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Abstract- We consider the problem of transmitting a bivariate
Gaussian source over a two-user additive Gaussian multiple-
access channel with feedback. Each of the transmitters observes
one of the source components and tries to describe it to the
common receiver. We are interested in the minimal mean squared
error at which the receiver can reconstruct each of the source
components.

In the "symmetric case" we show that, below a certain signal-
to-noise ratio threshold which is determined by the source
correlation, feedback is useless and the minimal distortion is
achieved by uncoded transmission. For the general case we give
necessary conditions for the achievability of a distortion pair.

I. INTRODUCTION

We consider the problem of transmitting a memoryless
bivariate Gaussian source over a two-user additive white
Gaussian multiple-access channel with perfect causal feedback
from the channel output to both transmitters. Each of the
transmitters observes, besides the previous channel outputs,
one of the source components which it tries to describe to
the receiver subject to an average power constraint on its
transmitted signal. Based on the channel output, the receiver
estimates the two source components. The quality of the esti-
mate is measured in squared-error distortion on each individual
component. We seek the achievable distortion pairs.
We show that in the "symmetric case" where the trans-

mitters are subjected to the same average power constraint
and the ratio of the distortions to be achieved is equal to
the ratio of the corresponding source variances there is
a threshold signal-to-noise ratio (SNR), determined by the
correlation between the source components, below which
feedback is useless and the minimal distortion is achieved by
uncoded transmission. This result strengthens a previous result
of Lapidoth and Tinguely [1] for the same problem but without
feedback. For the general case we give necessary conditions
for the achievability of a distortion pair.

Related results by Oohama [2] and Wagner et al. [3] only
treated the source coding aspect of this problem by solving the
Slepian-Wolf lossy version for the bivariate Gaussian source
and by Ozarow [4] who only treated the channel coding
aspect by computing the capacity region of the Gaussian
multiple-access channel with feedback. We shall, however,
not rely on these source coding and channel coding results
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since the separation theorem does not apply to our problem.
That feedback is useless in the symmetric case below some
threshold SNR is all the more surprising in view of the recent
work of Lapidoth and Wigger [5] who showed that feedback,
even if noisy, always increases the capacity region of the
Gaussian multiple-access channel.

II. PROBLEM STATEMENT

We consider a discrete-time two-user additive white Gaus-
sian multiple-access channel with perfect and causal feed-
back from the channel output to both transmitters. The two
transmitters of the multiple-access channel each observe one
component of a memoryless bivariate Gaussian source and try
to communicate it to the receiver.
The time-k output of the Gaussian multiple-access channel

is given by
Yk = X1,k+ X2,k+ Zk, (1)

where X1,k e R and X2,k C R are the symbols sent by the
two transmitters, and Zk is the time-k additive noise term.
The terms {Zk} are independent identically distributed (IID)
zero-mean variance-N Gaussian random variables that are
independent of the source sequence.
The source symbols produced at time k are (S1,k, S2,k)

where the {(S1,k, S2,k)} are IID zero-mean Gaussians of
covariance

Kss ( Pc12 P2 ) (2)

with p e [-1,1], andO < or 2 < oo, i = 1, 2. The sequence of
the first source component {S1,k } is observed by Transmitter 1
and the sequence of the second source component {S2,k} iS
observed by Transmitter 2. Based on their source sequence and
the feedback observed up to time k, the transmitters produce
their respective time-k channel inputs

Xi,k 1<f(n) (S, yk- 1) i = 1,2,

where we have used the shorthand notation Si
(Si, 1, . . . Si,, ) and yk 1 (Y1, . . , Yk- 1), and where

:()Rn XR2c- R i 1: 2, k = 1,. .. ., n. (3)
The transmitted sequences of the two encoders are average-
power limited to P1 and P2 respectively, i.e.

-k E <Pi, i=1,2. (4)
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The decoder estimates the two source sequences based on the
channel output Y = (Y, .... Yn). These estimates are denoted
by Si = (Y) and S2 2 (Y) respectively, where

encoder. For (S1, S2) jointly Gaussian as in (2) and with or2
2=272 =7, we have

RSl,S2 (Di , D2)
(5)

We are interested in the minimal expected squared-error distor-
tions at which the receiver can reconstruct each of the source
sequences.

Definition ]: Given crl,cr2 > 0, p C [-1,1], Pl,P2 > 0,
and N > Owe say that the tuple (Dl, D2, O(,l (722, p, Pi, P2, N)
is achievable if there exists a sequence of encoding functions

(fn), fr)) as in (3) and a sequence of reconstruction pairs
(X(n), 5n)) as in (5) satisfying the average power constraints
(4) and resulting in average distortions that fulfill

lim Z E[(Si,k S,) ] < Dj, i 1,2,
k=1

whenever

1c fl,(n (S1, yk ) +fn(2 k 1) + Zk

for k = 1,... n, and {(S1,k, S2,k)} are IID zero-mean bi-
variate Gaussian vectors of covariance matrix Kss as in (2)
and {Zk} are IID zero-mean variance-N random variables that
are independent of {(S1,k, S2,k)}I
The problem we address here is, for given (rX2, (72,p

N, P1, P2, to find the set of pairs (D1, D2) such that
(Di, D2, (71 (X22, p, Pl, P2, N) is achievable.
Remark: As in [1, Section III] it can be shown that there

is no loss in generality in assuming that the two source
components are of equal variance and that the correlation
coefficient is non-negative. Hence, for the remainder we shall
assume

p C [0,1] and 2 2 2c71 c72 cr

Furthermore, the convexity argument of [1, Section III] ap-
plies also to the case with feedback so that for any given
c7, p, and N, the set of all (D1, D2, P1, P2) such that
(Dl, D2, c02, c72, p, P1, P2, N) is achievable is a convex set.
Of special interest is the "symmetric case" of this problem

where both transmitters are subject to equal power constraints,
and where we seek to achieve the same distortion on each
source component. That is, for some given N and P1 = P2
P we are interested in

D* ((2 p, P, N) A inf{max{DI, D2}:
(Di, D2, (X2, (72, p, P, P, N) is achievable}.

III. MAIN RESULTS

We now present necessary conditions for the achievability of
(Di, D2, c02, c72, p, P1, P2, N) and show that in the symmetric
case if P/N < p7(1 _ p2) then the minimal distortion
D* (o72, p, P, N) is achieved by uncoded transmission and
feedback is useless. The corresponding proofs will be dis-
cussed in Section IV.

Denote by Rs1,s2 (Di, D2) the rate-distortion function for
the pair (Sl, S2) when this pair is observed by one common

if (Di,D2)C a

o4(1_p2)
_V(u2 _Di)(U2 D2 )

if (Di,D2) C b

if (D1,D2) C c,

(6)

where log2+(x) = max{0, log2(x)} and the regions a, §b
and 9. are given by

Za ={D=D i 2(1 _ p2),D2 < (Or2(1 _

b = {0 < Di < or2

(92(1 _ p2) -D1) 72 < D2 < (

p2) -Di)(2 D}

(72(I _ p2) + p2D}

= {O< Di < (72, D2 > (72(I _ p2) + p2Di}.

The expression for RS,,S2 (Dl, D2) has been derived in [8]
and [1] by different approaches.

Further, denote by Rs Is2 (D1) the rate-distortion function
for Si, when S2 is known to both, the encoder and the decoder,
and analogously by Rs2 s1 (D2) the rate-distortion function for
S2, when Si is known to both, the encoder and the decoder.
For (Si, S2) jointly Gaussian as in (2) and with r= (72 = 2,
we have

Rs1s2(Di) - log+ (72i-l P2))S2lsl(D2) 2 og2 ( (D

R 2s(D2) =I10+ 72i- )
S21SI 2 2g~ D )

(7)

(8)

Theorem 1: A necessary condition for the achievability of
(Di, D2, c2,772, p, P1, P2, N) is that there exists a p C [0, 1]
such that

Rsl,s2(Di,D2) < 210g2 (1 + P1+ P2 + PP2) (9)

Rs1,s2(Di) < 10g2 (1+P(l )

Rs2Is1(D2) < 10g2 (1+ P2(l _)

(10)

(1 1)

where the explicit forms of the rate-distortion functions on the
LHS, are given in (6), (7), and (8) respectively.

2247

o(n) : Rn --> Rn , i= 1. 2.i
a4(l_p2)

1log+2 2 Di D2

i109+2 2
DID2- (P07 2

+ a21092 Di. 2
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In the symmetric case, (9) & (6) yield

1( Nu 2 (1+p) + 72(1 -p)

2 N+2P(1+p)

ifN 1< p2

if N > 1p2

and (1O) & (7) (or (11) & (8)) yield

D > a2 N(1 - p2)
N>UNP(l p2)

A. Proof of Theorem ]

To prove Theorem 1 we shall use the following lemma

(12) Lemma 1: Let the sequences {X1,k} and {X2,k} satisfy
1 E [X2] < nPi, i = 1, 2. Let Yk X1, + X2, +

Zk, where {Zk} are IID zero-mean variance-N Gaussian, and
where for every k, Zk is independent of (X1,k, X2,k). Let
p

I
e [0, 1] be given by(1i)

We denote the RHS of (12) by (oru2, p, P, N, p) and the RHS
of (13) by y (or2, p, P, N, p).

Corollary 1: In the symmetric case

D (2,p,P,N) >

min max{((2, p,P,N,p),N ((72, p,P, N, p)}J.
Note: For P/N < p2/(2(1-
Corollary 1 is achieved by p =
minimum is achieved by the p*

p) (I + 2p)) the minimum in
1, and for all larger P/N the
for which

, (u72 p,P N p*) = b(72,p,P: N,pp*).
We can now verify that for P/N = p7(1 _ p2) the lower

bound on D*(2, p, P, N) from Corollary 1 is achieved by
uncoded transmission. For P/N = p7(1 _ p2) the minimizing
p is p p leading to the bound

D* (or2 p, P,N) > a2 (I _P). (14)

To see that this is achievable by uncoded transmission, note
that in the symmetric case, uncoded transmission of the form
Xi,k = P 2Si,k, i = 1, 2 results in the distortion

A2p(1 p2)+N
Du=(7 2P(1+p ) + N' (15)

(see [1, Corollary 2]), which, when evaluated at P/N =

p/(l _ p2) yields the RHS of (14). The following theorem
extends this result to all P/N < p/(I _ p2).

Theorem 2: In the symmetric case if P'N < p (1 _ p2)
we have

D* ( 2p,P,N) 2P(l_ p2) + N (16)

i.e. the minimal distortion is achieved by uncoded transmis-
sion, and the availability of feedback is useless.
We conclude this section with a result on the high SNR

behaviour of the achievable distortion. Using Theorem 1 and
by considering a separate source channel coding scheme [3],
[4], one can show

Corollary 2: In the symmetric case

lim D* (2,p,P,N) =
p2

(17)N 2

IV. SKETCHES OF PROOFS

We shall discuss the proofs of both theorems but with more
particularity on the proof of Theorem 2. We do so, because
the basic techniques to the proof of Theorem 1 are the same
as in [4] and [6, page 15].

p
I n 1c=1 E [Xl,kX2,k]

d z(n k=l E Xl,k] n Sk=l E[2,k]

Then
n

Z I(X1,k, X2,k; Yk)
k=l

n

Z I(X1,k; Yk X2,k)
k=l
n

I (X2,k; Yk |X1,k)
k=l

< - log1+2(1 + pl(
2 (+N1

</ 02 1(P 2(l1 _2)'
2 \ NJ

The proof of Lemma 1 follows from the proof of the main
result in [4] and is omitted. Theorem 1 can now be proved by
showing

nRs,sS2 (Di, D2) < I(Sl, S2; Y)
n

I(S, S2; Y) ZI(X1,k, X2,k; Yk),
k=l

nRs ls2 (Di) < I(Si;Y S2)
n

I(Si; Y S2) < ZI(X1,k; Yk X2,k),
k=l

nRs2Is. (D2) < I(S2;Y Si)
<n

I(S2; Y Si) < I(X2,k; Yk X1,k),
k=l

and by then jointly bounding the expressions on the RHS of
(23), (25), and (27) by means of Lemma 1. The proofs of
(22) - (27) follow along the same lines as the proof of the
univariate analog of which the derivations can be found in
[6, page 15] (also coarsely stated in [7, equation (8)]). The
main ingredients in those derivations are the convexity of the
rate-distortion functions and the data-processing inequality.

B. Proof of Theorem 2

To prove the theorem we need to show that D* > Dt,
whenever P/N < p/(I _ p2), where D* is short for
D* (o2, p, P, N). Since the optimal reconstruction is the condi-
tional expectation, it suffices that we show that a contradiction
arises from the assumption:
Assumption (Leading to a contradiction): The encoding

rules {f(n) } satisfy the average power constraints (4) for some
P1 = P2 = P satisfying P/N < p/(I _ p2) and, when com-

bined with the optimal conditional expectation reconstructors,
achieve D*, where D* < DI,

2248

(18)

<- log2 (1 + Pi + P2,+2p)
2 NN(

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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To show that this assumption leads to a contradiction, let
{X1,k,X2,k} and {Yk} be the resulting channel inputs and
channel outputs when {f() } are used to describe the source.

Let further Si = E [S1 |Y] and S2 = E [S2 IY]
We focus on the estimation that Transmitter 2 can make

for the vector W S1 -pS2 using his knowledged of S2
and (through the feedback link) Y. This vector is the part
of (S1, S2) which is independent of S2 and hence initially
completely unknown to Transmitter 2. However, from the
feedback link Transmitter 2 can retrieve information about W.
The contradiction we shall obtain will be on the distortion on
W that can be achieved at Transmitter 2. Under Assumption 1,
we shall derive contradictory lower and upper bounds on the
achievable value for this distortion.

For any estimator o(n)S(2, Y) we set

DW(fo(nA) E [ |W ()(S2,Y) 2]

where lv 2 Z= 1vn .
1) "Lower Bound" on Dw(Qo(n)): In this subsection we

show that

Assumption 1 >

P NN+ P(I p2) V) ) (28)

The main ingredient is the following lemma:
Lemma 2:

Assumption 1 =>

I(Sl;Y S2) 102og41+ ( )

The proof of Lemma 2 will be discussed in Section IV-C.
Inequality (28) will follow from Lemma 2 if

(29)
To this end we denote by Rw (D) the rate-distortion function
for a source of the law of W. We then have

nRw(DQ~o(n))) a) nnRw(DW ((;(n) < I(W; (;(n (S2: Y))
b)
< I(W; Y, S2)
=I(Si -pS2;Y,S2)
= h(Si -PS2) -h(Si-PS2 Y, S2)

ch(Sl -pS2 S2) -h(S -pS2 Y, S2)
h(Sl S2) -h(Si Y, S2)
I(Si; Y S2), (30)

where inequality a) follows by the data-processing inequality
and the convexity of Rw (.). Inequality b) follows by the data-
processing inequality, and c) follows since S2 and Si- PS2
are independent.

Replacing Rw (Dw (9(n))) in (30) by its explicit form gives

1092
or2(i Cp2) < I(Sj;Y|S2)-

Rewriting this inequality gives (29), which combines with
Lemma 2 to prove (28).

2) "Upper Bound" on minimal Dw(Qo()): We show that
Assumption 1 implies that the estimator

y¾7(n)(S2,Y) = ' S1 -f3.S2
= aZE[SiY] -S2,

2>1(P)l A -(I _P) D7
2

and QA3 p) D* (31)

violates (28). To prove this we use the following two lemmas:
Lemma 3: For any scheme achieving D* and any d > 0

there exists an no() such that for all n > no(6) the following
three inequalities are satisfied

In
E[S1,kl,k] >2i=ln

i=l
In

n E[s1,k] < 2
i=l

D*-,

D* + ,

D* + 28.

(32)

(33)

(34)

Lemma 4: For all P/N < p7(1 p2) we have

a(p- ) > 0. (35)

The proofs of Lemma 3 and Lemma 4 will be discussed in
Section IV-C. We now derive the desired upper bound on

DWp(;(n) )

DW(jo(12)) =-E [|W - (S2,Y)l 2
n2
In
E [(Sl,k
ki1n

12n E [(sl,kk=in

-E (E [S12
k=1

pS2,k -aS,k + 13S2,k)]

aSk -(p- 13)S2,k)]

- 2aE [Sl,ksl,k]

-2(p- )E[S1,kS2,k] + a E [s,]

+ 2a(p -3)E [sl,kS2,k]

+(P-rn2E[s22k])
< K2 - 2a(u2 D*-) -2(p _ )pu2
+ a2(u2 - D* + d) + 2a(p 3)U(2 - D* + 2&)
+ (p _ )2a2 (36)

where the last step follows from Lemma 3, using the fact that
a > 0, and using Lemma 4.
Upon letting n tend to infinity, we obtain

rim DwQo(n) < o2- 2a(u2 D*-) -2(p 3)pu2
+ a2(u2 - D* +8)
+ 2a(P _ 3)(2 - D* + 28) + (p 3)2a2

2249

Dw(.o (n) ) .,, or
2 (I

2 2 2 I(SI;YIS2)Dw(.o (n) )> a (I -P )2-n



ISIT2007, Nice, France, June 24 - June 29, 2007

072

D*N(1p))
N + 2P(1 + P) (1

N+P(1_- p2)

and

1D* + 6.
D*)

=( _
N + 2P(1 p2)'

which contradicts (28). Here, a) follows from (31), and b)
we assumed D* < D.

C. Proofs of Lemmas

To prove Lemma 2 we first notice that the assum]
P/N < p7l(_ p2) implies, by (6) & (15), that

Rs,S2 (Du, Du)= 2 1og2 1+ (I +p)
2N

Hence,

n 1092 (1 + 2(N p))
= nRs, S2 (Du,D)

a)
< nRs, S2 (D* , D*)
b)

n~

< E1(X1,X, X2,k; Yk)
k=1

c) n ( 2P(1 +p)
2 N

(37)

where p is given in (18). Here a) follows from the assumption
D* < D19 and the strict monotonicity of Rs1,S2 (D, D); b)
follows from (22) & (23); and c) follows from Lemma 1.
From (37) and (18) we conclude that

n
=E[XkX=, ] > P. (38)

n= E [X12 ]) 1 En= 1 E [X2,

The lemma now follows from (25), Lemma 1 inequality (20),
and (38).
We turn to Lemma 3 and begin by proving Inequalities (32)

and (33). By the definition of achievability, for any scheme
achieving D* and any d > 0 there must exist an no (6) such
that for all n > no(d)

D -6 < E[(Si,k -Si,k)] <1D+
k=l

i = 1,2.

(39)
A

Since, by our assumption that S1 = E [S1Y], the orthogonal-
ity principle must be satisfied, we obtain from (39) that

72- D* -d < -E E[Si,S,] < 72 D* + 6, (40)
k=1

(41)
In

n = ,k[

To prove the inequality (34) we start by observing that any
scheme achieving D* must satisfy

D1 = D2 = D*. (42)
This follows by a time-sharing argument: assume there would

P)8 exist a scheme achieving D* with D1 = D* and D2 = D <
D*. Then, by symmetry, there would also exist a scheme
achieving D* with D1 = 1 < D* and D2 = D*. Time-
sharing between those two schemes would give a scheme

since achieving 1/2 (D* + 1) < D* which contradicts the definition
w of D*.

Statement (42) implies, in view of (39), that for any scheme
achieving D* and any d > 0 there must exist an no (6) such

ption that for all n > no(d)

[(S2,k
k=l

.S1,k) ]l~1,k)2] > _E E (Sl,k
i=l

which is equivalent to

In I n

n E [S2),k ] < E E [Sl,ksl,k] + 6.

Applying (40) to the RHS of (43) gives

In
±E E [S2,ks1,k] < 9D + 2.
k=1

(43)

To prove Lemma 4 we notice that a is always positive.
Hence, the proof of Lemma 4 merely requires showing /3 < p

whenever P/N < p7l( _ p2). Furthermore, since D* is
certainly non-increasing in P/N, and therefore is non-

decreasing in P/N, it is sufficient to show that < p for
P/N = p/(l _ p2). And this follows from plugging the lower
bound (14) for D* in the expression for Q.
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But since d > 0 was arbitrary,

lim Dw(Q(o()) < a2 2a(u2 D*) -2(p- r3po2
n-( 1(oo

+ a2(Or2 - D*) + 2a(p -/)(72
+ (p_ /3)r202

a)
p) (2

b) 2(Ip)(2


