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Abstract— Discrete-time Rayleigh fading multiple-input
multiple-output (MIMO) channels are considered, with no
channel state information at the transmitter and receiver. The
fading is assumed to be correlated in time and independent
from antenna to antenna. Peak and average transmit power
constraints are imposed, either on the sum over antennas, or
on each individual antenna. In both cases, an upper bound
and an asymptotic lower bound, as the signal-to-noise ratio
approaches zero, on the channel capacity are presented. The
limit of normalized capacity is identified under the sum power
constraints, and, for a subclass of channels, for individual power
constraints. These results carry over to a SISO channel with
delay spread (i.e. frequency selective fading).

Index Terms

Low SNR, channel capacity, correlated fading, frequency

selective fading, MIMO, Gauss Markov fading

I. INTRODUCTION

Discrete-time Rayleigh fading multiple-input multiple-

output (MIMO) channels are considered in this paper, with no

channel side information at the transmitter and receiver. The

fading is assumed to be correlated in time and independent for

distinct (input,output) antenna pairs. A hard peak constraint,

in addition to an average power constraint, is imposed. The

focus of this paper is the low signal to noise ratio (SNR)

behavior of the channel capacity. Two cases are considered:

either the peak and average power constraints are imposed on

the sum over the transmit antennas, or they are imposed on

each transmit antenna. In each case, an upper bound on the

capacity of MIMO channels is derived. In the sum constraint

case, the normalized capacity limit as SNR→ 0 is identified

and the upper bound is found to be tight. In the individual

constraint case, asymptotic tightness of the upper bound is

established under certain conditions. Insight about optimal

signaling strategies is derived in each of the above cases, and

comments on the benefits of having multiple antennas in the

low SNR regime are presented.

This work summarized here extends previous work of the

authors [1, 2] for SISO channels, to MIMO and mutlipath

fading channels. A full length paper in preparation contains

the results reported here, additional bounds for SISO channels,

and the proofs.

The capacity of fading channels in the low SNR regime has

recently been of much interest [3–10]. For similar work in

the high SNR regime, see [11] and references therein. The

main motivation for this work has been to understand the

capacity of communication over wideband channels. Work of

Kennedy [12], Jacobs [13], Telatar and Tse [14], and Durisi

et al. [10] demonstrate that the capacity of such channels, in

the wideband limit, is the same as for a wideband additive

Gaussian noise channel with no fading, but the input signals,

such as M -ary FSK, are highly bursty in the frequency domain

or time domain. The work of Medard and Gallager [3] (also

see [15]) shows that if the burstiness of the input signals is

limited in both time and frequency, then the capacity of such

wideband channels becomes severely limited. In particular, the

required energy per bit converges to infinity.

Wireless wideband channels typically include both time

and frequency selective fading. One approach to modeling

such channels is to partition the frequency band into narrow

subbands, so that the fading is flat, but time-varying, within

each subband. If the width of the subbands is approximately

the coherent bandwidth of the channel, then they will ex-

perience approximately independent fading. The flat fading

models used in this paper can be considered to be models for

communication over a subband of a wideband wireless fading

channel. The peak power constraints that we impose on the

signals can then be viewed as burstiness constraints in both

the time and frequency domain for wideband communication,

similar to those of [3, 15]. However, in this paper, we consider

hard peak constraints, rather than fourth moment constraints

as in [3, 15], and we consider the use of multiple antennas.

The recent work of Srinivasan and Varanasi [9] is closely

related to this paper. It gives low SNR asymptotics of the
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capacity of MIMO channels with no side information for block

fading channels, with peak and average power constraints, with

the peak constraints being imposed on individual antennas.

One difference between [9] and this paper is that we assume

continuous fading rather than block fading. In addition, we

provide upper bounds on capacity, and for SISO channels,

lower bounds on capacity, rather than only asymptotic bounds

as in [9]. We assume, however, that the fading processes are

Rayleigh distributed, whereas the asymptotic bounds do not

require such distributional assumption. The work of Rao and

Hassibi [8] is also related to this paper. It gives low SNR

asymptotics of the capacity of MIMO channels with no side

information for block fading channels, but the peak constraints

are imposed on coefficients in a particular signal representa-

tion, rather than as hard constraints on the transmitted signals.

Also in this paper, a single-input single-output (SISO)

channel with delay spread (i.e. frequency selective) fading

is considered. The fading is assumed to be modeled by a

finite number of taps. The fading processes are assumed to

be independent across taps, and allowed, within each tap, to

be correlated in time. Lower and upper bounds on the low SNR

normalized capacity limit are presented and shown to coincide

under some conditions. The results on SISO channels with

delay spread all follow from the results on MIMO channels

with individual power constraints. The model of this section

can be thought of as pertaining to low rate, low power use

of a wideband communication channel with constraints on

burstiness in time.

II. PRELIMINARIES

Consider a single-user discrete-time MIMO channel with

no channel state information at the transmitter and receiver.

The channel includes additive noise and multiplicative noise

(Rayleigh flat fading). Let NT be the number of transmit

antennas and NR be the number of receive antennas. Let the

input at time n ∈ N be denoted by
√
ρZNT×1(n): so the input

on antenna k at time n is
√
ρZk(n). Here, the signal to noise

ratio is represented by ρ > 0. Let the corresponding output be

denoted by Y NR×1(n). Then,

Yl(n) =
√
ρ

NT−1∑
k=0

Hk,l(n)Zk(n) +Wl(n) (1)

where l ∈ [0, NR − 1] is the index of the receive antennas.

The channel fading processes are assumed to be stationary and

ergodic, jointly proper complex normal (PCN)1, and spatially

independent; i.e., if (k, l) 6= (k′, l′), the fading processes

Hk,l and Hk′,l′ are mutually independent. Further, for each

transmit and receive antenna pair (k, l), the fading process

Hk,l is allowed to be correlated in time, with autocorrelation

function Rk,l(n), defined by Rk,l(n) = E[Hk,l(n)H∗k,l(0)],

1A random vector Z is proper, in the sense of [16], if E[ZZT ] =
E[Z]E[ZT ]. A random process is proper if its restriction to any finite set of

indices gives a proper random vector. A mean zero PCN random process is a

random process with jointly Gaussian real and imaginary parts, such that the

distribution of the process is invariant under any common rotation of all of

its constituent random variables.

and spectral density function (Sk,l(ω)). The additive noise on

each antenna is modeled by an independent and identically dis-

tributed (iid) PCN process with zero mean and unit variance.

The channel fading processes, the additive noise processes, and

the channel input are assumed to be mutually independent. The

above model does not involve delay spread, but in Section VI

a SISO delay spread model is examined.

Two different ways to impose peak and average power

constraints for MIMO channels are investigated in this paper.

The constraints are considered either on sums across the

antennas, or on individual antennas. The sum peak power

constraint is

‖Z(n)‖22 ≤ 1 ∀ n (2)

and the sum average power constraint is

E[‖Z(n)‖22] ≤
1
β
∀ n, (3)

where β ≥ 1. Let Cmimo−s(ρ, β) denote the information

theoretic capacity of the MIMO channel under the sum power

constraints (2) and (3).

The individual peak power constraints are

|Zk(n)|2 ≤ 1 ∀ k ∈ [0, NT − 1] n ∈ Z, (4)

and the individual average power constraints are

E[|Zk(n)|2] ≤ 1
β
∀ k ∈ [0, NT − 1] n ∈ Z, (5)

where β ≥ 1. Such constraints are seen in practice when each

transmit antenna is powered by its own analog driver, so, at

any time instant, the available instantaneous power for each

antenna is not immediately constrained by the instantaneous

powers of the other antennas. Let Cmimo−i(ρ, β) denote

the information theoretic capacity of the channel under the

individual power constraints (4) and (5).

Two constants, φk,l and λk,l, and a function, Ik,l, are

associated with the autocorrelation function Rk,l of a fading

process Hk,l = (Hk,l(n) : n ∈ Z), as follows. The constants

are defined by

φk,l =
∞∑
n=1

|Rk,l(n)|2 and λk,l = (Rk,l(0))2 + 2φk,l. (6)

It is assumed that φk,l is finite for all valid k and l. For SISO

channels, R(n), φ, and λ, are similarly determined by the

single fading process H. The function is defined by

Ik,l(ρ) =
∫ π

−π
log(1 + ρSk,l(ω))

dω

2π
.

An interpretation of Ik,l(ρ) is that it is the mutual information

rate between the random process (Hk,l(n) : n ∈ Z) and

a random process of the form (
√
ρHk,l(n) + W (n) : n ∈

Z), where W is an iid PCN sequence with unit variance,

independent of Hk,l. A MIMO channel is said to be transmit

separable if there are nonnegative constants (αk : 0 ≤ k ≤
NT − 1) and autocorrelation functions (Rl : 0 ≤ l ≤ NR− 1)
so that Rk,l(n) = αkRl(n) for all k, l, and n. In this case we



have φk,l = α2
kφl, λk,l = α2

kλl, and Ik,l(ρ) = Il(ραk), where

φl, λl, and Il are associated with the autocorrelation function

Rl for each l.
We call an individual fading process Hk,l ephemeral if

2φk,l ≤ R2
k,l(0) and nonephemeral otherwise. A MIMO

channel is said to be nonephemeral if all of the constituent

fading processes {Hk,l} are nonephemeral.

III. MIMO CHANNELS WITH SUM CONSTRAINTS

This section concerns the MIMO channel with the power

constraints (2) and (3) on sums over antennas. Let

A(β) =

{
(a0, . . . , aNT−1) : ak ≥ 0 ∀ k,

NT−1∑
k=0

ak ≤
1
β

}
,

(7)

and

Umimo−s(ρ, β) = max
a∈A(β)

NR−1∑
l=0

{
log(1 + ρ

NT−1∑
k=0

Rk,l(0)ak)

−
NT−1∑
k=0

akIk,l(ρ)

}
.

Proposition 3.1: Cmimo−s(ρ, β) ≤ Umimo−s(ρ, β).
The following result identifies the asymptotic behavior of

Cmimo−s(ρ, β) at low ρ (for a fixed β).

Proposition 3.2: For β ≥ 1 fixed,

lim
ρ→0

Cmimo−s(ρ, β)
ρ2

= lim
ρ→0

Umimo−s(ρ, β)
ρ2

=
1
2

max
a∈A(β)

NR−1∑
l=0

{
NT−1∑
k=0

akλk,l

−

(
NT−1∑
k=0

akRk,l(0)

)2
 .

The input distribution used in the proof of the asymptotic

lower bound portion of Proposition 3.2 has the following form.

For a ∈ A(β), the input (Z(1), . . . , Z(n)) can be represented

as follows. For 1 ≤ n ≤ N ,

Z0(n) = 1{U≤a0} exp(jθ(n))

and for 0 < k < NT ,

Zk(n) = 1{Pk−1
i=0 ai≤U≤

Pk
i=0 ai}

exp(jθ(n)),

where j =
√
−1, 1A represents the indicator function of an

event A, U is uniformly distributed on the interval [0, 1], and

the phases θ(1), . . . , θ(n) can be chosen in any one of the

following ways:

1) θ(n) = nϑ, where ϑ is a discrete random variable,

uniformly distributed over { 2πl
N : 0 ≤ l ≤ N − 1}. This

is a form of frequency shift keying (FSK), related to the

M-FSK modulation presented in [17] in a continuous

time setting.

2) Or, θ(n) = nϑ, where ϑ is uniformly distributed over

[0, 2π]. This is a limiting form of FSK for the number

of tones going to infinity.

3) Or, θ(n), 1 ≤ n ≤ N , are independent, with θ(n) for

each n being uniformly distributed over {2πi/d : 0 ≤
i ≤ d−1} (i.e. d-ary phase shift keying) for some integer

d ≥ 2, or uniformly distributed over [0, 2π].
Thus for this input distribution, at most one antenna is used

at any time instant. Moreover, the same antenna (if any) is

used for all of the N channel uses. Antenna k is used with

probability ak.

Corollary 3.1: If the MIMO channel is transmit separable,

then Cmimo−s(ρ, β) is bounded from above by

max
0≤a≤ 1

β

NR−1∑
l=0

{log(1 + aαmaxρRl(0))− aIl(αmaxρ)} (8)

where αmax = max{α0, . . . , αNT−1}. The bound (8) is

asymptotically tight as ρ→ 0, and

lim
ρ→0

Cmimo−s(ρ, β)
ρ2

=
α2

max

2
max

0≤a≤ 1
β

NR−1∑
l=0

{
aλl − a2R2

l (0)
}
.

(9)

The reasoning behind Corollary 3.1 is that, for a transmit

separable channel with sum constraints, the asymptotic ca-

pacity can be achieved by using only one transmit antenna k
with the largest αk, and sending the same signal on it as for

SISO channels. The next corollary is a simple special case of

Corollary 3.1:

Corollary 3.2: If the channel is transmit separable and

nonephemeral, and if no average power constraint is imposed

(i.e. β = 1), then

lim
ρ→0

Cmimo−i(ρ, 1)
ρ2

= α2
max

NR−1∑
l=0

φl.

As the proof indicates, under the conditions of Corollary

3.2, the optimal input is to use only one antenna k with

maximum αk, and send on it a signal of the form Zk(n) =
exp(jθ(n)), with the sequence θ(n) selected as before. This

input distribution is the same found to be optimal by [8] for

block fading channels and a different type of peak constraint,

although in [8] the channels are assumed to be statistically

identical, so that any of the transmit antennas could be used.

IV. MIMO CHANNELS WITH INDIVIDUAL CONSTRAINTS

This section concerns MIMO channels with the individual

power constraints (4) and (5). In the full version of this paper,

an upper bound and an asymptotic lower bound on the capacity

are given. The bounds are not included here for lack of space.

In general, the asymptotic bounds are not equal. However, for

the broad class of transmit separable channels, the normalized

capacity limit can be identified:

Corollary 4.1: If the channel is transmit separable, then

limρ→0
Cmimo−i(ρ,β)

ρ2 is equal to

1
2

NT−1∑
k=0

αk

2

max
0≤a≤ 1

β

NR−1∑
l=0

{
aλl − a2R2

l (0)
}
.

The input strategy used to obtain the asymptotic lower

bound portion of Corollary 4.1 is to transmit the same signal



on all antennas, with the signal on each antenna having

the distribution described above for a single antenna in the

sum constraint case. This is exactly the distribution, called

STORM, proposed for block fading channels by Srinivasan

and Varanasi [9].

The next corollary is a simple special case of Corollary 4.1:

Corollary 4.2: If the channel is transmit separable and

nonephemeral, and if no average power constraint is imposed

(i.e. β = 1), then

lim
ρ→0

Cmimo−i(ρ)
ρ2

=

NT−1∑
k=0

αk

2
NR−1∑
l=0

φl.

The next corollary looks at the general bounds in another

direction, although the resulting upper and lower bounds do

not match.

Corollary 4.3: If the channel is nonephemeral and if no

average power constraint is imposed (i.e. β = 1),

lim sup
ρ→0

Cmimo−i(ρ)
ρ2

≤ NT
∑
k,l

φk,l (10)

and

lim inf
ρ→0

Cmimo−i(ρ)
ρ2

≥
NR−1∑
l=0

∞∑
n=1

∣∣∣∣∣
NT−1∑
k=0

Rk,l(n)

∣∣∣∣∣
2

. (11)

The input strategy used to obtain the asymptotic lower bound

portion of Corollary 4.3 is to use Zk(n) = exp(jθ(n)), with

the phase sequence chosen as for the SISO channel. So all

antennas send the same constant magnitude signal.

V. DISCUSSION OF RESULTS FOR MIMO CHANNELS

Some remarks on the above results for MIMO channels

are given next. We first comment on the benefits of having

multiple antennas, the input distributions that achieve the lower

asymptotic bounds, and the relationship between channel

memory and capacity. For simplicity, consider the low SNR

normalized capacity limit for a nonephemeral MIMO channel

with peak constraints but no average power constraints. For

individual peak constraints, the limit is, according to Corollary

3.2, α2
max

∑NR−1
l=0 φl, which does not grow with the number

of transmit antennas, as long as the α values for additional

antennas are not larger than the α of the first antenna. The

intuitive reason is that any benefit due to diversity brought by

multiple transmit antennas is nulled by the cost of tracking the

additional fading processes.

If, for the same channel, individual peak constraints are

imposed, Corollary 4.2 yields that the normalized capacity

limit is
(∑NT−1

k=0 αk

)2∑NR−1
l=0 φl. This is larger than for the

sum constraint case because of the following two facts: (i)

the average received power is a factor
(∑NT−1

k=0 αk

)
/αmax

larger for the individual constraint case and (ii) the normalized

capacity limit, obtained by dividing by ρ2, scales quadratically

with an effective factor change in the SNR, ρ.

The peak power constraints can be adjusted in the two cases

to yield the same maximum total transmitted power by replac-

ing ρ by NT · ρ in the case of sum power constraints. Then,

the normalized capacity limit for the sum power constraints is

(NTαmax)2
∑NR−1
l=0 φl, which is larger than the limit for the

case of individual constraints, unless the αk’s are all equal.

If the αk’s are equal, the normalized capacity limit is the

same whether the peak constraint is applied as a sum peak

constraint or as individual peak constraints per antenna. In

certain applications, it may be cheaper to produce multiple

transmit antennas, each with a small peak power capability,

than a single transmit antenna that provides a proportionately

larger capability. In such a case, this analysis tilts the balance

in favor of using multiple transmit antennas.

Having multiple receive antennas is tremendously useful at

low SNR, for either peak or sum constraints. The amount of

information learned about the input by each receive antenna

is so small (at low SNR) that each additional receive antenna

gathers information that is almost independent of that gathered

by the other antennas. Therefore, as can be seen in the

normalized capacity limits, the channel capacity is linear in

the number of receive antennas at low SNR.

VI. SISO CHANNELS WITH DELAY SPREAD

Consider the following SISO fading channel model with

delay spread:

Y (n) =
√
ρ

K−1∑
k=0

Hk(n)Z(n− k) +W (n) (12)

Here, Z is the input (complex scalar) and Y is the output. The

fading is assumed to be independent across the K taps, and

correlated in time within each tap. The correlation function

for tap k is given by {Rk(n) : n ∈ Z}. The additive noise is

modeled by W , an iid PCN process with zero mean and unit

variance, and is assumed to be independent of the fading and

the input.

We assume the input is subject to the same constraints as

considered earlier for SISO channels with flat fading: the peak

constraint is |Z(n)| ≤ 1 for all n, and the average power

constraint is E[|Z(n)|2] ≤ 1/β for all n, for some constant

β ≥ 1. We denote the capacity of the delay spread channel by

Cds(ρ, β).
The channel in (12) is equivalent to a MISO channel with

NT = K antennas, and an additional constraint. The MISO

channel is given by:

Y (n) =
√
ρ

K−1∑
k=0

Hk(n)Zk(n) +W (n),

with the process Hk representing the fading process for

antenna k, and the vector input Z(n) for the MISO channel

being given by Zk(n) = Z(n− k) for 0 ≤ k ≤ NT − 1. The

peak and average power constraints on the SISO delay spread

channel imply that peak and average power constraints are

satisfied for the individual antennas of the MISO system. The



additional constraint required for a MISO input to correspond

to a SISO input is:

Zk(n) = Zk′(n′) whenever n− k = n′ − k′. (13)

Consequently, Cds(ρ, β) ≤ Cmiso−i(ρ, β), with the under-

standing that the fading processes for the antennas of the

MISO channel are the fading processes of the taps of the SISO

delay spread channel. This inequality is not, in general, tight,

because Cmiso−i(ρ, β) is the capacity of the MISO channel

without the extra constraint (13).

The bounds and asymptotics for Cmimo−i, given is Section

IV, can be easily specialized to MISO channels by taking

NR = 1, and dropping the subscript l indexing receive

antennas. The upper bounds carry over to the SISO delay

spread channel without change. (It is possible tighter bounds

could be obtained by incorporating the constraint (13), but

we don’t pursue that here.) The lower bounds carry over to

the extent that the inputs they are based on satisfy the extra

constraint (13). Upper bounds and asymptotic lower bounds

are presented in the full version of this paper. Here we present

corollaries for two subclasses of channels.

A SISO delay spread channel is said to be delay sepa-

rable if there are nonnegative constants α0, . . . , αK−1 and

an autocorrelation function R so that Rk(n) = αkR(n) for

0 ≤ k ≤ K − 1.

Corollary 6.1: If the channel is delay separable, then

lim
ρ→0

Cds(ρ, β)
ρ2

=
1
2

(
K−1∑
k=0

αk

)2

max
0≤a≤ 1

β

{
aλ− a2R2(0)

}
.

The next corollary is a simple special case of Corollary 6.1:

Corollary 6.2: If the channel is delay separable and

nonephemeral, and if no average power constraint is imposed

(i.e. β = 1), then

lim
ρ→0

Cds(ρ)
ρ2

=

(
K−1∑
k=0

αk

)2

φ.

Corollary 6.3: If the channel is nonephemeral and if no

average power constraint is imposed (i.e. β = 1) then

lim sup
ρ→0

Cds(ρ)
ρ2

≤ K
K−1∑
k=0

φk

and

lim inf
ρ→0

Cds(ρ)
ρ2

≥
∞∑
n=1

∣∣∣∣∣
K−1∑
k=0

Rk(n)

∣∣∣∣∣
2

.

As mentioned earlier in the subsection, the input distribution

used to prove the asymptotic lower bound portions of the

bounds above is an N -ary FSK signal with the addition of the

all zero signal. Although this is the same distribution that can

be used to achieve the same capacity as for an AWGN channel

[10, 12–14], the fact that we consider the normalized limit

as the peak transmit power for the whole wideband channel

converges to zero, results in a lower spectral efficiency, with

capacity tending to zero quadratically in ρ.
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