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ABSTRACT
The asymptotic capacity at low input powers of an average-
power limited or an average- and peak-power limited discrete-
time Poisson channel is considered. For a Poisson chan-
nel whose dark current is zero or decays to zero linearly
with its average input power E , capacity scales like E log 1

E
for small E . For a Poisson channel whose dark current is
a nonzero constant, capacity scales, to within a constant,
like E log log 1

E for small E .
Index Terms— Asymptotic, Capacity, Low SNR, Pois-

son channel.

1. INTRODUCTION

We consider the discrete-time memoryless Poisson channel
whose input x is in the setR+

0 of nonnegative reals and whose
output y is in the set Z+

0 of nonnegative integers. Conditional
on the input X = x, the output Y has a Poisson distribution
of mean (λ + x) where λ ≥ 0 is called the dark current. We
denote the Poisson distribution of mean ξ by Pξ(·) so

Pξ(y) = e−ξ ξy

y!
, y ∈ Z

+
0 .

With this notation the channel lawW (·|·) is given by
W (y|x) = Pλ+x(y), x ∈ R

+
0 , y ∈ Z

+
0 . (1)

This channel is often used to model pulse-amplitude mod-
ulated optical communication with a direct-detection receiver
[1]. Here the input x is proportional to the product of the
transmitted light intensity by the pulse duration; the output y
models the number of photons arriving at the receiver during
the pulse duration; and λmodels the average number of extra-
neous counts that appear in y in addition to those associated
with the illumination x.

The average-power constraint1 on the input is

E[X] ≤ E , (2)
1The word “power” here has the meaning “average number of photons

transmitted per channel use.” If we denote by P the standard “power” in
physics, namely, energy per unit time (in watts), then the notation of “power”
in this paper is really ηPT/�ω, where η is the detector’s quantum efficiency,
T is the pulse duration (in sec), and �ω is the photon energy (in joules) at the
operating frequency ω (in rad/sec).

where E > 0 is the maximum allowed average power.

The peak-power constraint on the input is that with prob-
ability one

X ≤ A. (3)

When no peak-power constraint is imposed, we writeA = ∞.
No analytic expression for the capacity of the Poisson

channel is known. In [1] Shamai showed that capacity-
achieving input distributions are discrete whose numbers of
mass points depend on E and A. In [2, 3] Lapidoth and
Moser derived the asymptotic capacity of the Poisson chan-
nel in the regime where both the average and peak powers
tend to infinity with their ratio fixed.

In the present paper, we seek the asymptotic capacity of
the Poisson channel when the average input power tends to
zero. The peak-power constraint, when considered, is held
constant and hence does not tend to zero with the average
power. We consider two different cases for the dark cur-
rent λ. The first case is when the dark current tends to zero
proportionally with the average power. This corresponds to
the wide-band regime where the pulse duration tends to zero.
The second case is when the dark current is constant. This
corresponds to the regime where the transmitter is weak.

Our lower bounds on channel capacity are all based on
binary inputs. In some cases we show that this is asymptoti-
cally optimal. Our upper bounds are derived using the duality
expression (see [4] and references therein). An efficient way
to compute asymptotic capacities at low average input pow-
ers is to compute the capacity per unit cost [5]. However, we
shall see that, apart from one case (Equation (7)), the capacity
per unit cost does not exist, namely, the capacity tends to zero
more slowly than linearly with the average power.

Among the results in this paper, the special case of zero
dark current has been derived independently in [6, 7].

The rest of the paper is arranged as follows: in Section 2
we state the results of this paper; in Section 3 we prove the
lower bounds; and in Section 4 we sketch the proofs for the
upper bounds.
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2. RESULTS

Let C(λ, E ,A) denote the capacity of the Poisson channel
with dark current λ under Constraints (2) and (3)

C(λ, E ,A) = sup I(X; Y )

where the supremum is over all input distributions satisfy-
ing (2) and (3).

When λ is proportional to E , the asymptotic capacity of
the Poisson channel as E ↓ 0 is given in the following propo-
sition. Note that this also includes the case where the dark
current is the constant zero.

Proposition 1 (Dark Current Proportional to E). For any c ≥
0 and A ∈ (0,∞],

lim
E↓0

C(cE , E ,A)
E log 1

E
= 1.

Recall that, for any α, β > 0, the sum of two indepen-
dent random variables with the Poisson distributions Pα(·)
and Pβ(·) has the Poisson distribution Pα+β(·). Thus, we
can produce any Poisson channel with nonzero dark current
by adding noise to a Poisson channel with zero dark current.
Consequently,

C(0, E ,A) ≥ C(cE , E ,A), c, E ,A > 0.

Thus, to prove Proposition 1, we only need to show the fol-
lowing two bounds:

lim
E↓0

C(cE , E ,A)
E log 1

E
≥ 1, c > 0,A ∈ (0,∞], (4)

lim
E↓0

C(0, E ,A)
E log 1

E
≤ 1, A ∈ (0,∞]. (5)

We shall prove (4) in Section 3.1 and shall sketch a proof
for (5) in Section 4.1.

Remark 1. The bound (5) can also be derived by noting that
the capacity of the Poisson channel with zero dark current
under an average-power constraint only is upper-bounded by
the capacity of the pure-loss bosonic channel, and by using
the explicit formula [8]

Cbosonic(E) = (1 + E) log(1 + E) − E log E (6)

of the latter.

Remark 2. Because the pure-loss bosonic channel with co-
herent input states and direct detection reduces to a Poisson
channel, the lower bound (4) and the achievability of its left-
hand side using binary signaling combine with (6) to show
that the asymptotic (quantum-receiver) capacity of the pure-
loss bosonic channel is achievable with binary modulation
(on-off keying) and direct detection.

For a Poisson channel with constant nonzero dark current,
we have the following result.

Proposition 2 (Constant Nonzero Dark Current). For any
λ > 0,

lim
E↓0

C(λ, E ,A)
E =

(
1 +

λ

A
)

log
(

1 +
A
λ

)
− 1, A < ∞,

(7)
and

1
2
≤ lim

E↓0

C(λ, E ,∞)
E log log 1

E
≤ lim

E↓0
C(λ, E ,∞)
E log log 1

E
≤ 2. (8)

The proof of (7) is a simple application of the formula for
capacity per unit cost [5, Theorem 2]. The proof of the lower
bound in (8) is in Section 3.2; and a sketch of the proof of the
upper bound in (8) is in Section 4.2.

3. THE LOWER BOUNDS

The achievability results in this section are obtained by choos-
ing binary input distributions and then computing the mutual
informations. We denote by Qb the binary distribution

X =

{
0, w.p. (1 − p),
ζ, w.p. p,

(9)

where ζ > 0, p ∈ (0, 1). If we choose the parameters ζ and p
in such a way that Constraints (2) and (3) are satisfied, then

C(λ, E ,A) ≥ I(Qb, W ). (10)

3.1. Dark Current Proportional to E

In this subsection we shall derive Inequality (4). To this end,
we compute the mutual information I(Qb, W ) for input dis-
tribution Qb given by (9):

I(Qb, W ) = H(Y ) − H(Y |X)

= −
∞∑

y=0

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
· log

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
+ (1 − p)

∞∑
y=0

Pλ(y) logPλ(y)

+ p

∞∑
y=0

Pλ+ζ(y) logPλ+ζ(y)

= I0(λ, ζ, p) + I1(λ, ζ, p), (11)

1-4244-2482-5/08/$20.00 ©2008 IEEE 655 IEEEI 2008



where in the last equality we defined

I0(λ, ζ, p) � −(
(1 − p)e−λ + pe−(λ+ζ)

)
· log

(
(1 − p)e−λ + pe−(λ+ζ)

)
− (1 − p)λe−λ − p(λ + ζ)e−(λ+ζ),

I1(λ, ζ, p) � −
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
· log

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
+ (1 − p)

∞∑
y=1

Pλ(y) logPλ(y)

+ p
∞∑

y=1

Pλ+ζ(y) logPλ+ζ(y).

Note that in the above decomposition we took out the terms
corresponding to y = 0 in all three summations to form
I0(λ, ζ, p) and collected the remaining terms in I1(λ, ζ, p).

We lower-bound I0(λ, ζ, p) as

I0(λ, ζ, p) ≥ 0 − (1 − p)λe−λ − p(λ + ζ)e−(λ+ζ)

≥ −λ − p(λ + ζ). (12)

We lower-bound I1(λ, ζ, p) as

I1(λ, ζ, p)

= −
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
· log

(
(1 − p)

Pλ(y)
Pλ+ζ(y)

+ p

)

+ (1 − p)
∞∑

y=1

Pλ(y) log
Pλ(y)

Pλ+ζ(y)

= −
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
·
(

log p + log
(

1 +
1 − p

p

Pλ(y)
Pλ+ζ(y)

))

+ (1 − p)
∞∑

y=1

Pλ(y) log
e−λ λy

y!

e−(λ+ζ) (λ+ζ)y

y!

= −
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)

·
(

log p + log
(

1 +
1 − p

p

Pλ(y)
Pλ+ζ(y)

)
︸ ︷︷ ︸

≤ 1−p
p

Pλ(y)
Pλ+ζ(y)

)

+ (1 − p)ζ
∞∑

y=1

Pλ(y)

︸ ︷︷ ︸
=1−e−λ

+(1 − p) log
λ

λ + ζ

∞∑
y=1

Pλ(y)y

︸ ︷︷ ︸
=λ

≥ −
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
︸ ︷︷ ︸

=(1−p)(1−e−λ)+p(1−e−(λ+ζ))

log p

−
∞∑

y=1

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)1 − p

p

Pλ(y)
Pλ+ζ(y)

+ (1 − p)(1 − e−λ)ζ − (1 − p)λ log
(

1 +
ζ

λ

)
=

(
(1 − p)(1 − e−λ) + p(1 − e−(λ+ζ))

)
log

1
p

− (1 − p)2

p

∞∑
y=1

(Pλ(y))2

Pλ+ζ(y)︸ ︷︷ ︸
=e

ζ2
λ+ζ P λ2

λ+ζ

(y)

−(1 − p)
∞∑

y=1

Pλ(y)

︸ ︷︷ ︸
=1−e−λ

+ (1 − p)(1 − e−λ)ζ − (1 − p)λ log
(

1 +
ζ

λ

)
=

(
(1 − p)(1 − e−λ) + p(1 − e−(λ+ζ)︸ ︷︷ ︸

≤e−ζ

)
)
log

1
p

− (1 − p)2

p︸ ︷︷ ︸
≤ 1

p

e
ζ2

λ+ζ︸︷︷︸
≤eζ

(
1 − e−

λ2
λ+ζ

)
︸ ︷︷ ︸

≤ λ2
λ+ζ ≤λ2

ζ

− (1 − p)︸ ︷︷ ︸
≤1

(1 − e−λ)︸ ︷︷ ︸
≤λ

− (1 − p)︸ ︷︷ ︸
≤1

(1 − e−λ)︸ ︷︷ ︸
≤λ

ζ − (1 − p)λ log
(

1 +
ζ

λ

)

≥ (1 − p)(1 − e−λ) log
1
p

+ p(1 − e−ζ) log
1
p

− 1
p

λ2

ζ
eζ − λ − λζ − (1 − p)λ log

(
1 +

ζ

λ

)
. (13)

Choose any ζ ∈ (0,A] and, for small enough E , let p =
E/ζ. Then the distribution (9) satisfies both Constraints (2)
and (3). Let λ = cE . Using (12) we can bound the asymptotic
behavior of I0(λ, ζ, p) as

lim
E↓0

I0

(
cE , ζ, E

ζ

)
E log 1

E
≥ − lim

E↓0
cE

E log 1
E
− lim

E↓0

E
ζ (cE + ζ)

E log 1
E

= 0.

(14)
Similarly, using (13) we can bound the asymptotic behavior
of I1(λ, ζ, p) as

lim
E↓0

I1

(
cE , ζ, E

ζ

)
E log 1

E
≥ 1 − e−ζ

ζ
. (15)

Combining (10), (11), (14), and (15) we obtain

lim
E↓0

C(cE , E ,A)
E log 1

E
≥ 1 − e−ζ

ζ
, for all ζ ∈ (0,A]. (16)

We can make the right-hand side (RHS) of (16) arbitrarily
close to 1 by choosing arbitrarily small positive values for ζ.
Thus we obtain (4).
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3.2. Constant Nonzero Dark Current

In this subsection we shall prove the first inequality in (8). To
this end, we lower-bound on the mutual information I(Qb, W )
for the input distribution (9) as follows:

I(Qb, W )
= H(Y ) − H(Y |X)

= −
∞∑

y=0

((1 − p)Pλ(y) + pPλ+ζ(y))

· log ((1 − p)Pλ(y) + pPλ+ζ(y))

+ (1 − p)
∞∑

y=0

Pλ(y) logPλ(y)

+ p
∞∑

y=0

Pλ+ζ(y) logPλ+ζ(y)

= − p
∞∑

y=0

Pλ+ζ(y) log
(

(1 − p)
Pλ(y)

Pλ+ζ(y)
+ p

)

− (1 − p)
∞∑

y=0

Pλ(y) log
(

(1 − p) + p
Pλ+ζ(y)
Pλ(y)

)

= − p
∞∑

y=0

Pλ+ζ(y)

·
(

log
Pλ(y)

Pλ+ζ(y)
+ log

(
(1 − p) + p

Pλ+ζ(y)
Pλ(y)

))

− (1 − p)
∞∑

y=0

Pλ(y) log
(

(1 − p) + p
Pλ+ζ(y)
Pλ(y)

)

= p
∞∑

y=0

Pλ+ζ(y) log
Pλ+ζ(y)
Pλ(y)

−
∞∑

y=0

(
(1 − p)Pλ(y)︸ ︷︷ ︸

≥0

+ pPλ+ζ(y)︸ ︷︷ ︸
≥0

)
log

(
(1 − p) + p

Pλ+ζ(y)
Pλ(y)

)
︸ ︷︷ ︸
≤log

“
1+p

Pλ+ζ(y)
Pλ(y)

”
≤p

Pλ+ζ(y)
Pλ(y)

≥ p

∞∑
y=0

Pλ+ζ(y) log
Pλ+ζ(y)
Pλ(y)

−
∞∑

y=0

(
(1 − p)Pλ(y) + pPλ+ζ(y)

)
p
Pλ+ζ(y)
Pλ(y)

= p

∞∑
y=0

Pλ+ζ(y) log

(
e−(ζ+λ) (ζ+λ)y

y!

e−λ λy

y!

)

− (1 − p)p
∞∑

y=0

Pλ(y)
Pλ+ζ(y)
Pλ(y)

− p2
∞∑

y=0

Pλ+ζ(y)
Pλ+ζ(y)
Pλ(y)

= p
∞∑

y=0

Pλ+ζ(y) log
(

e−ζ

(
1 +

ζ

λ

)y)

− (1 − p)p
∞∑

y=0

Pλ+ζ(y)

︸ ︷︷ ︸
=1

−p2
∞∑

y=0

(
e−(ζ+λ) (ζ+λ)y

y!

)2

e−λ λy

y!

= p

∞∑
y=0

Pλ+ζ(y)
(
−ζ + y log

(
1 +

ζ

λ

))
− (1 − p)p

− p2

⎛
⎝ ∞∑

y=0

e−(λ+2ζ)

(
λ + 2ζ + ζ2

λ

)y

y!
e−

ζ2

λ

⎞
⎠

︸ ︷︷ ︸
=

P∞
y=0 Pλ+2ζ+ζ2

λ

(y)=1

e
ζ2

λ

= − pζ
∞∑

y=0

Pλ+ζ(y)

︸ ︷︷ ︸
=1

+p
∞∑

y=0

Pλ+ζ(y)y

︸ ︷︷ ︸
=(ζ+λ)

log
(

1 +
ζ

λ

)

− p + p2 − p2e
ζ2

λ

= p(ζ + λ) log
(

1 +
ζ

λ

)
− pζ − p − p2

(
e

ζ2

λ − 1
)

. (17)

For small enough E , we choose ζ =
√

λ log 1
E and p = E

ζ =
E√

λ log 1
E
. By using (10) and (17) and letting E tend to zero

we establish the lower bound in (8).

4. THE UPPER BOUNDS

In this section we shall sketch the proofs of the upper bounds
on the asymptotic capacities of the Poisson channel. We shall
use the duality bound [4] which states that, for any distribu-
tion R(·) on the output, the channel capacity satisfies

C ≤ supE
[
D
(
W (·|X)‖R(·))] , (18)

where the supremum is taken over all allowed input distribu-
tions. We shall describe the choices of R(·) that lead to our
upper bounds, but we shall omit the details.

4.1. Dark Current Proportional to E
In this subsection we shall sketch the proof for (5). To this
end, as in [3], we introduce the Poisson channel with contin-
uous output whose input x is the same as the original Poisson
channel, and whose output is ỹ ∈ R

+
0 . The conditional den-

sity W̃ (·|·) is
W̃ (ỹ|x) = Pλ+x(	ỹ
). (19)

We denote the capacity of (19) under Constraints (2) and (3)
by C̃(λ, E ,A). It is shown in [2] that

C(λ, E ,A) = C̃(λ, E ,A).
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Thus, to prove (5), it suffices to prove

lim
E↓0

C̃(0, E ,A)
E log 1

E
≤ 1, A ∈ (0,∞]. (20)

To this end, we choose the distribution R̃(·) on Ỹ to be of
density

fR̃(ỹ) =

⎧⎨
⎩

(1 − p), 0 ≤ ỹ < 1

p · ỹν−1e
− ỹ

β

βνΓ(ν, 1
β )

, ỹ ≥ 1,

where β > 0 is arbitrary, ν ∈ (0, 1] and p ∈ (0, 1) will
be specified later, and Γ(·, ·) denotes the Incomplete Gamma
Function given by

Γ(a, ξ) =
∫ ∞

ξ

ta−1e−t dt, ∀ a, ξ ≥ 0.

Applying (18) on C̃(0, E ,A) with the above choice of fR̃(·)
in the place of R(·) and with the choice ν = 1

2 yields that, for
every p ∈ (0, 1) and β > 0

C(0, E ,A) ≤ E log
1
p

+ log
1

1 − p
+

E
β

+ E max

{
0,

(
1
2

log β + log
Γ( 1

2 , 1
β )√

π
+

1
2β

)}
.

Choosing p = E
1+E in the above inequality and letting E tend

to zero yield (5).

4.2. Constant Nonzero Dark Current

In this subsection we shall sketch the proof of the upper bound
in (8). We choose the distribution R(·) on the output Y to be

R(y) =

{
e−λ λy

y! , y ∈ {0, 1, . . . , N − 1}
δ(1 − p)py−N , y ∈ {N, N + 1, . . .},

where N ∈ Z
+ and p ∈ (0, 1) are constants to be spec-

ified later, and δ is a normalizing factor given by δ �∑∞
y=N e−λ λy

y! . We next apply (18) to upper-boundC(λ, E ,A).
Calculation (with repeated applications of the Chernoff
bound) yields

C(λ, E ,A)

≤
(

N log N +
1

12N
+

1
2

log(2πN) + log
1

1 − p

)
·
( E

N −√
N − λ

+ exp (N + N log λ − N log N)
)

+
(

1 + log
1
p

+ log λ

)
·
(
E +

λE
N −√

N − λ

+ λ · eN−1−λ+(N−1) log λ−(N−1) log(N−1)

)
+ E ·

(
1 +

λ

N − λ

)
· max

{
0, log

1
λ

}

+ E · N log N
λ

N − λ
. (21)

For small enough E , we choose N =
⌊
log 1

E
⌋
and let p ∈

(0, 1) have any fixed value that does not depend on E . Apply-
ing these choices to (21) and taking the limit E ↓ 0 yield the
second inequality in (8).

5. REFERENCES

[1] S. Shamai (Shitz), “Capacity of a pulse amplitude modu-
lated direct detection photon channel,” in Proc. IEE, vol.
137, pt. I (Communications, Speech and Vision), no. 6,
Dec. 1990, pp. 424–430.

[2] A. Lapidoth and S. M. Moser, “Bounds on the capacity of
the discrete-time Poisson channel,” in Proc. 41st Allerton
Conf. Comm., Contr. and Comp., Allerton H., Monticello,
Il, Oct. 1–3, 2003.

[3] ——, “On the capacity of the discrete-time Poisson chan-
nel,” to app. in IEEE Trans. Inform. Theory.

[4] ——, “Capacity bounds via duality with applications to
multiple-antenna systems on flat fading channels,” IEEE
Trans. Inform. Theory, vol. 49, no. 10, pp. 2426–2467,
Oct. 2003.
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