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Abstract— We consider a one-to-two Gaussian broadcasting Il. PROBLEM STATEMENT
problem where the transmitter observes a memoryless bi-vaate =~ &, qatyp is illustrated in Figure 1. A memoryless bi-variat
Gaussian source and each receiver wishes to estimate one of
the source components. The transmitter describes the sousc Z1k
pair by means of an average-power-constrained signal and eh R
receiver observes this signal corrupted by a different addive S1.k Y1k ) S1.k
white Gaussian noise. From its respective observation, Reiver o1 ()H
1 wishes to estimate the first source component and Receiver 2 Source ) Xk
wishes to estimate the second. We seek to characterize theiga g ’ - &
of expected squared-error distortions that are simultaneasly 2,k Lk g”)(.)ﬂC
achievable at the two receivers.

Our result is that below a certain SNR-threshold an “uncoded 7
" ; P 2,k
scheme” that sends a linear combination of the source compo- ’
nents is optimal. We present a lower bound on this thresholdri Fig. 1. Two-user Gaussian broadcast channel with bi~easaurce.
terms of the source correlation and the distortion at the reeiver

with weaker channel noise. Gaussian source is combined with a one-to-two Gaussian

broadcast channel. The memoryless source emits at each time

) _ k € Z a bi-variate GaussiafS; , Sz ;) of zero mean and
In the single-user scenario where a memoryless GaussifVariance matrix

source is to be transmitted over an additive white Gaussian 1

noise channel it is well known that the minimal squared+erro Ksg = 0 ( [1) ) 5 where p € [0,1). (1)
distortion is achieved by an uncoded scheme (see e.g. fi]). | ) P .
this paper we show that, below some SNR-threshold, a similH€ Source is to be broadcast over a memoryless Gaussian
result holds for a one-to-two Gaussian broadcasting pmoblgProadcast channel with time-input z; € R, which is

In our setup, a transmitter observes a bi-variate GaussiiPiected to an expected average power constraint

|I. INTRODUCTION

source which it wishes to describe to two receivers by mefins o 1 <&

i ; i — E E[X 2] <P (2)
an average-power-constrained signal. Each receiver wdsser n k] =45
the transmitted signal corrupted by a different additivatavh k=1

Gaussian noise. Receiver 1 wishes to estimate the firstsoufere P > 0 is given. The timek outputY; ;. at Receiver
component and Receiver 2 wishes to estimate the second. idvgiven by
s_eek to charact_erize the pairs of e_xpected squared-estmr_di Yig =k + Zig i€ {1,2},
tions that are simultaneously achievable at the two recgive ) ) - ]
our result is that below a certain SNR-threshold an K,UH\_/hereZi,k is the timek additive noise term on the channel to
coded scheme” that sends a linear combination of the souRRgCeIvVer:. Eor egchz € .{1’.2} the sequencéziyk},;“;ll IS 1n-
components is optimal. The SNR-threshold can be expresSipendent identically distributed (IIDY (0, ;) and |ndep2en—
as a function of the source correlation and the distortichat dent of the source Seqyen‘@eil,k, Sa2.k)}s Wh.erelj\/(-u, v?)
receiver with weaker channel noise. denotes the mean-variancer® Gaussian distribution and
Similar results on the optimality of uncoded transmissioffnere we assurde
have recently been established for some Gaussian multiple- Ni < Na. ©)
access scenarios (see e.g. [2], [3], [4]). Related work onFor the transmission we consider block encoding schemes
broadcast channels with correlated sources can be foundninere, for block-lengthn, the transmitted sequenc¥ =
[5], where sufficient conditions for the lossless transioiss (X, X»,..., X,) is given by
of fipite alphabet sources are given. The difficulty in _broad— X — f(”)(Sl Sy) @)
casting correlated sources is that the source-channeizepa e

theorem does not hold. 1The restrictions made on the covariance matrix will be fiesti in
Remark 1 once the problem has been stated completely.
The work of Stephan Tinguely has been partially supportedhleySwiss 2The caseN; = N is equivalent to the problem of sending a bi-variate
National Science Foundation under Grant 200021-111863/1. Gaussian on a single-user Gaussian channel [7].



for some encoding functionf™ : R" x R* — R", and To state our second property df we need two more

where we use boldface characters to demsteples, e.gS; =  definitions. The first one is about the minimal distortion on
(S11,51,2,---,51,n). Receiveri's estimateS; of the source a single source component.

sequences; intended for it, is a functiorqbl(.") :R™ — R" of Definition 3 (D; min): We say thatD; is achievable if there
its observationy;, exists someD, such that(D;,D;) € %. The smallest

. (n) _ achievableD; is denoted byD; min. The achievability ofD,
Si = &; " (Yi) i=1,2. and the distortionDs mi, are analogously defined.

The quality of the estimat&, with respect to the original BY the classical single-user result

source sequencB; is measured in expected squared-error Do A2 N;
distortion averaged over the block-length We denote this &min = 0 N, + P

. . (n) -
distortion byd;"", i.e. The second definition is about the boundary pointsZof

) s 1 Vo Definition 4 (D7(D-) and D3(D,)): For every achievable
6" = > E [(Si,k — Sik) i=1,2, (6) D,, we defineD*(D,) as the smallesD such that D}, Dy)

i=1,2.

n

k=1 is achievable, i.e.,
whereS,; = gbz(.") (Y;) andY;. Our interest lies in the set of D3 (Dy) £ min {D} : (D}, Ds) € 2} .
achievable distortion pairs, where the achievability ifircl
as follows: Similarly,
Definition 1 (Achievability):Given 2 > 0, p € [0,1), D3(Dy) 2 min{D), : (D1, D)) € 9} .

P > 0and0 < N; < N, we say that the tuple
(D1, D, 02, p, P, Ny, Ny) is achievableif there exist a se- Remark 3:

quence of encoding functionsf(™} as in (4) satisfying the 5 N1 + P(1 — p?)

average power constraint (2) and sequences of reconstnucti Di(Dz,min) = o N, + P ’ ®)
functions {¢§">}, {¢§”)} as in (5) with resulting average
distortions that fulfill vip. oy 2 N2+ P(1—p?
Dz(Dl,mln) =0 N, + P ) (9)
m 0" <D; =12 . . ° . .
n—00 with the pair(D; (D2,min), D2,min) being achievable by setting
whenever X, = /P/o2Ss, and with the pair(D1 min, D3 (D1,min))
. being similarly achievable by setting, = \/P/0251 k.
—C) ) — )
Yi=f"(81,8) +2Z;  i=12 () proof: See [6, Appendix B]. O

for {(S1k,S2,)} an IID sequence of zero-mean bi-variate

Gaussians with covariance matrix as in (1) quf] }°, [ID ) )

zero-mean Gaussians of variante, i = 1, 2. Our main result states that, below a certain SNR-threshold,
The region of all achievable distortion pairs is defined as®V€"Y pair (D1, D;) € 2 can be achieved by an uncoded
Definition 2 @(02, p, P, N1, N»)): For anyo?, p, P, Ny, scheme, where for every < k < n the transmitted signal is

and N, as in Definition 1 we defineZ (o2, p, P, N, N,) ©f the form

(or just 2) as the region of all pairgD;, D;) for which " P

(D1, Do, 0%, p, P, N1, N) is achievable, i.e. Xi(a, B) = o2(a® + 2a8p + 32) (@S1x + F52%), (10)

2 _ N
P(07, p, P, N1, Np) = and the corresponding estimate¥,, i € {1,2}, is the
{(Dl,Dg) : (Dl,DQ,O'Q,p,P, N1, Np) is achievabl@. minimum mean squared-error estimate 9f;, based on the
scalar observatioty; 4, i.e.,

IIl. M AIN RESULTS

In this paper we study the sét. Before turning to our main

results, we state some general properties of the regiofirst Z“k =EI[Sik|Yik], ie€{1,2}.

?10)\{vever, we justify our restriction on the source law made Qe denote the dist_ortions resulting from this schemelZly
Remark 1:For the stated problem, the assumption thgtndDg‘ They are given by

the source components are of equa_l va_riance and that _their D¥(a, B) = O_QQ ie{1,2),

correlation coefficientp is non-negative incurs no loss in G

generality. This can be seen by arguments similar to thog@ere
in [2, Section Ill]. Furthermore, we exclude the cagse- 1 . ) ) ) )
since for this case the optimality of uncoded transmission a & = P°67°(1 = p”) + PNi(a” + 2a8p + 5°(2 — p7))

all SNR follows immediately from the corresponding result +N2(a? + 2a8p + 5?),
for the single user scenario [1]. 5 5 ) ) ) )
Remark 2: The regionZ is closed and convex. & =Pa’(1—p°)+ PNa2(a”(2 = p°) +2a8p + 37)

Proof: See [6, Appendix A]. O +N2(a? + 2a8p + 5%),



and minimal distortion that can be achieved 8p at Receiver 1 (1)
o N2/ 2 9 ) when simultaneously it achieves; on S;. More precisely:

G =(P+Ni)*(a” +2afp+57) i€ {l2} _ Definition 5 (D3(D1)): For everyD; > D1 min, We define

We shall limit ourselves to transmission schemes witly > D3(D1) as _ _

0 (because fop > 0, an uncoded transmission scheme with D3(Dy) = inf {D,},

the choice of(«, 5) such thain- 5 < 0 yields a distortion that

. . . where the infimum is over all families of average-power

is uniformly worse than the choicgal, |3]).). Consequently, limited q (n) d fruct (n) ?

the channel inputX}(a, 3) depends omy, § only via the imited encoders{f"™’} and reconstruc or‘Jf(bl } {¢

ratio o/ 3. Thus, we will sometimes assume, without loss ofith corresponding; = ¢{") (Y1) and$, = ¢§" (Y1) SUCh

generality, thaty € [0,1] and8 = 1 — a. that
We now state our main result. — 1 \
Theorem 1:For any(Di, D;) € 2 and Jm — > E [(Slvk —51k) } < Dr,
k=1
P n
_SF(D170—27p)7 (11) Tim L S 2 )
=3 - <
N, i k_lE{(SZk Sa.k) } < Dy,

there existo*, 3* > 0 such that

7(n) 1 (n) i
DY(a*, B°) < D and  DY(a*, %) < D, whereg, "’ is defined analogously t¢;"’ as a reconstruction
1(e7,57) < Dy 2(0",0%) < Dy function at Receiver 1, but fd8, rather tharS;.
where the threshold is given by Remark 4:The distortion D3 (D) is the distortion that
r (Dl, o p) _ satisfies the equality
~ 1 P
A2y o2(1—p2? 2 X * _ il
AU DU o, <021 ), R, si(D1 D3(D0) = Jlog, (14 ). 14
“+o0 otherwise

where Rg, s,(+,-) denotes the rate-distortion function when

. the pair Sy, S is observed by a common encoder, i.e.
Proof: See Section IV.

For 0 < D; < o2(1 — p?) the threshold function satisfies Rs, s,(01,02) = - min ISy, S2; 11, T).
' > 2p/(1 — p) with equality for D; = o?(1 — p). Thus a E[(?’_T'ﬁ}‘s)lz’]sjé
weaker form of Theorem 1 is E[(s;—Tlf];a;
Corollary 1: If -
2p (12) We are now ready to prove Theorem 1.
N STo roof of Theorem 1The key to the proof is to express the
1 Proof of Th 1The k h fi h

érade -off between the reconstruction fideli}y; at Receiver 1

th D.,D hi bI by th ded sch
en any(Ds, D) € 77 is achievable by the uncoded schem and the reconstruction fidelit{p, at Receiver 2. This is done

i.e. for any (D1, Ds) € 2 there exist somer*, 3* > 0 such

that in the following lemma.
Lemma 1:If the pair (D1, D) € 2 satisfies (13), and if
Di(a*, %) < Dy and  Dj(a*,3") < Ds. P/N; satisfies (11), then
IV. PROOF OFTHEOREM 1 Dy > W(Dy,a1,a2), (15)

Theorem 1 will now be proved by deriving a lower boundare
on D as a function ofDq, and verifying that for the uncoded ) ) )
scheme withD} = D, the corresponding); achieves this g5, a,a,) £ g <0’ (1—p°)Ny £ N, — N1> 7
lower bound onD,. To state this lower bound we need two P+ Ny \ n(d,a1,a2)
preliminaries. They are given in the following reductiondan (16)
the following definition.
Reduction 1:It suffices to prove the theorem for pairs n(0,a1,a2) = 0% —ai1(6? — 6)(2 — a1) — az0%(2p — as)

D+, D5) where -
(D1, Do) +2a1a2\/(02 —6)(c2 — D3),

and where

2 N+ P(1-p?)

Diso N+ P (13) " \where we have used the shorthand notafigrfor D3 (J), and
Proof: By Remark 3 wherea; andas are arbitrary positive real numbers.
) Proof: See Section V. O
D (Damin) = 2 N1+ P(1—p%) It now remains to verify that there exist positive, as
B N1+ P ’ such that the uncoded scheme achieves the distortion pair

so any achievabl@®, allows for aD; satisfying (13). O (D1, ¥(D1,a1,a2)). To this end, we need the explicit form
In view of Reduction 1 we shall assume in the rest of thef D3(D1) which, for the cases of interest to us, is given in
proof that D, satisfies (13). Next, we define 93 (D,) the the following proposition.



Proposition 1: Consider transmitting the bivariate GaussiaRroof: See Section VI. O
source (1) over the AWGN channel that connects the trangfith the aid of Lemma 2 and Reduction 2 the proof of
mitter to Receiver 1. For any); satisfying (13) andP/N; Lemma 1 is straightforward:

satisfying (11), the distortionf);(Dl) is given by Proof of Lemma 1We show that for any non-negative, as,
_ & the achievable distortio®, is lower bounded by
Dj(Dy) = 0222, a7
i G Dy > W (Dy,a,az).
where
€ = P20%(1 = p%) + PNy (a2(2 — p?) + 208p + %) By Reduction 2 it suffices to show this for everg/ family

of coding schemeq f(™}, {¢ } {¢2”)} with ¢{" and

2.2 2
+Ni (o +208p + 57), é”) given in (19) and with associated normalized distortions

Gs = (P + N1)2(0? +208p + 62, {6}, {65} satisfying
wherea, 8 are_such f[haD1 = DY(a, B). Moreover, the pair m 5§n) —D,, and Tm 5§n) <D, 21)
(D1, D%(D1)) is achieved by an uncoded scheme with the n—00 n—00

above choice ofv andj.
Proof: See [6, p. 9]
With Proposition 1 it can now be verified that for ever

where D; satisfies (13). By (21) there exists a subsequence
);nk}' tending to infinity, such that

(D1, D2) € 2 satisfying (13), andP/N; satisfying (11), for lim 55%) —D,. (22)
the choice of coefficients k—o0
(02—D1)02—pUQ\/(Uz—Dﬂ(Uz—D;(Dl)) Hence,
a; = = )

2 * a)
(0% = D1)D3(D1) D, > Tim &

n—oo

po? —\/(0* = D1)(o® — D3(Dy)) > Tm o5
az = = )
D3(D b) —
. 2(D1) > lim \11(5( "),al,ag)
and for the choice of(a, 5) so thatDY(«,3) = Di, the T k—oo
uncoded scheme achievés)(«, 3) = ¥(Dy,a1,az). Notice 19} (D1, a1, az),

that for the above choice af, a-, the bound of Lemma 1 is
indeed valid since it can be verified that for &f N, we have wherea) follows from (21); ) follows from Lemma 2; and
ai > 0 and for all P/N; satisfying (11) we have, > 0. O ¢) follows from (22) and from the continuity o¥ (8, ay, az)
V. PROOF OFLEMMA 1 with respect ta); a continuity which can be argued as follows.
The function¥(-) depends om only throughn (4, a1, as), and
Lemma 1 gives a lower bound on the achievable distortiq M5, a1, a2) is on one hand strictly positive for alP/N; > 0

D, at Receiver 2 as a function of the distortian, at and allay, as, and on the other hand continuousdimecause

Receiver 1. In this section we will derive this bound b)b 3(6) is continuous ins. Hence,(-) is continuous ins. [J
considering a lower bound for finite block-lengths and

evaluating it in the limit as» — oco. To ease the evaluation
of this limit, we first make a reduction on the coding schemes
under consideration. The difficulty in provmg Lemma 2 lies in relating the two
Reduction 2:To prove Lemma 1 it suffices to consider pairgeconstruction fidelities” and 65. One of the problems
(D1,Ds) € 9 that are achievable by coding schemes thaferein is that for a scheme achlevmg sofye at Receiver

V1. PROOF OFLEMMA 2

achieveD; with equality, i.e., for which 2, we can only derive bounds on entropy expressions that are
1< A g conditioned onS,. However, for a lower bound oﬁY‘) we
Jim ZE[(SM = S1k) } = Du, (18)  would typically like to have a bound oh(S:|S;), without
k=1 conditioning onS,. To overcome this difficulty, we furnish
and for which Receiver 1 withS, as side-information. The proof of Lemma
¢Z(n) (Y;) = E[S,|Y}] i€ {1,2). (19) 2 is then obtained by help of the following two lemmas.

Lemma 3:Any scheme achieving somié") at Receiver 2,

Proof: See [6, Appendix C]. O must produce &, satisfying

We now state our lower bound for finite block-lengths.

Lemma 2:Let a coding schemef ™), i), 45")) be given, n. (PN [0? — Ny + Ny
with ¢{™ andg{™ satisfying (19). Then, for any non-negative 1(S1;Y1[S2) < D) log, N :
coefficientsa , az, (23)

5én) > \IJ(§§"),a1,a2)- (20) Proof: See [6, Section 5.1]. O



Lemma 4:For any scheméf ™ ¢{™ 4{") satisfying (28) 1< 5 2 2
ahead, 1 + 2a1as E;E[Slakslk} + az0
le=_Ta -
_ < 2 _ (n) 2 _ * (n) . .
n l; E [Sl"kSQ"k} - \/(U 0 ) (U D30, )) e 2a1(0? — — 2a3p0% + a3 (o? — 5( )
- (24) 1 &
Proof: See [6, Section 5.2]. O +2maz | — Z E 51 152 k} + a3o?,
We are now ready to prove Lemma 2. =1

Proof of Lemma 2For this proof, we denote b@sg") the least

distortion that can be achieved 8a at Receiver 1, wheB; is <o’ - a1(02 - 5@)(2 —ay) — a202(20 — as)
provided as side—information. The proof will now follow fro 2 5w 2 e (s
combining a lower bound ofi™, as a function oA!™ | with + 20102 ( - ) ( D3 ( ))'

an upper bound Om , as a function ob; where in stem) we have used that the normalized summations
We begin with the der|vat|on of the Iower bound @g’? To

&2 & 2 _ ¢(n)
this end, letRs, s, (-) denote the rate-distortion function Onove_rE[Sm} and E[Sl’ksz’_k] are both equal ta — 0,7,
S1 whenS, is given as side-information to both, the encodé’?’h'Ch follows by (28); and in step) we have used Lemma 4.

and the decoder. Thus, for evety; > 0, Hence, for anyay, az > 0,
(n) 2 2 (n) 2
1 o2(1 — p2? AV <o —ai(o® =6 )2 —a1) —az0°(2p — a2)
Rsl\sz (Al) = 5 10g2 <%> . (25)

-+2aumx/(a2-53”)(02-.D;@ﬁ"h). (29)

Since Receiver 1 is connected to the transmitter by a point-

to-point link, Denoting the RHS of (29) by(5\™ a1, as) and combining
nRS1|S2(A§n)) < I(S1;Y1|Sy). (26) (29) with the lower bound (27) gives
The lower bound o™, in terms of A", now follows by HORS o? o?(1—p*) M FNa— N )
upper bounding the RHS of (26) by means of Lemma 3, and > T P+N, 06", ay, as)
rewriting the LHS of (26) according to (25). This yields This is the lower bound of Lemma. 2. 0
. 2 201 _ 2\N
QA £)I+M—M. (27)
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