
ing sense. When specialized to the problem at hand, Theorem 4.13 of [1] demonstrates that
the fading number can be achieved by input distributions that escape to infinity. That is,
there exist input distributions satisfying the cost constraint and escaping to infinity that
induce mutual informations whose difference from capacity tends to zero. Our present
result, when specialized to the present setting, strengthens [1, Theorem 4.13] by show-
ing that any sequence of input distributions satisfying the cost constraint and inducing a
mutual information whose ratio to log log SNR tends to 1 must escape to infinity.

To see how the new result implies the old one we need to demonstrate the existence
of some sequence of input distributions satisfying the cost constraint; inducing mutual
informations whose gap to capacity tends to zero; and escaping to infinity. But the
new result demonstrates that any sequence of input distributions satisfying the first two
conditions must satisfy the third, because if the difference between the mutual information
and capacity tends to zero it follows that their ratios to log log SNR must tend to one.

Surprisingly, the proof of the present statement is easier. It should, however, be noted
that while the new result—like [1, Theorem 4.13]—extends to general cost constrained
channels, the required assumptions on the functional form of the capacity-cost function
are somewhat more stringent.

As in [1], for the sake of greater generality, we shall consider general memoryless
channels over the input and output alphabets X and Y and general costs. As in [1] we
shall assume that the input and output alphabets X and Y are separable metric spaces,
and that for any set B ⊂ Y the mapping x 7→W (B|x) from X to [0, 1] is Borel measurable.
The cost function g : X → [0,∞) is assumed measurable.

Recall the following standard definition of the capacity-cost function:
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Definition 6. Given a channel W (·|·) over the input alphabet X and the output alphabet
Y and given some non-negative cost function g : X → R

+, we define the capacity-cost
function C : R

+ → R
+ by

C(Υ) = sup
Q:EQ[g(X)]≤Υ

I(Q,W ), Υ ≥ 0. (86)

Definition 7. Let {QΥ,Υ ≥ 0} be a family of input distributions on X parameterized by
the cost Υ such that

EQΥ
[g(X)] ≤ Υ, Υ ≥ 0. (87)

We say that the input distributions {QΥ,Υ ≥ 0} escape to infinity if for any Υ0 > 0

lim
Υ↑∞

QΥ

({
x ∈ X : g(x) < Υ0

})
= 0. (88)

Theorem 8. Let the cost function g(·) and the channel W (·|·) over the alphabets X , Y
be as above. Let the capacity-cost function C(·) be finite but unbounded. Let Casy(Υ) be
a function of the cost that captures the asymptotic behavior of the capacity-cost function
C(Υ) in the sense that

lim
Υ↑∞

C(Υ)
Casy(Υ)

= 1. (89)

Assume that Casy(·) satisfies the growth condition

lim
Υ↑∞

{
sup

α∈(0,α0]

αCasy

(
Υ
α

)
Casy(Υ)

}
< 1, ∀ 0 < α0 < 1. (90)

Let {QΥ,Υ ≥ 0} be a family of input distributions satisfying (87) and

lim
Υ↑∞

I(QΥ,W )
Casy(Υ)

= 1. (91)

Then {QΥ,Υ ≥ 0} escape to infinity.

Remark 9. The growth condition (90) is related to the notion of “slowly varying in
the Karamata sense”, see [8, Sec. 1.2]. Examples of functions Casy(Υ) that satisfy (90)
include:

log(1 + log(1 + Υ)), log(1 + Υ), (log(1 + Υ))β for β > 0

and any positive multiple thereof. In this paper we shall use this theorem with Casy(Υ) =
log(1 + log(1 + Υ)).

Proof. In the following all expectations, probabilities, and mutual informations are com-
puted with respect to the input law QΥ. Fix some Υ0 > 0 and let

E =

{
1 if g(X) ≥ Υ0

0 otherwise
, (92)

α = Pr[E = 1] . (93)

Since C(·) is monotonically increasing and unbounded, it follows by (89) that

lim
Υ→∞

Casy(Υ) = ∞ (94)

which combines with (91) to imply that

lim
Υ→∞

I(QΥ,W ) = ∞. (95)
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By (95) it follows that for all Υ sufficiently large we must have α > 0, because α = 0
implies g(X) ≤ Υ0 QΥ-almost surely whence I(QΥ,W ) ≤ C(Υ0).

In the following we shall thus assume that Υ is indeed sufficiently large so that α > 0.
Then

I(X;Y ) = I(X,E;Y )
= I(E;Y ) + I(X;Y |E)
= I(E;Y ) + I(X;Y |E=0) Pr[E = 0] + I(X;Y |E=1) Pr[E = 1]
≤ log 2 + I(X;Y |E=0) + αI(X;Y |E=1)
≤ log 2 + C(Υ0) + αI(X;Y |E=1)

≤ log 2 + C(Υ0) + αC

(
Υ
α

)
. (96)

Here the first inequality follows because E is a binary random variable and because
Pr[E = 0] ≤ 1; the following inequality because conditional on E=0 the input X sat-
isfies g(X) < Υ0 with probability one, so that E[g(X)|E=0] ≤ Υ0; and the final inequality
because

E[g(X) | E = 1] ≤ E[g(X)]
α

≤ Υ
α
. (97)

To show that α→ 1 assume by contradiction that there is some sequence of costs Υn ↑ ∞
with corresponding αn = QΥn(g(X) ≥ Υ0) such that {αn} converges to some α∗ < 1. It
then follows that there exists some α0 < 1 such that

αn < α0, n sufficiently large. (98)

From (96) we now have

I(X;Y )
Casy(Υn)︸ ︷︷ ︸

→1

≤ log 2 + C(Υ0)
Casy(Υn)︸ ︷︷ ︸

→0

+
C(Υn/αn)
Casy(Υn/αn)︸ ︷︷ ︸

→1

·αnCasy(Υn/αn)
Casy(Υn)

.

Here the limiting behavior of the LHS follows from (91); the limiting value of (log 2 +
C(Υ0))/Casy(Υn) follows by (94) because C(Υ0) < ∞; and the limiting behavior of the
term C(Υn/αn)/Casy(Υn/αn) → 1 follows from (89) because Υn ↑ ∞ implies Υn/αn ↑ ∞.
Upon letting n tend to infinity we obtain the contradiction

1 ≤ lim
n→∞

αnCasy(Υn/αn)
Casy(Υn)

≤ lim
Υ↑∞

{
sup

α∈(0,α0]

αCasy

(
Υ
α

)
Casy(Υ)

}

< 1.

Here the second inequality follows from (98) and the last inequality follows from (90).

6.3.4 Proof of Converse

Fix Es > 0 and set SNR = Es/σ
2. Let the positive integer κ be arbitrary and let ξmin > 0

be also arbitrary. Fix ε > 0 and let η = η(SNR, ε) and Q = Q(SNR, ε) be the integer and
the input distribution on C whose existence is guaranteed in Lemma 5. Let Xn

1 satisfy
(79)–(82) of Lemma 5 so that, in particular,

C ≤ 1
n
I
(
Xn

1 ;Yn
1

)
+ ε (99)

=
1
n

n∑
k=1

I
(
Xn

1 ;Yk

∣∣Yk−1
1

)
+ ε. (100)
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For 1 ≤ k ≤ η + κ− 1 and for n− 2η + 3 ≤ k ≤ n we use the crude bound

I
(
Xn

1 ;Yk

∣∣Yk−1
1

) ≤ I
(
Xk;Yk

)
+ I

(
H0;H−1

−∞
)

(101)
≤ CIID (SNR) + I

(
H0;H−1

−∞
)
, (102)

which is uniformly bounded in n. Here the first inequality follows from (70) and the second
from (81) and (82). We conclude that

C ≤ lim
n→∞

1
n
I
(
Xn

1 ;Yn
1

)
+ ε (103)

= lim
n→∞

1
n− κ− 3(η − 1)

n−2η+2∑
k=η+κ

I
(
Xn

1 ;Yk

∣∣Yk−1
1

)
+ ε. (104)

This allows us to focus on epochs k satisfying η+κ ≤ k ≤ n−2(η−1) and thus guaranteeing
that Xk and its κ predecessors Xk−1, . . . , Xk−κ are all distributed according to Q. Any
upper bound on I

(
Xn

1 ;Yk

∣∣Yk−1
1

)
that does not depend on k will result in an upper bound

on C via (104).
For k satisfying η + κ ≤ k ≤ n− 2(η − 1) we upper bound this term by

I
(
Xn

1 ;Yk

∣∣Yk−1
1

) ≤ I(Xk;Yk) + I(H0;H−1
−∞) − I(Yk;Yk−1

1 ) (105)

≤ I(Xk;Yk) + I(H0;H−1
−∞) − I(Yk;Yk−1

k−κ) (106)

= I(Q) + I(H0;H−1
−∞) − I(Yk;Yk−1

k−κ), (107)

where we use I(Q) to denote the mutual information I(Xk;Yk) when Xk is distributed
according to the law Q. From (107) and (104) we conclude that

C ≤ I(Q) + I(H0;H−1
−∞) + ε− lim

n→∞
min

η+κ≤k≤n−2(η−1)
I
(
Yk;Yk−1

k−κ

)
. (108)

We thus proceed to lower bound I
(
Yk;Yk−1

k−κ

)
for η + κ ≤ k ≤ n− 2(η − 1). For such

k, define

Ek =

{
1 if |Xj | ≥ ξmin ∀ k − κ ≤ j ≤ k,

0 otherwise.
(109)

Let
αk = Pr[Ek = 1] . (110)

By the union of events bound

αk ≥ 1 −
k∑

j=k−κ

Pr[|Xj | < ξmin] (111)

= 1 − (κ+ 1)Q(|X| < ξmin), (112)

where we have used the fact that for k in the range of interest η + κ ≤ k ≤ n − 2(η − 1)
the random variables Xk, . . . , Xk−κ are all distributed according to Q. Consequently,

αk ≥ α, (113)

where α = α(ξmin, Q, κ) is given by

α = max
{
0, 1 − (κ+ 1)Q(|X| < ξmin)

}
. (114)
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We now lower bound I
(
Yk;Yk−1

k−κ

)
for η + κ ≤ k ≤ n− 2(η − 1) by

I
(
Yk;Yk−1

k−κ

)
= I

(
Yk;Yk−1

k−κ, Ek

) − I
(
Yk;Ek

∣∣Yk−1
k−κ

)
(115)

= I
(
Yk;Ek

)
+ I

(
Yk;Yk−1

k−κ

∣∣Ek

) − I
(
Yk;Ek

∣∣Yk−1
k−κ

)
(116)

≥ I
(
Yk;Yk−1

k−κ

∣∣Ek

) − I
(
Yk;Ek

∣∣Yk−1
k−κ

)
(117)

= I
(
Yk;Yk−1

k−κ

∣∣Ek

) −H
(
Ek

∣∣Yk−1
k−κ

)
+H

(
Ek

∣∣Yk
k−κ

)
(118)

≥ I
(
Yk;Yk−1

k−κ

∣∣Ek

) −H
(
Ek

∣∣Yk−1
k−κ

)
(119)

≥ I
(
Yk;Yk−1

k−κ

∣∣Ek

) −H(Ek) (120)

= I
(
Yk;Yk−1

k−κ

∣∣Ek

) −Hb(αk) (121)

≥ I
(
Yk;Yk−1

k−κ

∣∣Ek

) −Hb

(
max

{
αk,

1
2

})
(122)

≥ αkI
(
Yk;Yk−1

k−κ

∣∣Ek=1
) −Hb

(
max

{
αk,

1
2

})
(123)

≥ αI
(
Yk;Yk−1

k−κ

∣∣Ek=1
) −Hb

(
max

{
α,

1
2

})
, (124)

where
Hb(ξ) , −ξ log ξ − (1 − ξ) log(1 − ξ) (125)

is the binary entropy function. Note that Hb(ξ) ≤ Hb

(
max

{
ξ, 1

2

})
and that

Hb

(
max

{
ξ, 1

2

})
is monotonically non-increasing so that the last inequality follows from

(113).
Inequalities (124) and (108) combine to yield

C ≤ I(Q) + I(H0;H−1
−∞) + ε+Hb

(
max

{
α,

1
2

})
− α lim

n→∞
min

η+κ≤k≤n−2(η−1)
I
(
Yk;Yk−1

k−κ

∣∣Ek = 1
)

(126)

and we now proceed to lower bound I
(
Yk;Yk−1

k−κ

∣∣Ek = 1
)

(for η + κ ≤ k ≤ n− 2(η − 1)).

I
(
Yk;Yk−1

k−κ

∣∣Ek = 1
)

= I
(
Yk;Yk−1

k−κ,Z
k−1
k−κ

∣∣Ek = 1
) − I

(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek = 1

)
(127)

= I
(
Yk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − I

(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek = 1

)
(128)

≥ I
(
Yk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − δ1(ξmin, κ), (129)

where δ1(ξmin, κ) is an upper bound

I
(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek = 1

) ≤ δ1(ξmin, κ) (130)

that is derived in Appendix C. Note that δ1(ξmin, κ) depends only on ξmin and κ (and not
on k or on the SNR) and that

lim
ξmin↑∞

δ1(ξmin, κ) = 0. (131)

Continuing with the chain of inequalities we have

I
(
Yk;Yk−1

k−κ

∣∣Ek = 1
)

≥ I
(
Yk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − δ1(ξmin, κ) (132)

= I
(
Yk,Zk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − I

(
Zk; {H`X`}k−1

`=k−κ

∣∣Yk, Ek = 1
)

− δ1(ξmin, κ) (133)
= I

(
HkXk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − I

(
Zk; {H`X`}k−1

`=k−κ

∣∣Yk, Ek = 1
)

− δ1(ξmin, κ) (134)
≥ I

(
HkXk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − δ1(ξmin, κ) − δ2(ξmin, κ), (135)
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where δ2(ξmin, κ) is an upper bound

I
(
Zk; {H`X`}k−1

`=k−κ

∣∣Yk, Ek = 1
) ≤ δ2(ξmin, κ) (136)

that is also derived in Appendix C. It too depends only on ξmin and κ and satisfies

lim
ξmin↑∞

δ2(ξmin, κ) = 0. (137)

To continue the chain of inequalities let us define {V̂`}k
`=k−κ to be IID complex random

variables that are uniformly distributed on {z ∈ C : |z| = 1} and independent of {Xk,Hk}.
Let {Û`} be similarly distributed. Then,

I
(
Yk;Yk−1

k−κ

∣∣Ek = 1
)

≥ I
(
HkXk; {H`X`}k−1

`=k−κ

∣∣Ek = 1
) − δ1(ξmin, κ) − δ2(ξmin, κ) (138)

≥ I
(
HkXkV̂k; {H`X`V̂`}k−1

`=k−κ

∣∣Ek = 1
) − δ1(ξmin, κ) − δ2(ξmin, κ) (139)

≥ I


 HkXkV̂k

‖HkXk‖ ;

{
H`X`V̂`

‖H`X`‖

}k−1

`=k−κ

∣∣∣∣∣∣Ek = 1


 − δ1(ξmin, κ) − δ2(ξmin, κ) (140)

= I

(
Hk

‖Hk‖ Ûk;
{

H`

‖H`‖ Û`

}k−1

`=k−κ

)
− δ1(ξmin, κ) − δ2(ξmin, κ) (141)

= I
(
ĤkÛk; {Ĥ`Û`}k−1

`=k−κ

) − δ1(ξmin, κ) − δ2(ξmin, κ) (142)

= I
(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

) − δ1(ξmin, κ) − δ2(ξmin, κ). (143)

Here the first two inequalities follow from the data processing inequality; (141) follows
because the law of X`

|X`| V̂` is identical to the law of Û` (because the phase of V̂` is uniformly
distributed over [−π, π) and independent of the phase of X`); and the final equality follows
from stationarity.

From (143) and (126) we now have

C ≤ I(Q) + I(H0;H−1
−∞) + ε+Hb

(
max

{
α,

1
2

})
− αI

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

) − δ1(ξmin, κ) − δ2(ξmin, κ). (144)

Note that at this point all dependence on n has disappeared. The bound depends only on
the SNR, on ε, on ξmin, on κ, and on Q.

We shall next study the limiting behavior of the RHS of (144) as the SNR tends to
infinity. We shall begin by showing that

lim
SNR↑∞

α = 1. (145)

To this end it suffices, by (114), to show that

lim
SNR↑∞

Q(|X| ≥ ξmin) = 1. (146)

But this follows from Theorem 8 because by (7) and (76)

lim
SNR↑∞

C(SNR)
log log SNR

= 1 (147)

and because by (144) and the trivial bound

I(Q) ≤ CIID(SNR) ≤ C(SNR) (148)
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it follows that
lim

SNR↑∞
I(Q)

C(SNR)
= 1. (149)

Applying the bound I(Q) ≤ CIID(SNR) to (144) and using (145) we obtain

lim
SNR↑∞

{C(SNR) − CIID(SNR)}

≤ I(H0;H−1
−∞) + ε− I

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

) − δ1(ξmin, κ) − δ2(ξmin, κ). (150)

But since ε > 0 can be chosen arbitrarily small and ξmin can be taken arbitrarily large, it
follows from from the above and from (131) & (137) that

lim
SNR↑∞

{C(SNR) − CIID(SNR)} ≤ I(H0;H−1
−∞) − I

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

)
. (151)

Upon now letting κ tend to infinity we obtain

χ({Hk}) ≤ χIID(H0) + I(H0;H−1
−∞) − I

(
Ĥ0Û0; {Ĥ`Û`}−1

`=−∞
)

(152)

as we had set out to prove.

A Equivalence of (25) and (26)

The equivalence of (25) and (26) can be proved as follows. Using stationarity, (13), and
(11) we get

χIID

(
Hκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

`=κ+2

)
= hλ

(
Ĥκ+1Ûκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

`=κ+2

) − h
(
Hκ+1

∣∣Hκ
1 , {Ĥ`Û`}2κ+1

`=κ+2

)
+nRE

[
log ‖Hκ+1‖2

] − log 2 (153)

= χIID(Hκ+1) − I
(
Ĥκ+1Ûκ+1;Hκ

1 , {Ĥ`Û`}2κ+1
`=κ+2

)
+ I

(
Hκ+1;Hκ

1 , {Ĥ`Û`}2κ+1
`=κ+2

)
(154)

= χIID(H0) + I(Hκ+1;Hκ
1) − I

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

)
+ δκ, (155)

where the last equality should be read as definition of δκ:

δκ = I
(
Hκ+1; {Ĥ`Û`}2κ+1

`=κ+2

∣∣Hκ
1

)
+ I

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

)
− I

(
Ĥκ+1Ûκ+1;Hκ

1 , {Ĥ`Û`}2κ+1
`=κ+2

)
(156)

= I
(
Hκ+1; {Ĥ`Û`}2κ+1

`=κ+2

∣∣Hκ
1

)
+ I

(
Ĥκ+1Ûκ+1; {Ĥ`Û`}κ

`=1

) − I
(
Ĥκ+1Ûκ+1; {Ĥ`Û`}2κ+1

`=κ+2

)︸ ︷︷ ︸
=0 by stationarity

− I
(
Ĥκ+1Ûκ+1;Hκ

1

∣∣{Ĥ`Û`}2κ+1
`=κ+2

)
(157)

= hλ

({Ĥ`Û`}2κ+1
`=κ+2

∣∣Hκ
1

) − hλ

({Ĥ`Û`}2κ+1
`=κ+2

∣∣Hκ+1
1

) − h
(
Hκ

1

∣∣{Ĥ`Û`}2κ+1
`=κ+2

)
+ h

(
Hκ

1

∣∣{Ĥ`Û`}2κ+1
`=κ+1

)
(158)

= hλ

({Ĥ`Û`}2κ+1
`=κ+2

) − hλ

({Ĥ`Û`}2κ+1
`=κ+2

∣∣Hκ+1
1

) − h
(
Hκ

1

)
+ h

(
Hκ

1

∣∣{Ĥ`Û`}2κ+1
`=κ+1

)
(159)

= I
(
Hκ+1

1 ; {Ĥ`Û`}2κ+1
`=κ+2

) − I
(
Hκ

1 ; {Ĥ`Û`}2κ+1
`=κ+1

)
(160)

→ 0 for κ ↑ ∞, by stationarity. (161)

In (159) we have used
h(A|B) − h(B|A) = h(A) − h(B). (162)
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B Appendix for the proof of the Lower Bound

In the derivation of the lower bound it remains to derive the upper bounds ε1(xmin, κ) and
ε2(xmin, κ) to I

(
Xk;Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,Y

k+κ
k

)
and I

(
Xk;Zk+κ

k+1

∣∣Hk−1
k−κ,Yk,Yk+κ

k+1

)
, respec-

tively, that do not depend on k and that tend to zero as xmin tends to infinity.
We start with I

(
Xk;Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,Y

k+κ
k

)
:

I
(
Xk;Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,Y

k+κ
k

)
= h

(
Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,Y

k+κ
k

) − h
(
Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ, Xk,Yk+κ

k

)
(163)

≤ h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ, X

k+κ
k ,Zk+κ

k ,Yk+κ
k

)
(164)

= h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣Xk−1
k−κ,Y

k−1
k−κ,H

k+κ
k

)
(165)

≤ h
(
Zk−1

k−κ

) − min
|xk−κ|≥xmin,...,
|xk−1|≥xmin

h
(
Zk−1

k−κ

∣∣∣Xk−1
k−κ = xk−1

k−κ, {H`x` + Z`}k−1
`=k−κ,H

k+κ
k

)
(166)

= h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣{H`xmin + Z`}k−1
`=k−κ,H

k+κ
k

)
(167)

= I

(
Zk−1

k−κ;
{
H` +

Z`

xmin

}k−1

`=k−κ

,Hk+κ
k

)
(168)

= I

(
Zκ

1 ;
{
H` +

Z`

xmin

}κ

`=1

,H2κ+1
κ+1

)
(169)

= I

({
Z`

xmin

}κ

`=1

;
{
H` +

Z`

xmin

}κ

`=1

∣∣∣∣H2κ+1
κ+1

)
(170)

= h

({
H` +

Z`

xmin

}κ

`=1

∣∣∣∣H2κ+1
κ+1

)
− h

(
Hκ

1

∣∣H2κ+1
κ+1

)
(171)

, ε1(xmin, κ). (172)

Here (164) follows from conditioning that reduces entropy; and in the subsequent equality
we used Xk−1

k−κ and Zk+κ
k in order to extract Hk+κ

k from Yk+κ
k , and then we dropped

{X`,Y`,Z`}k+κ
`=k since given Hk+κ

k it is independent of the other random variables.
From [1, Lemma 6.11] we conclude that for any realization of H2κ+1

κ+1 the expression

h

({
H` +

Z`

xmin

}κ

`=1

∣∣∣∣H2κ+1
κ+1 = h2κ+1

κ+1

)
(173)

converges monotonically in xmin to h
(
Hκ

1

∣∣H2κ+1
κ+1 = h2κ+1

κ+1

)
. By the Monotone Convergence

Theorem this is also true when we average over H2κ+1
κ+1 .

Similarly, we get for I
(
Xk;Zk+κ

k+1

∣∣Hk−1
k−κ,Yk,Yk+κ

k+1

)
:

I
(
Xk;Zk+κ

k+1

∣∣Hk−1
k−κ,Yk,Yk+κ

k+1

)
= h

(
Zk+κ

k+1

∣∣Hk−1
k−κ,Yk,Yk+κ

k+1

) − h
(
Zk+κ

k+1

∣∣Hk−1
k−κ, Xk,Yk,Yk+κ

k+1

)
(174)

≤ h
(
Zk+κ

k+1

) − h
(
Zk+κ

k+1

∣∣Hk−1
k−κ, Xk,Yk,Zk,Yk+κ

k+1 , X
k+κ
k+1

)
(175)

= h
(
Zk+κ

k+1

) − h
(
Zk+κ

k+1

∣∣Hk
k−κ,Y

k+κ
k+1 , X

k+κ
k+1

)
(176)

≤ h
(
Zk+κ

k+1

) − min
|xk+1|≥xmin,...,
|xk+κ|≥xmin

h
(
Zk+κ

k+1

∣∣∣Hk
k−κ, {H`x` + Z`}k+κ

`=k+1, X
k+κ
k+1 = xk+κ

k+1

)
(177)

= h
(
Zk+κ

k+1

) − h
(
Zk+κ

k+1

∣∣Hk
k−κ, {H`xmin + Z`}k+κ

`=k+1

)
(178)

= I

(
Zk+κ

k+1 ;
{
H` +

Z`

xmin

}k+κ

`=k+1

,Hk
k−κ

)
(179)

= I

(
Z2κ+1

κ+2 ;
{
H` +

Z`

xmin

}2κ+1

`=κ+2

,Hκ+1
1

)
(180)
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= I

({
Z`

xmin

}2κ+1

`=κ+2

;
{
H` +

Z`

xmin

}2κ+1

`=κ+2

∣∣∣∣∣Hκ+1
1

)
(181)

, ε2(xmin, κ), (182)

from which the results follows analogously to (170).

C Appendix for the Proof of the Upper Bound

In the derivation of the upper bound it remains to derive upper bounds to

I
(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek=1

)
and

I
(
Zk; {H`X`}k−1

k−κ

∣∣Yk, Ek=1
)

that depend only on ξmin and not on k or the SNR.
We start with the bound on I

(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek=1

)
:

I
(
Yk;Zk−1

k−κ

∣∣Yk−1
k−κ, Ek=1

)
= h

(
Zk−1

k−κ

∣∣Yk−1
k−κ, Ek=1

) − h
(
Zk−1

k−κ

∣∣Yk−1
k−κ,Yk, Ek=1

)
(183)

≤ h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣Yk−1
k−κ, X

k−1
k−κ,Yk,Zk, Xk, Ek=1

)
(184)

= h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣Yk−1
k−κ, X

k−1
k−κ,Hk, Ek=1

)
(185)

≤ h
(
Zk−1

k−κ

) − min
|xk−κ|≥ξmin,...,
|xk−1|≥ξmin

h
(
Zk−1

k−κ

∣∣{H`x` + Z`}k−1
k−κ, X

k−1
k−κ = xk−1

k−κ,Hk, Ek=1
)

(186)

= h
(
Zk−1

k−κ

) − h
(
Zk−1

k−κ

∣∣{H`ξmin + Z`}k−1
k−κ,Hk

)
(187)

= I

(
Zk−1

k−κ;
{
H` +

Z`

ξmin

}k−1

k−κ

,Hk

)
(188)

= I

(
Zk−1

k−κ;
{
H` +

Z`

ξmin

}k−1

k−κ

∣∣∣∣∣Hk

)
(189)

= h

( {
H` +

Z`

ξmin

}k−1

k−κ

∣∣∣∣Hk

)
− h

(
Hk−1

k−κ

∣∣Hk

)
(190)

= h

( {
H` +

Z`

ξmin

}κ

1

∣∣∣∣Hκ+1

)
− h

(
Hκ

1

∣∣Hκ+1

)
(191)

, δ1(ξmin, κ), (192)

where the last equality follows from stationarity.
From [1, Lemma 6.11] we conclude that for any realization of Hκ+1 the expression

h

({
H` +

Z`

ξmin
Z`

}κ

1

∣∣∣∣Hκ+1 = hκ+1

)

converges monotonically in ξmin to h
(
Hκ

1

∣∣Hκ+1 = hκ+1

)
. By the Monotone Convergence

Theorem this is also true when we average over Hκ+1.
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Similarly, we bound I
(
Zk; {H`X`}k−1

k−κ

∣∣Yk, Ek=1
)
:

I
(
Zk; {H`X`}k−1

k−κ

∣∣Yk, Ek=1
)

= h
(
Zk

∣∣Yk, Ek=1
) − h

(
Zk

∣∣{H`X`}k−1
k−κ,Yk, Ek=1

)
(193)

≤ h
(
Zk

) − h
(
Zk

∣∣{H`X`}k−1
k−κ, X

k−1
k−κ,Yk, Xk, Ek=1

)
(194)

= h
(
Zk

) − h
(
Zk

∣∣Hk−1
k−κ,Yk, Xk, Ek=1

)
(195)

≤ h
(
Zk

) − min
|xk|≥ξmin

h
(
Zk

∣∣Hk−1
k−κ,Hkxk + Zk, Xk = xk, Ek=1

)
(196)

= h
(
Zk

) − h
(
Zk

∣∣Hk−1
k−κ,Hkξmin + Zk

)
(197)

= I

(
Zk;Hk +

Zk

ξmin
,Hk−1

k−κ

)
(198)

= I

(
Zk;Hk +

Zk

ξmin

∣∣∣∣Hk−1
k−κ

)
(199)

= h

(
Hk +

Zk

ξmin

∣∣∣∣Hk−1
k−κ

)
− h

(
Hk

∣∣Hk−1
k−κ

)
(200)

= h

(
Hκ+1 +

Zκ+1

ξmin

∣∣∣∣Hκ
1

)
− h

(
Hκ+1

∣∣Hκ
1

)
(201)

, δ2(ξmin, κ), (202)

where the last equality follows from stationarity.
Again, from [1, Lemma 6.11] we conclude that for any realization of Hκ

1 the expression

h

(
1
ξmin

Zκ+1 + Hκ+1

∣∣∣∣Hκ
1 = hκ

1

)

converges monotonically in ξmin to h
(
Hκ+1

∣∣Hκ
1 = hκ

1

)
. By the Monotone Convergence

Theorem this is also true when we average over Hκ
1 .
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