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Abstract — We investigate the influence of feedback
on the capacity of multiple-input multiple-output
(MIMO) non-coherent fading channels with memory.
We derive an upper bound on the feedback capacity
of regular fading channels, which is shown to coin-
cide with a previously known upper bound on the ca-
pacity without feedback. Hence, it is concluded that
whereas feedback does in general increase capacity,
this increase is relatively small in the sense that the
same upper bound holds for both scenarios. From this
bound we derive an upper bound on the MIMO fading
number in the presence of feedback and show that in
the single-input single-output (SISO) case this bound
is tight, i.e., the SISO fading number is not changed
by feedback.

Next, we derive an upper bound on the feedback ca-
pacity of spatially independent MIMO Gaussian fad-
ing channels. From this bound we derive a new upper
bound on the corresponding fading number and show
that in the multiple-input single-output (MISO) case
this bound is tight.

Finally, in the case of a non-regular SISO Gaus-
sian fading process we show that feedback does not
increase the pre-log, i.e., the ratio of the capacity to
the logarithm of the signal-to-noise ratio log SNR is not
changed in the limit when the SNR tends to infinity.

I. Introduction

In [1], [2] the capacity of fading channels with memory was
investigated. It was shown there that for any finite-energy
regular fading process {Hk} (i.e., one having a finite differen-
tial entropy rate) the channel capacity C grows asymptotically
only double-logarithmically in the signal-to-noise ratio (SNR).
The fading number χ was introduced as the second term in
the high-SNR expansion of the capacity

χ({Hk}) , lim
SNR↑∞

{C(SNR) − log log SNR}. (1)

The fading number was computed for the single-input single-
output (SISO) case in [1] and then extended to the single-input
multiple-output (SIMO) case in [2]. For a memoryless channel,
the multiple-input single-output (MISO) fading number was
derived, too [1].

In [1] the following upper bound on the channel capacity
of a regular fading channel with memory was derived:

C(SNR) ≤ CIID(SNR) + I
�
H0; H

−1
−∞
�
, SNR ≥ 0, (2)

where CIID(SNR) denotes the channel capacity without mem-
ory.

For the more restricted case of Gaussian fading with peak-
power constraints, the analysis was extended in [3], [4], and

[5] to non-regular fading processes (i.e., processes of differen-
tial entropy rate negative infinity). It was shown that while
for regular fading processes the channel capacity grows like
log log SNR, this is not necessarily the case for non-regular
fading. Depending on the spectrum F(·) of the non-regular
Gaussian fading process, the asymptotic behavior of channel
capacity can be varied, e.g., double-logarithmic, logarithmic,
or a fractional power thereof. The pre-log ΠPP was defined as

ΠPP
, lim

SNR↑∞

C
PP(SNR)

log SNR
, (3)

where C
PP denotes capacity with a peak-power constraint. In

the SISO case its value was computed, see (33).
Furthermore, in [6], [7] the following upper bound on the

capacity of a multiple-input multiple-output (MIMO) Gaus-
sian fading1 channel with memory was derived:

C
PP(SNR) ≤ C

PP
IID(SNR) + nR log

1 + 1
SNR

ǫ2
�

1
SNR

�
+ 1

SNR

, (4)

where C
PP
IID(SNR) denotes the channel capacity without mem-

ory and where ǫ2(δ2) denotes the error in predicting one com-
ponent of the fading from a variance-δ2 noisy observation of
its infinite past.

In this paper we extend these results to the situation where
there is a noiseless feedback link from the receiver to the trans-
mitter. We show that, in spite of memory in the fading pro-
cess, feedback does not significantly increase channel capacity.
In fact, we will show that the upper bounds (2) and (4) also
hold in the presence of feedback. Consequently, all asymp-
totic and non-asymptotic2 upper bounds on channel capacity
of regular fading channels that were derived in [1], [2] are valid
in the presence of feedback, too.

We will also derive an upper bound on the fading number of
general regular MIMO fading processes in presence of feedback
and we will show that in the SISO case this upper bound is
tight.

In the case of Gaussian fading processes we will improve
this upper bound on the fading number and will show that this
improved bound is in the MISO case tight. Furthermore, we
will show that for non-regular SISO Gaussian fading feedback
does not increase the pre-log.

Some of the results presented here can also be found in [8],
but not all.

II. Channel Model

We consider a communication system as depicted in Fig-
ure 1. A message M is transmitted over a MIMO fading chan-

1The Gaussian fading may be regular or non-regular, however,
it is assumed to be spatially independent with identical spectra.

2I.e., bounds that are valid for all SNR.
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Fig. 1: A regular fading channel with noiseless feedback from the
receiver to the transmitter.

nel with memory. The channel output Yk ∈ C
nR at time k is

given by

Yk = Hkxk + Zk, (5)

where xk ∈ C
nT denotes the time-k channel input vector; the

complex nR×nT random matrix Hk denotes the time-k fading
matrix; and the random vector Zk ∈ C

nR denotes the time-k
additive noise vector.

The additive noise process {Zk} is assumed to be a spatially
and temporally independent and identically distributed (IID),
zero-mean, circularly-symmetric, complex Gaussian process,
i.e.,

{Zk} ∼ IID NC

�
0, σ2

I
�

(6)

for some σ2 > 0.
Neither transmitter nor receiver knows the realization of

the fading process {Hk}; they only know its law. We assume
that {Hk} is stationary, ergodic, and of finite energy

E
�
‖Hk‖2

F

�
< ∞. (7)

Sometimes we will further require that {Hk} be regular, i.e.,
that it be of finite differential entropy rate

h({Hk}) > −∞. (8)

We will clearly specify when this additional assumption is
made.

Furthermore, we assume a feedback link from the receiver
to the transmitter. We allow the feedback to be noiseless,
however, to preserve the causality of the system, we require it
to be delayed by one time-step, so that the feedback random
vector Fk that is available to the transmitter at time k consists
of all past channel output vectors, i.e.,

Fk = Yk−1
1 . (9)

Hence, the channel input xk is a deterministic function of the
message M and the feedback Yk−1

1 .
We consider two types of power constraints: an average-

power constraint and a peak-power constraint. Under the for-
mer we require that

1

n

nX
k=1

E

hXk

�
M,Yk−1

1

�2
i
≤ E , (10)

where n denotes the blocklength and where all messages are
assumed equiprobable.

Under the peak-power constraint we replace (10) with the
almost sure constraint that for every message mXk

�
m,Yk−1

1

�2 ≤ E , a.s., 1 ≤ k ≤ n. (11)

The signal-to-noise ratio SNR is defined for both con-
straints by

SNR ,
E
σ2

. (12)

The subject of our investigation is the channel capacity
(and in the asymptotic case the fading number or the pre-log,
respectively) in presence of feedback.

To clarify notation we will use a subscript “FB” whenever
feedback is available. Furthermore, we will use the superscript
“Avg” whenever a result holds under an average-power con-
straint and the superscript “PP” for a result holding under a
peak-power constraint. Quantities without these superscripts
are valid in both situations.

III. Regular Fading and Feedback

The following main result is valid for all values of the SNR:

Theorem 1. Let a regular (not necessarily Gaussian) fading
channel be defined as described in Section II above with a fad-
ing process that is stationary, ergodic, of finite energy, and of
finite differential entropy rate.

Then the channel capacity in the presence of noiseless feed-
back from the receiver to the transmitter CFB is upper bounded
by

CFB(SNR) ≤ CIID(SNR) + I
�
H0; H

−1
−∞
�
, (13)

where CIID(SNR) denotes the channel capacity without feed-
back or memory.

Proof. For a proof see [8].

Remark 2. This result even holds in the (hypothetical) case
when one allows the input vector xk to also depend on the
past fading realizations H

k−1
1 . Furthermore, it holds irrespec-

tive whether an average-power constraint (10) or a peak-power
constraint (11) is imposed.

Remark 3. From Theorem 1 it immediately follows that any
upper bound to CIID(SNR) automatically is also an upper
bound to

CFB(SNR) − I
�
H0; H

−1
−∞
�
. (14)

Consequently, all upper bounds on CIID(SNR) derived in [1],
[2] can be used to upper bound CFB(SNR). In particular, even
in presence of noiseless feedback the capacity of regular fading
channels grows asymptotically only double-logarithmically in
the SNR.

Also, since feedback does not hurt (the transmitter may sim-
ply ignore it and achieve the same results as without feed-
back), any lower bound on C(SNR) is also a lower bound on
CFB(SNR).

Theorem 1 immediately specializes to the asymptotic case
SNR ↑ ∞:

Corollary 4. Let a regular fading channel be defined as in
Theorem 1. Then the fading number in the presence of noise-
less feedback χFB({Hk}) is upper bounded as follows:

χFB({Hk}) ≤ χIID(H0) + I
�
H0; H

−1
−∞
�
, (15)

where χIID(H0) denotes the fading number without memory
(or feedback).



Since the fading number of a SISO fading channel with
memory (but without feedback) can be written as

χ({Hk}) = χIID(H0) + I(H0; H
−1
−∞), (16)

(see [1]) the right-hand side of (15) can be achieved without
feedback. Hence in the SISO case (15) is tight:

Corollary 5. The fading number of a SISO regular fading
channel with memory is not changed by a noiseless feedback
link from the receiver to the transmitter:

χFB({Hk}) = χ({Hk}) (17)

= log π + E
�
log |H0|2

�
− h({Hk}). (18)

The intuition behind this result is that feedback only helps
in improving the input-power allocation and that this im-
provement is negligible in the log log-regime.

Remark 6. The result of Corollary 5 can be generalized to
the situation of partial side-information. In this scenario a
side-information process {Sk}, where {Hk,Sk} is jointly sta-
tionary, ergodic, and of finite mutual information rate

I
�
{Hk}; {Sk}

�
, lim

n↑∞

1

n
I
�
Hn

1 ;Sn
1

�
< ∞, (19)

is known to the receiver. It can then be shown that the disclo-
sure of the side-information to the transmitter and a noiseless
feedback link from the receiver to the transmitter does not in-
crease the asymptotic SISO channel capacity, i.e.,

lim
SNR↑∞

{CFB,SI@Tx(SNR) − C(SNR)} = 0, (20)

where the above holds irrespective of whether an average-power
constraint (10) or a peak-power constraint (11) is imposed.

That is, the fading number in the presence of noiseless feed-
back and transmitter side-information is given by

χFB,SI@Tx

�
{Hk}

��{Sk}
�

= χ
�
{Hk}

��{Sk}
�

(21)

= log π + E
�
log |H0|2

�
− h
�
{Hk}

��{Sk}
�
, (22)

where χ
�
{Hk}

��{Sk}
�

denotes the fading number of a fading
channel with memory and partial side-information at the re-
ceiver only [1].

IV. Gaussian Fading and Feedback

In this section we restrict ourselves to the family of Gaus-
sian fading processes. This allows us to significantly tighten
the bounds. As a first result we will improve the upper bound
(13):

Theorem 7. Let the mean-D Gaussian MIMO fading {Hk}
be such that the process {Hk − D} is spatially IID with
each component being a zero-mean, unit-variance, circularly-
symmetric, stationary and ergodic, complex Gaussian process
with spectral distribution function F(·). Then the capacity
under a peak-power constraint and in presence of feedback
C

PP
FB(SNR) is upper bounded by

C
PP
FB(SNR) ≤ C

PP
IID(SNR) + nR log

1 + 1
SNR

ǫ2
�

1
SNR

�
+ 1

SNR

. (23)

Here, C
PP
IID(SNR) denotes the capacity in the memoryless fad-

ing case (without feedback), and ǫ2(δ2) denotes the error in
predicting a component of the fading matrix from a variance-
δ2 noisy observation of its infinite past, i.e.,

ǫ2(δ2) = exp

 Z 1/2

−1/2

log
�

F
′(λ) + δ2�dλ

!
− δ2. (24)

Proof. A proof is given in Appendix A.

Applied to the case of regular fading Theorem 7 leads im-
mediately to the following upper bound on the MIMO Gaus-
sian fading number with memory and feedback under a peak-
power constraint:

Corollary 8. Assume a mean-D Gaussian MIMO fading
{Hk} such that the process {Hk −D} is spatially IID with each
component as described in Theorem 7. Further assume that
the fading process is regular. Then the fading number under a
peak-power constraint and in presence of feedback χPP

FB({Hk})
is upper bounded as follows:

χPP
FB({Hk}) ≤ χPP

IID(H0) + nR log
1

ǫ2
, (25)

where χPP
IID(H0) denotes the fading number in the memoryless

fading case, and ǫ2 denotes the error in predicting a component
of the fading matrix from its infinite past:

ǫ2 = exp

 Z 1/2

−1/2

log F
′(λ) dλ

!
. (26)

Proof. This follows by subtracting log log SNR from both sides
of (23) and then letting the SNR tend to infinity.

Remark 9. Note that (25) is for MIMO typically tighter than
(15), indeed, for such Gaussian channels,

I
�
H0; H

−1
−∞
�

= nTnR log
1

ǫ2
. (27)

A similar result can be proved in the case of an average-
power constraint:

Theorem 10. Let the mean-D Gaussian MIMO fading {Hk}
be such that the process {Hk − D} is spatially IID with
each component being a zero-mean, unit-variance, circularly-
symmetric, stationary and ergodic, regular complex Gaussian
process with spectral distribution function F(·). Then the fad-
ing number under an average-power constraint and in presence
of feedback χAvg

FB ({Hk}) is upper bounded by

χAvg
FB ({Hk}) ≤ χAvg

IID (H0) + nR log
1

ǫ2
, (28)

where χAvg
IID (H0) denotes the fading number in the memoryless

fading case, and ǫ2 denotes the error in predicting a component
of the fading matrix from its infinite past (26).

Proof. A proof is given in Appendix B.

Since the fading number of a mean-d Gaussian MISO fad-
ing process {Hk} where {Hk − d} is spatially IID can be
written as

χ({HT

k}) = χIID({HT

k}) + log
1

ǫ2
(29)

(see [5, Corollary 5.7], [1]), it follows from Theorem 7 and The-
orem 10 that feedback does not increase the MISO Gaussian
fading number:



Corollary 11. Let the mean-d Gaussian MISO fading be such
that the process {Hk−d} is spatially IID with each component
being a zero-mean, unit-variance, circularly-symmetric, regu-
lar complex Gaussian process with spectral distribution func-
tion F(·). Then the fading number in presence of feedback
χFB({HT

k}) is given by

χFB({HT

k}) = χ({HT

k}) (30)

= −1 + log d2
∗ − Ei

�
−d2

∗
�

+ log
1

ǫ2
, (31)

with
d∗ = max

‖x̂‖=1

��dTx̂
�� (32)

and where the prediction error ǫ2 is defined in (26).

Next, we consider the pre-log ΠPP as defined in (3). We
will restrict ourselves here to the SISO case.

In [3], [4] it was shown that the pre-log is determined by
the ratio of the total length of the frequency bands where the
spectral density is null to the total frequencies:

ΠPP = µ
��

λ : F
′(λ) = 0

	�
, (33)

where µ(·) denotes the Lebesgue measure on the interval
(−1/2, 1/2].

We now extend these results to the case where there is
noiseless feedback from the receiver to the transmitter.

Theorem 12. Suppose that the SISO fading {Hk} and the
specular component d are such that {Hk − d} is a zero-mean,
unit-variance, finite-energy, circularly-symmetric, stationary
and ergodic, complex Gaussian process. Then, under a peak-
power constraint, noiseless feedback from the receiver to the
transmitter does not increase the asymptotic channel capacity
in the sense that,

lim
SNR↑∞

C
PP
FB(SNR)

log SNR
= lim

SNR↑∞

C
PP(SNR)

log SNR
. (34)

That is, the pre-log in the presence of noiseless feedback ΠPP
FB

is given by (33).

Proof. For a proof see [8].

A. A Proof of Theorem 7

Using standard arguments like, e.g., shown in [8], the infor-
mation rate R

PP
FB(SNR) of the system shown in Figure 1 can

be upper bounded by

R
PP
FB(SNR) ≤ lim

n↑∞

1

n
I
�
M ;Yn

1

�
. (35)

We hence continue with bounding 1
n
I
�
M ;Yn

1

�
as follows:

1

n
I
�
M ;Yn

1

�
=

1

n

nX
k=1

I
�
M ;Yk

��Yk−1
1

�
(36)

=
1

n

nX
k=1

I
�
M,Xk

1 ;Yk

��Yk−1
1

�
(37)

=
1

n

nX
k=1

�
I
�
Xk

1 ;Yk

��Yk−1
1

�
+ I
�
M ;Yk

��Yk−1
1 ,Xk

1

��
(38)

=
1

n

nX
k=1

I
�
Xk

1 ;Yk

��Yk−1
1

�
(39)

=
1

n

nX
k=1

�
h
�
Yk

��Yk−1
1

�
− h
�
Yk

��Yk−1
1 ,Xk

1

��
(40)

≤ 1

n

nX
k=1

sup
p
X

k
1

n
h
�
Yk

�
− h
�
Yk

��Yk−1
1 ,Xk

1

�o
(41)

=
1

n

nX
k=1

sup
p
X

k

sup
p
X

k−1

1
|Xk

n
h
�
Yk

�
− h
�
Yk

��Xk,Yk−1
1 ,Xk−1

1

�o
(42)

=
1

n

nX
k=1

sup
p
X

k

�
h
�
Yk

�

− inf
p
X

k−1

1
|Xk

h
�
Yk

��Xk, {HℓXℓ + Zℓ}k−1
ℓ=1 ,Xk−1

1

��
. (43)

Here, the first equality follows from the chain rule; in the
second we use the fact that Xk

1 is a function of M and the
feedback Yk−1

1 ; in the third the chain rule is applied again;
the fourth equality follows because

I
�
M ;Yk

��Yk−1
1 ,Xk

1

�
= 0 (44)

which can be proved, e.g., graphically using a technique based
on causal interpretations [9], [10]. The inequality follows from
introducing a supremum over the distributions of Xk

1 and from
the fact that conditioning does not increase entropy.

To further lower bound the second term in the sum we
introduce the matrix-valued random process {Wk} ∈ C

nR×nT

which is temporally and spatially IID with NC(0, 1) entries:

inf
p
X

k−1

1
|Xk

h
�
Yk

��Xk, {HℓXℓ + Zℓ}k−1
ℓ=1 ,Xk−1

1

�

= inf
p
X

k−1

1
|Xk

h

 
Yk

�����Xk,

�
HℓX̂ℓ +

1

‖Xℓ‖
Zℓ

�k−1

ℓ=1

,Xk−1
1

!
(45)

= inf
p
X̂

k−1

1
|Xk

h

 
Yk

�����Xk,

�
HℓX̂ℓ +

1√
E
Zℓ

�k−1

ℓ=1

, X̂k−1
1

!
(46)

= inf
p
X̂

k−1

1
|Xk

h

 
Yk

�����Xk,

��
Hℓ +

σ√
E

Wℓ

�
X̂ℓ

�k−1

ℓ=1

, X̂k−1
1

!

(47)

≥ inf
p
X̂

k−1

1
|Xk

h

 
Yk

�����Xk,

��
Hℓ +

σ√
E

Wℓ

�
X̂ℓ

�k−1

ℓ=1

,

�
Hℓ +

σ√
E

Wℓ

�k−1

ℓ=1

, X̂k−1
1

!
(48)

= h

 
Yk

�����Xk,

�
Hℓ +

σ√
E

Wℓ

�k−1

ℓ=1

, X̂k−1
1

!
(49)

= h

 
Yk

�����Xk,

�
Hℓ +

σ√
E

Wℓ

�k−1

ℓ=1

!
. (50)

Here in the first equality we have divided Yℓ by the known
magnitude of Xℓ and we have introduced X̂ℓ ,

Xℓ

‖Xℓ‖ ; for the
following step note that the differential entropy is minimized
by choosing the magnitude of Xℓ largest in order to reduce
the influence of the noise Zℓ; in the third equality we use
the fact that σWℓX̂ℓ ∼ Zℓ independent of the distribution of



X̂ℓ; in the following inequality we rely on conditioning that
reduces entropy; in the second last equality we drop the su-
perfluous terms

�
Hℓ + σ√

E Wℓ

�
X̂ℓ since they can be computed

from Hℓ + σ√
E Wℓ and X̂ℓ; and in the last equality we note that

conditional on Xk the output Yk is independent of the past
inputs.

Using (50) in (43) we get

1

n
I
�
M ;Yn

1

�
≤ 1

n

nX
k=1

sup
pXk

I

 
Yk;Xk,

�
Hℓ +

σ√
E

Wℓ

�k−1

ℓ=1

!
(51)

≤ 1

n

nX
k=1

sup
pXk

I

 
Yk;Xk,

�
Hℓ +

σ√
E

Wℓ

�k−1

ℓ=−∞

!
(52)

=
1

n

nX
k=1

sup
pX0

I

 
Y0;X0,

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

!
(53)

= sup
pX0

(
I
�
Y0;X0

�

+ I

 
Y0;

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

�����X0

!)
(54)

≤ sup
pX0

I
�
Y0;X0

�

+ sup
pX0

I

 
H0X0 + Z0;

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

�����X0

!
(55)

≤ sup
pX0

I
�
Y0;X0

�

+ sup
x:‖x‖2≤E

I

 
H0x + Z0;

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

!
(56)

= C
PP
IID(SNR)

+ sup
‖x̂‖=1

I

 
H0x̂ +

1√
E
Z0;

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

!
. (57)

Here, in the second inequality we have added the infinite past;
in the subsequent equality we used stationarity; and in the
last equality C

PP
IID(SNR) denotes the capacity in the situation

without memory and without feedback.

Since we assumed that the rows of the fading matrix are
independent, we may write the second term of (57) compo-
nentwise:

I

 
H0x̂ +

1√
E
Z0;

�
Hℓ +

σ√
E

Wℓ

�−1

ℓ=−∞

!

=

nRX
r=1

I

 
nTX
t=1

H
(r,t)
0 x̂(t) +

1√
E

Z
(r)
0 ;

�
H

(r,t)
ℓ +

σ√
E

W
(r,t)
ℓ

�
1≤t≤nT

−∞<ℓ≤−1

!
(58)

=

nRX
r=1

 
h

 
nTX
t=1

H
(r,t)
0 x̂(t) +

1√
E

Z
(r)
0

!

− h

 
nTX
t=1

H
(r,t)
0 x̂(t) +

1√
E

Z
(r)
0

������
H

(r,t)
ℓ +

σ√
E

W
(r,t)
ℓ

�
1≤t≤nT

−∞<ℓ≤−1

!!
. (59)

Note that the random variable
PnT

t=1 H
(r,t)
0 x̂(t) + 1√

E Z
(r)
0 is

Gaussian with a variance 1 + 1/SNR (for ‖x̂‖ = 1) and

that conditioned on
n

H
(r,t)
ℓ + σ√

E W
(r,t)
ℓ

o
1≤t≤nT,−∞<ℓ≤−1

it

is Gaussian with a variance ǫ2(1/SNR) + 1/SNR where ǫ2(δ2)
denotes the error in predicting a component of H0 from a
variance-δ2 noisy observation of its infinite past.3 Hence, we
get

R
PP
FB(SNR) ≤ C

PP
IID(SNR) +

nRX
r=1

log
1 + 1

SNR

ǫ2
�

1
SNR

�
+ 1

SNR

(60)

= C
PP
IID(SNR) + nR log

1 + 1
SNR

ǫ2
�

1
SNR

�
+ 1

SNR

. (61)

B. A Proof of Theorem 10

Analogously to the proof of Theorem 7 one can show
that (35) holds. We will therefore continue with bounding
1
n
I
�
M ;Yn

1

�
:

1

n
I
�
M ;Yn

1

�
=

1

n

nX
k=1

I
�
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��Yk−1
1

�
(62)

=
1

n

nX
k=1

�
I
�
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1 ;Yk

�
− I
�
Yk−1

1 ;Yk

��
(63)

≤ 1
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�
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=
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(67)

=
1

n

nX
k=1

I
�
H

k−1
1 ,Xk;Yk

�
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=
1
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��Xk
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(69)
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�
‖Xk‖2
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!
+ I
�
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1 ;Yk
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(70)

≤ C
Avg
IID (SNR) +

1

n

nX
k=1

I
�
H

k−1
1 ;Yk

��Xk

�
. (71)

Here the first two equalities follow from the chain rule; the
subsequent inequality from the non-negativity of mutual in-
formation; the following inequality from adding random ma-
trices; the subsequent equality follows since Xk is a determin-
istic function of M and Yk−1

1 (and hypothetically also H
k−1
1 );

then we have used the chain rule again; (68) follows since4

I
�
M,Yk−1

1 ;Yk

��Hk−1
1 ,Xk

�
= 0; (72)

3Here we use the assumption that the columns of {Hk} are spa-
tially IID.

4This statement can be proved again graphically using a tech-
nique based on causal interpretations, see [9], [10].



in the following equality we have used the chain rule once
more; in the second last inequality we upper bounded the
mutual information term by the IID capacity for a given power
at time k; and in the last inequality we have used the concavity
of capacity.

We continue by upper bounding the second term:
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�
(73)
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�
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�
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�
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!
(77)
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!

− h
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H
(r,t)
0 x̂(t)

����� {H(r,t)
ℓ } 1≤t≤nT

−∞<ℓ≤−1

!!
.(78)

Here, the first inequality follows from the data processing in-
equality; in the subsequent inequality we have added the infi-
nite past and then used stationarity; and the following equality
follows from scaling where X̂0 ,

X0

‖X0‖ . In (77) we use the fact
that the rows of the fading matrix are independent in order
to write the expression componentwise.

We continue analogously to (59): since the random variablePnT

t=1 H
(r,t)
0 x̂(t) is Gaussian with variance 1 for ‖x̂‖ = 1 and

since conditioned on {H(r,t)
ℓ }1≤t≤nT,−∞<ℓ≤−1 it is Gaussian

with variance ǫ2 (because the columns of {Hk} are spatially
IID), it follows that

R
Avg
FB (SNR) ≤ C

Avg
IID (SNR) +

nRX
r=1

log
1

ǫ2
(79)

= C
Avg
IID (SNR) + nR log

1

ǫ2
. (80)
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