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Abstract— We consider a one-to-two Gaussian broadcasting
problem where the transmitter observes a memoryless bi-variate
Gaussian source and each receiver wishes to estimate one of
the source components. The transmitter describes the source
pair by means of an average-power-constrained signal and each
receiver observes this signal corrupted by a different additive
white Gaussian noise. From its respective observation, Receiver
1 wishes to estimate the first source component and Receiver 2
wishes to estimate the second. We seek to characterize the pairs
of expected squared-error distortions that are simultaneously
achievable at the two receivers.

Our result is that below a certain SNR-threshold an “uncoded
scheme” that sends a linear combination of the source compo-
nents is optimal. We present a lower bound on this threshold in
terms of the source correlation and the distortion at the receiver
with weaker channel noise.

I. I NTRODUCTION

In the single-user scenario where a memoryless Gaussian
source is to be transmitted over an additive white Gaussian
noise channel it is well known that the minimal squared-error
distortion is achieved by an uncoded scheme (see e.g. [1]). In
this paper we show that, below some SNR-threshold, a similar
result holds for a one-to-two Gaussian broadcasting problem.
In our setup, a transmitter observes a bi-variate Gaussian
source which it wishes to describe to two receivers by means of
an average-power-constrained signal. Each receiver observes
the transmitted signal corrupted by a different additive white
Gaussian noise. Receiver 1 wishes to estimate the first source
component and Receiver 2 wishes to estimate the second. We
seek to characterize the pairs of expected squared-error distor-
tions that are simultaneously achievable at the two receivers.

Our result is that below a certain SNR-threshold an “un-
coded scheme” that sends a linear combination of the source
components is optimal. The SNR-threshold can be expressed
as a function of the source correlation and the distortion atthe
receiver with weaker channel noise.

Similar results on the optimality of uncoded transmission
have recently been established for some Gaussian multiple-
access scenarios (see e.g. [2], [3], [4]). Related work on
broadcast channels with correlated sources can be found in
[5], where sufficient conditions for the lossless transmission
of finite alphabet sources are given. The difficulty in broad-
casting correlated sources is that the source-channel separation
theorem does not hold.
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II. PROBLEM STATEMENT

Our setup is illustrated in Figure 1. A memoryless bi-variate
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Fig. 1. Two-user Gaussian broadcast channel with bi-variate source.

Gaussian source is combined with a one-to-two Gaussian
broadcast channel. The memoryless source emits at each time
k ∈ Z a bi-variate Gaussian(S1,k, S2,k) of zero mean and
covariance matrix1

KSS = σ2

(

1 ρ
ρ 1

)

, where ρ ∈ [0, 1). (1)

The source is to be broadcast over a memoryless Gaussian
broadcast channel with time-k input xk ∈ R, which is
subjected to an expected average power constraint

1

n

n
∑

k=1

E
[

X2
k

]

≤ P, (2)

whereP > 0 is given. The time-k outputYi,k at Receiveri
is given by

Yi,k = xk + Zi,k i ∈ {1, 2},

whereZi,k is the time-k additive noise term on the channel to
Receiveri. For eachi ∈ {1, 2} the sequence{Zi,k}∞k=1 is in-
dependent identically distributed (IID)N (0, Ni) and indepen-
dent of the source sequence{(S1,k, S2,k)}, whereN

(

µ, ν2
)

denotes the mean-µ variance-ν2 Gaussian distribution and
where we assume2

N1 < N2. (3)

For the transmission we consider block encoding schemes
where, for block-lengthn, the transmitted sequenceX =
(X1, X2, . . . , Xn) is given by

X = f (n)(S1,S2), (4)

1The restrictions made on the covariance matrix will be justified in
Remark 1 once the problem has been stated completely.

2The caseN1 = N2 is equivalent to the problem of sending a bi-variate
Gaussian on a single-user Gaussian channel [7].



for some encoding functionf (n) : R
n × R

n → R
n, and

where we use boldface characters to denoten-tuples, e.g.S1 =
(S1,1, S1,2, . . . , S1,n). Receiveri’s estimateŜi of the source
sequenceSi intended for it, is a functionφ(n)

i : R
n → R

n of
its observationYi,

Ŝi = φ
(n)
i (Yi) i = 1, 2. (5)

The quality of the estimatêSi with respect to the original
source sequenceSi is measured in expected squared-error
distortion averaged over the block-lengthn. We denote this
distortion byδ

(n)
i , i.e.

δ
(n)
i ,

1

n

n
∑

k=1

E
[

(Si,k − Ŝi,k)2
]

i = 1, 2, (6)

whereŜi = φ
(n)
i (Yi) andYi. Our interest lies in the set of

achievable distortion pairs, where the achievability is defined
as follows:

Definition 1 (Achievability):Given σ2 > 0, ρ ∈ [0, 1),
P > 0 and 0 < N1 ≤ N2, we say that the tuple
(D1, D2, σ

2, ρ, P, N1, N2) is achievableif there exist a se-
quence of encoding functions

{

f (n)
}

as in (4) satisfying the
average power constraint (2) and sequences of reconstruction
functions

{

φ
(n)
1

}

,
{

φ
(n)
2

}

as in (5) with resulting average
distortions that fulfill

lim
n→∞

δ
(n)
i ≤ Di i = 1, 2,

whenever

Yi = f (n)(S1,S2) + Zi i = 1, 2, (7)

for {(S1,k, S2,k)} an IID sequence of zero-mean bi-variate
Gaussians with covariance matrix as in (1) and{Zi,k}∞k=1 IID
zero-mean Gaussians of varianceNi, i = 1, 2.

The region of all achievable distortion pairs is defined as
Definition 2 (D(σ2, ρ, P, N1, N2)): For anyσ2, ρ, P , N1,

and N2 as in Definition 1 we defineD(σ2, ρ, P, N1, N2)
(or just D) as the region of all pairs(D1, D2) for which
(D1, D2, σ

2, ρ, P, N1, N2) is achievable, i.e.

D(σ2, ρ, P, N1, N2) =
{

(D1, D2) : (D1, D2, σ
2, ρ, P, N1, N2) is achievable

}

.

In this paper we study the setD . Before turning to our main
results, we state some general properties of the regionD . First
however, we justify our restriction on the source law made in
(1).

Remark 1:For the stated problem, the assumption that
the source components are of equal variance and that their
correlation coefficientρ is non-negative incurs no loss in
generality. This can be seen by arguments similar to those
in [2, Section III]. Furthermore, we exclude the caseρ = 1
since for this case the optimality of uncoded transmission at
all SNR follows immediately from the corresponding result
for the single user scenario [1].

Remark 2:The regionD is closed and convex.
Proof: See [6, Appendix A]. �

To state our second property ofD we need two more
definitions. The first one is about the minimal distortion on
a single source component.

Definition 3 (Di,min): We say thatD1 is achievable if there
exists someD2 such that (D1, D2) ∈ D . The smallest
achievableD1 is denoted byD1,min. The achievability ofD2

and the distortionD2,min are analogously defined.
By the classical single-user result

Di,min , σ2 Ni

Ni + P
i = 1, 2.

The second definition is about the boundary points ofD .
Definition 4 (D∗

1(D2) and D∗
2(D1)): For every achievable

D2, we defineD∗
1(D2) as the smallestD′

1 such that(D′
1, D2)

is achievable, i.e.,

D∗
1(D2) , min {D′

1 : (D′
1, D2) ∈ D} .

Similarly,

D∗
2(D1) , min {D′

2 : (D1, D
′
2) ∈ D} .

Remark 3:

D∗
1(D2,min) = σ2 N1 + P (1 − ρ2)

N1 + P
, (8)

D∗
2(D1,min) = σ2 N2 + P (1 − ρ2)

N2 + P
, (9)

with the pair(D∗
1(D2,min), D2,min) being achievable by setting

Xk =
√

P/σ2S2,k, and with the pair(D1,min, D
∗
2(D1,min))

being similarly achievable by settingXk =
√

P/σ2S1,k.
Proof: See [6, Appendix B]. �

III. M AIN RESULTS

Our main result states that, below a certain SNR-threshold,
every pair (D1, D2) ∈ D can be achieved by an uncoded
scheme, where for every1 ≤ k ≤ n the transmitted signal is
of the form

Xu
k(α, β) =

√

P

σ2(α2 + 2αβρ + β2)
(αS1,k + βS2,k) , (10)

and the corresponding estimatêSu
i,k, i ∈ {1, 2}, is the

minimum mean squared-error estimate ofSi,k based on the
scalar observationYi,k, i.e.,

Ŝu
i,k = E[Si,k|Yi,k] , i ∈ {1, 2}.

We denote the distortions resulting from this scheme byDu
1

andDu
2. They are given by

Du
i (α, β) = σ2 ξi

ζi

i ∈ {1, 2},

where

ξ1 = P 2β2(1 − ρ2) + PN1(α
2 + 2αβρ + β2(2 − ρ2))

+N2
1 (α2 + 2αβρ + β2),

ξ2 = P 2α2(1 − ρ2) + PN2(α
2(2 − ρ2) + 2αβρ + β2)

+N2
2 (α2 + 2αβρ + β2),



and

ζi = (P + Ni)
2(α2 + 2αβρ + β2) i ∈ {1, 2}.

We shall limit ourselves to transmission schemes withα, β ≥
0 (because forρ ≥ 0, an uncoded transmission scheme with
the choice of(α, β) such thatα ·β < 0 yields a distortion that
is uniformly worse than the choice(|α|, |β|).). Consequently,
the channel inputXu

k(α, β) depends onα, β only via the
ratio α/β. Thus, we will sometimes assume, without loss of
generality, thatα ∈ [0, 1] andβ = 1 − α.

We now state our main result.
Theorem 1:For any(D1, D2) ∈ D and

P

N1
≤ Γ

(

D1, σ
2, ρ
)

, (11)

there existα∗, β∗ ≥ 0 such that

Du
1(α

∗, β∗) ≤ D1 and Du
2(α

∗, β∗) ≤ D2,

where the thresholdΓ is given by

Γ
(

D1, σ
2, ρ
)

=
{

σ4(1−ρ2)−2D1σ2(1−ρ2)+D2

1

D1(σ2(1−ρ2)−D1) if 0 < D1 < σ2(1 − ρ2),

+∞ otherwise.

Proof: See Section IV. �

For 0 < D1 < σ2(1 − ρ2) the threshold function satisfies
Γ ≥ 2ρ/(1 − ρ) with equality for D1 = σ2(1 − ρ). Thus a
weaker form of Theorem 1 is

Corollary 1: If
P

N1
≤

2ρ

1 − ρ
, (12)

then any(D1, D2) ∈ D is achievable by the uncoded scheme,
i.e. for any(D1, D2) ∈ D there exist someα∗, β∗ ≥ 0 such
that

Du
1(α

∗, β∗) ≤ D1 and Du
2(α

∗, β∗) ≤ D2.

IV. PROOF OFTHEOREM 1

Theorem 1 will now be proved by deriving a lower bound
on D2 as a function ofD1, and verifying that for the uncoded
scheme withDu

1 = D1 the correspondingDu
2 achieves this

lower bound onD2. To state this lower bound we need two
preliminaries. They are given in the following reduction and
the following definition.

Reduction 1:It suffices to prove the theorem for pairs
(D1, D2) where

D1 ≤ σ2 N1 + P (1 − ρ2)

N1 + P
. (13)

Proof: By Remark 3

D∗
1(D2,min) = σ2 N1 + P (1 − ρ2)

N1 + P
,

so any achievableD2 allows for aD1 satisfying (13). �

In view of Reduction 1 we shall assume in the rest of the
proof thatD1 satisfies (13). Next, we define bỹD∗

2(D1) the

minimal distortion that can be achieved onS2 at Receiver 1 (!)
when simultaneously it achievesD1 on S1. More precisely:

Definition 5 (D̃∗
2(D1)): For everyD1 ≥ D1,min, we define

D̃∗
2(D1) as

D̃∗
2(D1) = inf

{

D̃2

}

,

where the infimum is over all families of average-power
limited encoders{f (n)} and reconstructors

{

φ
(n)
1

}

,
{

φ̃
(n)
2

}

with correspondinĝS1 = φ
(n)
1 (Y1) and S̃2 = φ̃

(n)
2 (Y1) such

that

lim
n→∞

1

n

n
∑

k=1

E
[

(S1,k − Ŝ1,k)2
]

≤ D1,

lim
n→∞

1

n

n
∑

k=1

E
[

(S2,k − S̃2,k)2
]

≤ D̃2,

whereφ̃
(n)
2 is defined analogously toφ(n)

1 as a reconstruction
function at Receiver 1, but forS2 rather thanS1.

Remark 4:The distortion D̃∗
2(D1) is the distortion that

satisfies the equality

RS1,S2
(D1, D̃

∗
2(D1)) =

1

2
log2

(

1 +
P

N1

)

, (14)

where RS1,S2
(·, ·) denotes the rate-distortion function when

the pairS1, S2 is observed by a common encoder, i.e.

RS1,S2
(δ1, δ2) = min

PT1,T2|S1,S2
:

E[(S1−T1)2]≤δ1

E[(S2−T2)2]≤δ2

I(S1, S2; T1, T2).

We are now ready to prove Theorem 1.
Proof of Theorem 1:The key to the proof is to express the

trade-off between the reconstruction fidelityD1 at Receiver 1
and the reconstruction fidelityD2 at Receiver 2. This is done
in the following lemma.

Lemma 1: If the pair (D1, D2) ∈ D satisfies (13), and if
P/N1 satisfies (11), then

D2 ≥ Ψ(D1, a1, a2), (15)

where

Ψ(δ, a1, a2) ,
σ2

P + N2

(

σ2(1 − ρ2)N1

η(δ, a1, a2)
+ N2 − N1

)

,

(16)
and where

η(δ, a1, a2) = σ2 − a1(σ
2 − δ)(2 − a1) − a2σ

2(2ρ − a2)

+2a1a2

√

(σ2 − δ)(σ2 − D̃∗
2),

where we have used the shorthand notationD̃∗
2 for D̃∗

2(δ), and
wherea1 anda2 are arbitrary positive real numbers.
Proof: See Section V. �

It now remains to verify that there exist positivea1, a2

such that the uncoded scheme achieves the distortion pair
(D1, Ψ(D1, a1, a2)). To this end, we need the explicit form
of D̃∗

2(D1) which, for the cases of interest to us, is given in
the following proposition.



Proposition 1: Consider transmitting the bivariate Gaussian
source (1) over the AWGN channel that connects the trans-
mitter to Receiver 1. For anyD1 satisfying (13) andP/N1

satisfying (11), the distortioñD∗
2(D1) is given by

D̃∗
2(D1) = σ2 ξ3

ζ3
, (17)

where

ξ3 = P 2α2(1 − ρ2) + PN1(α
2(2 − ρ2) + 2αβρ + β2)

+N2
1 (α2 + 2αβρ + β2),

ζ3 = (P + N1)
2(α2 + 2αβρ + β2),

whereα, β are such thatD1 = Du
1(α, β). Moreover, the pair

(D1, D̃
∗
2(D1)) is achieved by an uncoded scheme with the

above choice ofα andβ.
Proof: See [6, p. 9] �

With Proposition 1 it can now be verified that for every
(D1, D2) ∈ D satisfying (13), andP/N1 satisfying (11), for
the choice of coefficients

a1 =
(σ2 − D1)σ

2 − ρσ2
√

(σ2 − D1)(σ2 − D̃∗
2(D1))

(σ2 − D1)D̃∗
2(D1)

,

a2 =
ρσ2 −

√

(σ2 − D1)(σ2 − D̃∗
2(D1))

D̃∗
2(D1)

,

and for the choice of(α, β) so that Du
1(α, β) = D1, the

uncoded scheme achievesDu
2(α, β) = Ψ(D1, a1, a2). Notice

that for the above choice ofa1, a2, the bound of Lemma 1 is
indeed valid since it can be verified that for allP/N1 we have
a1 ≥ 0 and for allP/N1 satisfying (11) we havea2 ≥ 0. �

V. PROOF OFLEMMA 1

Lemma 1 gives a lower bound on the achievable distortion
D2 at Receiver 2 as a function of the distortionD1 at
Receiver 1. In this section we will derive this bound by
considering a lower bound for finite block-lengthsn and
evaluating it in the limit asn → ∞. To ease the evaluation
of this limit, we first make a reduction on the coding schemes
under consideration.

Reduction 2:To prove Lemma 1 it suffices to consider pairs
(D1, D2) ∈ D that are achievable by coding schemes that
achieveD1 with equality, i.e., for which

lim
n→∞

1

n

n
∑

k=1

E
[

(S1,k − Ŝ1,k)2
]

= D1, (18)

and for which

φ
(n)
i (Yi) = E[Si|Yi] i ∈ {1, 2}. (19)

Proof: See [6, Appendix C]. �

We now state our lower bound for finite block-lengths.
Lemma 2:Let a coding scheme(f (n), φ

(n)
1 , φ

(n)
2 ) be given,

with φ
(n)
1 andφ

(n)
2 satisfying (19). Then, for any non-negative

coefficientsa1, a2,

δ
(n)
2 ≥ Ψ(δ

(n)
1 , a1, a2). (20)

Proof: See Section VI. �

With the aid of Lemma 2 and Reduction 2 the proof of
Lemma 1 is straightforward:
Proof of Lemma 1:We show that for any non-negativea1, a2,
the achievable distortionD2 is lower bounded by

D2 ≥ Ψ (D1, a1, a2) .

By Reduction 2 it suffices to show this for every family
of coding schemes{f (n)},

{

φ
(n)
1

}

,
{

φ
(n)
2

}

with φ
(n)
1 and

φ
(n)
2 given in (19) and with associated normalized distortions

{δ
(n)
1 }, {δ(n)

2 } satisfying

lim
n→∞

δ
(n)
1 = D1, and lim

n→∞
δ
(n)
2 ≤ D2, (21)

whereD1 satisfies (13). By (21) there exists a subsequence
{nk}, tending to infinity, such that

lim
k→∞

δ
(nk)
1 = D1. (22)

Hence,

D2

a)

≥ lim
n→∞

δ
(n)
2

≥ lim
k→∞

δ
(nk)
2

b)

≥ lim
k→∞

Ψ(δ
(nk)
1 , a1, a2)

c)
= Ψ(D1, a1, a2),

wherea) follows from (21); b) follows from Lemma 2; and
c) follows from (22) and from the continuity ofΨ(δ, a1, a2)
with respect toδ; a continuity which can be argued as follows.
The functionΨ(·) depends onδ only throughη(δ, a1, a2), and
η(δ, a1, a2) is on one hand strictly positive for allP/N1 > 0
and alla1, a2, and on the other hand continuous inδ because
D̃∗

2(δ) is continuous inδ. Hence,Ψ(·) is continuous inδ. �

VI. PROOF OFLEMMA 2

The difficulty in proving Lemma 2 lies in relating the two
reconstruction fidelitiesδ(n)

1 and δ
(n)
2 . One of the problems

therein is that for a scheme achieving someδ
(n)
2 at Receiver

2, we can only derive bounds on entropy expressions that are
conditioned onS2. However, for a lower bound onδ(n)

1 we
would typically like to have a bound onh(S1|Ŝ1), without
conditioning onS2. To overcome this difficulty, we furnish
Receiver 1 withS2 as side-information. The proof of Lemma
2 is then obtained by help of the following two lemmas.

Lemma 3:Any scheme achieving someδ(n)
2 at Receiver 2,

must produce aY1 satisfying

I(S1;Y1|S2) ≤
n

2
log2

(

(P + N2)δ
(n)
2 /σ2 − N2 + N1

N1

)

.

(23)
Proof: See [6, Section 5.1]. �



Lemma 4:For any scheme(f (n), φ
(n)
1 , φ

(n)
2 ) satisfying (28)

ahead,

1

n

n
∑

k=1

E
[

Ŝ1,kS2,k

]

≤

√

(

σ2 − δ
(n)
1

)(

σ2 − D̃∗
2(δ

(n)
1 )

)

.

(24)
Proof: See [6, Section 5.2]. �

We are now ready to prove Lemma 2.
Proof of Lemma 2:For this proof, we denote by∆(n)

1 the least
distortion that can be achieved onS1 at Receiver 1, whenS2 is
provided as side-information. The proof will now follow from
combining a lower bound onδ(n)

2 , as a function of∆(n)
1 , with

an upper bound on∆(n)
1 , as a function ofδ(n)

1 .
We begin with the derivation of the lower bound onδ

(n)
2 . To

this end, letRS1|S2
(·) denote the rate-distortion function on

S1 whenS2 is given as side-information to both, the encoder
and the decoder. Thus, for every∆1 > 0,

RS1|S2
(∆1) =

1

2
log2

(

σ2(1 − ρ2)

∆1

)

. (25)

Since Receiver 1 is connected to the transmitter by a point-
to-point link,

nRS1|S2
(∆

(n)
1 ) ≤ I(S1;Y1|S2). (26)

The lower bound onδ(n)
2 , in terms of∆(n)

1 , now follows by
upper bounding the RHS of (26) by means of Lemma 3, and
rewriting the LHS of (26) according to (25). This yields

δ
(n)
2 ≥

σ2

P + N2

(

σ2(1 − ρ2)N1

∆
(n)
1

+ N2 − N1

)

. (27)

We now turn to the upper bound on∆(n)
1 in terms ofδ(n)

1 .
Since the RHS of (27) is monotonically decreasing in∆

(n)
1 ,

Lemma 2 will then follow from combining this upper bound
on ∆

(n)
1 with the lower bound of (27).

The upper bound on∆(n)
1 follows from analyzing the

distortion of a linear estimator ofS1 when Receiver 1 has
S2 as side-information. More precisely, we consider the linear
estimator

Š1,k = a1Ŝ1,k + a2S2,k, k = 1, . . . , n.

To analyze the distortion associated withŠ1, first note that by
(19),

E
[

(S1,k − Ŝ1,k)Ŝ1,k

]

= 0 for every0 ≤ k ≤ n. (28)

SinceŠ1 is a valid estimate ofS1 at Receiver 1 whenS2 is
given as side-information, we have

∆
(n)
1 ≤

1

n

n
∑

k=1

E
[

(S1,k − Š1,k)2
]

= σ2 − 2a1

(

1

n

n
∑

k=1

E
[

S1,kŜ1,k

]

)

− 2a2ρσ2

+ a2
1

(

1

n

n
∑

k=1

E
[

Ŝ2
1,k

]

)

+ 2a1a2

(

1

n

n
∑

k=1

E
[

S1,kŜ2,k

]

)

+ a2
2σ

2

a)
= σ2 − 2a1(σ

2 − δ
(n)
1 ) − 2a2ρσ2 + a2

1(σ
2 − δ

(n)
1 )

+ 2a1a2

(

1

n

n
∑

k=1

E
[

S1,kŜ2,k

]

)

+ a2
2σ

2,

≤ σ2 − a1(σ
2 − δ

(n)
1 )(2 − a1) − a2σ

2(2ρ − a2)

+ 2a1a2

√

(

σ2 − δ
(n)
1

)(

σ2 − D̃∗
2(δ

(n)
1 )

)

.

where in stepa) we have used that the normalized summations

over E
[

Ŝ2
1,k

]

and E
[

S1,kŜ2,k

]

are both equal toσ2 − δ
(n)
1 ,

which follows by (28); and in stepb) we have used Lemma 4.
Hence, for anya1, a2 ≥ 0,

∆
(n)
1 ≤ σ2 − a1(σ

2 − δ
(n)
1 )(2 − a1) − a2σ

2(2ρ − a2)

+ 2a1a2

√

(

σ2 − δ
(n)
1

)(

σ2 − D̃∗
2(δ

(n)
1 )

)

. (29)

Denoting the RHS of (29) byη(δ
(n)
1 , a1, a2) and combining

(29) with the lower bound (27) gives

δ
(n)
2 ≥

σ2

P + N2

(

σ2(1 − ρ2)N1

η(δ
(n)
1 , a1, a2)

+ N2 − N1

)

.

This is the lower bound of Lemma 2. �
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