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Abstract—Discrete-time Rayleigh-fading single-input single-
output (SISO) and multiple-input multiple-output (MIMO) chan-
nels are considered, with no channel state information at the
transmitter or the receiver. The fading is assumed to be stationary
and correlated in time, but independent from antenna to antenna.
Peak-power and average-power constraints are imposed on the
transmit antennas. For MIMO channels, these constraints are
either imposed on the sum over antennas, or on each individual
antenna. For SISO channels and MIMO channels with sum power
constraints, the asymptotic capacity as the peak signal-to-noise
ratio (SNR) goes to zero is identified; for MIMO channels with
individual power constraints, this asymptotic capacity is obtained
for a class of channels called transmit separable channels. The
results for MIMO channels with individual power constraints
are carried over to SISO channels with delay spread (i.e., fre-
quency-selective fading).

Index Terms—Channel capacity, correlated fading, frequency-
selective fading, low signal-to-noise ratio (SNR), multiple-input
multiple-output (MIMO).

I. INTRODUCTION

I N this paper, we present results on the capacity of discrete-
time Rayleigh-fading single-input single-output (SISO) and

multiple-input multiple-output (MIMO) channels. We assume a
noncoherent model where no channel state information is avail-
able at the transmitter or the receiver. The fadings are assumed
to be stationary processes correlated in time but, for MIMO
channels, independent for distinct input/output antenna pairs.
A hard peak-power constraint, in addition to an average-power
constraint, is imposed on the input signals. For MIMO channels
we consider two types of constraints: under one, the peak and
average-power constraints are imposed on each of the signals
transmitted by the different antennas separately, and under the
other, the constraints are on the sum of the powers in the dif-
ferent signals. We focus on channel capacity at low signal-to-
noise ratio (SNR), but we also derive upper bounds that are valid
for any SNR.

We also consider SISO channels with delay spread (i.e., fre-
quency-selective) fading where the fading is modeled by a finite
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number of taps. The fading processes corresponding to the dif-
ferent taps are assumed to be independent across taps, and al-
lowed, within each tap, to be correlated in time. The material in
this paper was presented in part in [1]–[3].

The capacity of fading channels at low SNR was studied in
[4]–[18]. The main motivation for our present work has been to
understand the capacity of communication over wideband chan-
nels. Work of Kennedy [8], Jacobs [7], Telatar and Tse [15], and
Durisi et al. [5] demonstrate that the capacity of such channels,
in the wideband limit, is the same as for a wideband additive
Gaussian noise channel with no fading, but the input signals,
such as -ary frequency-shift keying (FSK), are highly bursty
in the frequency domain or time domain. The work of Medard
and Gallager [10] (also see [14]) shows that if the burstiness of
the input signals is limited in both time and frequency, then the
capacity of such wideband channels becomes severely limited.
In particular, the required energy per bit converges to infinity.

Wireless wideband channels typically include both time-
and frequency-selective fading. One approach to modeling
such channels is to partition the frequency band into narrow
subbands, so that the fading is flat, but time-varying, within
each subband. If the width of the subbands is approximately the
coherent bandwidth of the channel, then they will experience
approximately independent fading. The flat-fading models used
in this paper can be considered to be models for communication
over a subband of a wideband wireless fading channel. The
peak-power constraints that we impose on the signals can
then be viewed as burstiness constraints in both the time and
frequency domain for wideband communication, similar to
those of [10], [14]. However, in this paper, we consider hard
peak constraints, rather than fourth moment constraints as in
[10], [14], and we consider the use of multiple antennas.

The recent work of Srinivasan and Varanasi [13] is closely
related to this paper. It gives low-SNR asymptotics of the
capacity of MIMO channels with no side information for block
fading channels, with peak- and average-power constraints,
with the peak constraints being imposed on individual antennas.
One difference between [13] and this paper is that we assume
continuous fading rather than block fading. In addition, we
provide upper bounds on capacity rather than only asymptotic
bounds as in [12], [13]. We assume, however, that the fading
processes are Rayleigh distributed, whereas the asymptotic
bounds do not require such distributional assumption. The
work of Rao and Hassibi [12] is also related to this paper. It
gives low-SNR asymptotics of the capacity of MIMO channels
with no side information for block-fading channels, but the
peak constraints are imposed on coefficients in a particular
signal representation, rather than as hard constraints on the
transmitted signals.

The model in this paper considers both a peak constraint
and an average-power constraint. Upper bounds are given on
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the capacity which are valid for any ratio of these constraints,
but the low-SNR asymptotics focuses only on the case where
the ratio is constant. The ratio is also held constant in the
asymptotic analysis of Srinivasan and Varinasi [13]. The paper
of Wu and Srikant [18] focuses on the asymptotic capacity
and error exponent for a fixed-peak constraint, as the average
power goes to zero. The paper of Zheng et al. [19] considers
a general scaling of the peak constraint to average-power
constraint, with the scaling depending also on the coherence
time. For a fixed ratio of peak constraint to average-power
constraint, the capacity scales quadratically as SNR converges
to zero, whereas for a fixed-peak constraint, the capacity scales
linearly with capacity as SNR converges to zero. Cases between
these two extremes are investigated in [19]. For wideband cel-
lular systems using orthogonal frequency-division multiplexing
(OFDM) modulation, the peak constraint is usually expressed in
the time domain, because of the limitations on the linear range
of transmit power amplifiers. In such case, the peak-power
constraint in a particular frequency is not severe, so letting the
peak constraint be constant or letting it converge to zero more
slowly than the average power may be most appropriate. In
cases in which interference with other users within the same
band is especially important, for example for use of unlicensed
or secondary spectrum, a peak constraint of the same order of
magnitude as the average-power constraint, as considered in
this paper, may be the most relevant. The papers [13], [18],
[19] consider block-fading channels, whereas a stationary,
correlated fading channel model is adopted here.

The capacity of noncoherent stationary flat-fading channels
at high SNR was studied in [20]–[23], and the capacity of delay
spread channels at high SNR was recently studied in [24]. For
regular fading processes [20] demonstrated a connection be-
tween the high-SNR capacity growth and the error in predicting
the fading process from noiseless observations of its past,
whereas for nonregular fading [22] demonstrated such a con-
nection to the error in predicting the fading process from noisy
observations of its past in the low observation noise regime.
In this paper, we point to an analogous connection between
the low-SNR asymptotic capacity and the error in predicting
the fading process from very noisy observations of its past. We
show that these prediction errors in the high observation noise
regime determine the asymptotic low-SNR capacity of SISO
channels and MIMO channels with sum power constraints.
They also determine the capacity of a class of MIMO channels
satisfying a certain separability condition. Our results on delay
spread channels follow from those on MIMO channels with
individual power constraints.

The rest of this paper is arranged as follows. In Section II, we
describe the channel models that are considered in this paper and
present the main capacity results obtained with these channel
models. In Sections III to VI the capacity results are proved—in
some cases by exhibiting additional capacity bounds.

II. CHANNEL MODELS AND MAIN RESULTS

We study four types of channels: SISO channels, MIMO
channels with sum (across transmit antennas) power con-
straints, MIMO channels with individual (per transmit antenna)
power constraints, and SISO channels with delay spread. In this

section, we shall describe these models and present our results
on their capacities.

A. SISO Channels

We begin with the SISO channel, which models noncoherent
discrete-time single-antenna communication over time-selec-
tive flat-fading channels.

1) The Model: The time- complex-valued output
of the SISO channel is given by

(1)

where is the time- channel input; the SNR is a pos-
itive scaling constant; the complex stochastic process is
the multiplicative fading process; and the complex stochastic
process models additive noise.

We assume that the processes and are indepen-
dent and that their joint law does not depend on the input se-
quence . The additive noise sequence is a sequence
of independent and identically distributed (i.i.d.) proper com-
plex normal (PCN) random variables of mean zero and vari-
ance one. Such a distribution is denoted by . The fading
process is assumed to be a zero-mean, unit-variance, sta-
tionary, PCN process. We denote its autocorrelation function by

and assume that it has a spectral density function .
Thus

and in particular

Note that the existence of its spectral density function implies
that is ergodic. We shall assume throughout that the au-
tocorrelation is square-summable, i.e., that

(2)

and define

(3)

The input is simultaneously subjected to two power con-
straints: a peak-power constraint and an average-power con-
straint. The peak-power constraint is that the time- channel
input must satisfy, with probability one

(4)

The average-power constraint is that

(5)

where the peak-to-average ratio is some constant satisfying
and is the ratio of the maximum allowed peak power
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to the maximum allowed average power. Since the average of a
random variable cannot exceed its maximal value, it follows that
(4) implies , so that setting renders the av-
erage-power constraint inactive and thus reduces the problem to
one of communication subject to a peak-power constraint only.

The capacity of this channel is given by

where the supremum is taken over all joint distributions on
satisfying the peak-power constraint (4) and the average-power
constraint (5). The square-summability assumption (2), to-
gether with the assumption that is PCN, implies that
the random process is weakly mixing (in fact, mixing).
Therefore, a coding theorem exists for , based on
notions surrounding information stability (see [25], [26]) and
the Shannon–McMillan–Breiman theorem for finite-alphabet
ergodic sources. See [16] for details. Roughly speaking, the
operational meaning of is that for any rate (expressed
in bits per channel use) less than the capacity, there exists a
sequence of codes with block length converging to infinity, such
that each code meets peak- and average-power constraints, each
code has codewords, where is the length of the code, and
the probability of decoding any codeword incorrectly converges
to zero. The average-power constraint can be imposed on the
expectation (over a uniformly chosen codeword) or on the
maximum (over all the codewords) of the normalized (by the
block length) energy of the codeword.

We define as the limiting ratio

(6)

when the limit exists. We next present our results on .
2) Results on SISO Fading: Our first result gives the asymp-

totic capacity of the SISO channel.

Proposition 2.1 (Asymptotic Capacity): For any , the
limit in (6) exists and is given by

(7)

if

if .
(8)

By evaluating the right-hand side (RHS) of (7) for the special
case where , i.e., when the average-power constraint is
inactive, we obtain.

Corollary 2.1 (Asymptotic Capacity—No Average Power
Constraint): Under the peak-power constraint (4) only

if
if .

(9)

Motivated by the different asymptotic behaviors of channel
capacity that occur depending on whether or , we
introduce the following definition.

Definition 2.1: A zero-mean discrete-time PCN stationary
process (not necessarily of unit variance) is ephemeral
if its autocorrelation function satisfies

(10)

Otherwise, is nonephemeral.

Note that if the fading process is of unit-variance, then
and is ephemeral if , where is defined

in (3). When the fading process in the SISO fading channel (1) is
ephemeral we consider the channel itself to also be ephemeral.
Otherwise, we consider the channel to be nonephemeral.

In addition to asymptotic expansions, we provide a firm upper
bound on :

Proposition 2.2 (A Firm Upper Bound on Capacity): For any
and

(11)

where

(12)

(13)

and

(14)

It is interesting to note that, in general, i.i.d. input distribu-
tions do not achieve the same asymptotic behavior as channel
capacity. This is best seen in the next proposition on the asymp-
totic behavior of the mutual information corresponding to i.i.d.
inputs. We first define

(15)

if the limit exists, where the supremum is over all i.i.d. distribu-
tions on satisfying (4) and (5).

Proposition 2.3 (Asymptotic Rates for i.i.d. Inputs): If the
autocorrelation function is absolutely summable, i.e.,

(16)

then the limit in (15) exists and is given by

if

if .
(17)

Using this proposition we see that, subject to (16) (which is more
stringent than (2)), i.i.d. inputs achieve the asymptotic behavior
of channel capacity only if (in which case the channel is
memoryless) or when the two conditions and are
both met. Fig. 1 depicts and as functions of .

3) Discussion: A few remarks about the results are called
for.
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Fig. 1. Comparison of ������ (asymptotic capacity) and � ����� (asymp-
totic information rates achievable with i.i.d. input symbols). Peak-to-average
ratio � � ���.

• Capacity and Prediction: The error in predicting the time-
zero fading based on the previous values of the fading

was shown in [20] to be related to the high-SNR
asymptotic behavior of channel capacity. If this predic-
tion error is strictly positive, then capacity at high SNR
grows double logarithmically in the SNR. In cases where
this prediction error is zero, a finer analysis of the predic-
tion problem is needed to establish the high-SNR capacity
asymptotics [22]. Indeed, when the prediction error is zero,
the capacity asymptotics are determined by the behavior
of the noisy prediction error. This noisy prediction error

is defined as the mean squared-error in predicting
based on where

are i.i.d. and independent of . Further-
more, is assigned the value corresponding to
the limiting case of estimating in the absence of past
information. It is given by classical formulas for optimal
prediction of stationary random processes by (see [22] for
details):

(18)

Here we note that the noisy prediction error also deter-
mines the asymptotic behavior of channel capacity at low
SNR. Indeed, by Proposition 2.1, the low-SNR asymptotics
are determined by , which is defined in (3), and is re-
lated to the behavior of the noisy prediction error in the
following way: Taylor’s series expansion of is

(19)

where the notation is used in the sense that
. We further note that , de-

fined in (14), can be expressed as

(20)

and (19) is equivalent to

(21)

For fading processes that have unit variance, (19) and (20)
still hold, while (21) becomes

(22)

The proof of (19), (21), and (22) is a straightforward appli-
cation of the second-order Taylor expansion of the function

and the monotone convergence theorem.
• Input Distributions: The proof of the achievability part of

Proposition 2.1 demonstrates that the low-SNR asymp-
totics of channel capacity can be achieved by considering
joint distributions on of the form

(23)

where is a random variable taking value in and
where the sequence is independent of and consists
of zero-mean modulus- random variables that are uncor-
related. The amplitude modulation component of the op-
timal signaling strategy is captured in the law of , and the
phase modulation component is captured in the law of .
Some examples of distributions on are the following:

i) , where , and where is
a discrete random variable uniformly distributed over
the set for some integer

. This is -ary FSK;
ii) are i.i.d. random variables uniform over the set

for some integer
. This is -ary phase-shift keying (PSK);

iii) are i.i.d. random variables uniformly dis-
tributed over the set . This is
also a form of PSK.

In practice, the signal of duration described in (23) would
be considered as a single symbol, and, as is usual in the
theory of channel coding, longer random codewords would
be comprised of many independent length symbols. Note
that even when are i.i.d. (as when PSK is used), the
random variables need not be i.i.d. because all
have the same magnitude (namely, ). Thus, whenever
is not deterministic, the sequence is not i.i.d. The fact
that our proposed input distribution (23) does not render

i.i.d. should not be surprising because i.i.d. inputs
do not typically achieve the low-SNR channel capacity
asymptotics; see Proposition 2.3. When the fading channel
is not memoryless, then i.i.d. inputs achieve the asymptotic
capacity only if there is no average-power constraint and if
there is sufficient memory in the channel . Also,
when there is sufficient memory in the channel, amplitude
modulation (nondeterministic ) is needed whenever the
average and peak-power constraints differ. The ON–OFF
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ratio of is then determined by the ratio of the average
to peak-power constraints.

• Relation to STORM: The FSK version (i.e., case i) above)
of the input distribution (23) is the single antenna spe-
cial case of the space–time orthogonal rank-one modu-
lation (STORM) input distribution, proposed for MIMO
block-fading channels by Srinivasan and Varanasi [13].
The distribution is used differently here. In [13], the param-
eter is taken to equal the block length of the channel. For
the stationary fading considered here, the capacity asymp-
tote is approached by letting .

• PSK Inputs: Zhang and Laneman [9] studied the low-SNR
asymptotic behavior of the information rates that can be
achieved on our channel when PSK inputs are used. In the
language of (23), PSK inputs correspond to choosing
in (23) to be deterministically equal to one and to
be a sequence of PSK input symbols (as described in ii)
or iii) above). (The constellation of the PSK does not af-
fect the asymptotic information rate.) The asymptotic rates
achieved by PSK (with ) were derived in [9] and are
given by

(24)

where denotes the information rate achieved
using PSK inputs. PSK is, in general, suboptimal when

because in PSK the peak power and the average
power are the same. Even when , PSK is not always
optimal. It is optimal for nonephemeral channels because
for and the RHS of (24) agrees with the RHS
of (9)

(25)

For , PSK is only optimal among i.i.d. input
distributions

(26)

And for , PSK is not optimal even among i.i.d.
input distributions

(27)

Consider the special case when the channel is memoryless
: here, PSK does not achieve any positive rates be-

cause it encodes all information in the phase of the transmit
signal; the memoryless channel completely wipes this in-
formation out by adding a phase term that takes new in-
dependent realizations with time. Unlike PSK, i.i.d. inputs
that use amplitude modulation can achieve positive rates
on the memoryless fading channel. Fig. 2 compares

and as functions of .
• On the Nonasymptotic Bound: The nonasymptotic bound

presented in Proposition 2.2 is tight at low SNR in the sense
that for any fixed we have

(28)

It is also tight when is held fixed and goes to
infinity in the sense that

(29)

Fig. 2. Comparison of ������ ���� and � (no average-power
constraint).

where the RHS of the above is given by [16]

(30)

Thus, our upper bound could be used as an alternate to the
upper bound used in [16]. Note that in fixing and letting

go to infinity we are holding the peak power fixed and
letting the allowed average power go to zero.
To verify (29) one can compute the left-hand side (LHS)
of (29) and then show that it equals the RHS of (30). This
can be done by noting that for sufficiently large we have

, and thus

The upper bound is found to be close to the
channel capacity at nontrivial values of SNR. As a demon-
stration, we numerically compare the upper bound to the
following lower bound derived in [17]. Let

(31)

where the input is an i.i.d. quadrature PSK process.
The channel capacity satisfies

(32)

In Fig. 3, we graph the capacity bounds and for a
Gauss–Markov channel with correlation coefficient .
Numerical integration is used to compute the lower bound.
The peak-to-average ratio is set as . The bounds are
found to be fairly tight.

B. MIMO Channels With Sum Power Constraints

For MIMO channels, we separately consider two different
types of constraints on the input signal. The constraints are im-
posed either on sums across transmit antennas, or on individual
transmit antennas. This subsection is devoted to MIMO chan-
nels with sum power constraints.
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Fig. 3. Comparison of upper and lower bounds on capacity. Gauss–Markov channel with correlation coefficient ����. Peak-to-average ratio � � ��.

1) The Model: We consider a single-user discrete-time
MIMO channel with transmit antennas and receive
antennas. The time- channel output is given by

(33)

where is the time- channel input, with repre-
senting the peak SNR and . In the above, the multi-
plicative noise is a matrix-valued stochastic process
such that at every time instant , the random matrix
is an complex random matrix. The random vectors

are i.i.d. random vectors, each consisting of
independent components. Thus, ,
where is the identity matrix. Denoting by
the row- column- entry in , we can write the th element
in as

(34)

As for SISO channels, we assume that and are
independent, and that their joint law does not depend on .
We further assume that for each pair satisfying

(35)

the scalar process is a zero-mean, stationary,
PCN process with autocorrelation function and spec-
tral density function . We also assume that the
processes corresponding to the different pairs satisfying
(35) are independent. We finally assume throughout this paper
that autocorrelation is square-summable for every an-
tenna pair satisfying (35) and define

(36)

Definition 2.2: A MIMO channel is said to be nonephemeral
if for every pair satisfying (35), the fading process

is nonephemeral, i.e., if

for all (37)

Definition 2.3: A MIMO channel is said to be transmit
separable if there are nonnegative constants

and autocorrelation functions
with corresponding spectral density functions

such that

for all and .

Definition 2.3 says that a MIMO channel is transmit sepa-
rable if fixing any one receive antenna, the channels from all
the transmit antennas have the same law up to some scaling
constants.

2) The Sum Power Constraints: The sum peak-power con-
straint on the channel inputs is that the time- channel input
must satisfy, with probability one

(38)

where denotes the sum of the squares of the components
of . The sum average-power constraint is that

(39)

The capacity of the channel under the sum power constraints
(38) and (39) is denoted by and is given by

(40)

with the supremum taken over all distributions on satisfying
(38) and (39). We further define

(41)

when the limit exists.
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3) Results on MIMO With Sum Power Constraints: The
asymptotic low-SNR capacity of the MIMO channel under sum
power constraints is given in the following proposition.

Proposition 2.4 (Asymptotic Capacity): For any , the
limit in (41) exists and is given by

(42)
where

(43)

For transmit separable channels, the above proposition is sim-
plified to the following corollary.

Corollary 2.2 (Asymptotic Capacity—Transmit Separable):
If the MIMO channel is transmit separable, then

(44)

where

(45)

and for every

(46)

Corollary 2.3 (Asymptotic Capacity—Transmit Sepa-
rable, Nonephemeral, No Average-Power Constraint): If the
channel is transmit separable and nonephemeral, and if no
average-power constraint is imposed , then

(47)

where and are as defined in Corollary 2.2.

As for SISO channels, we also give a firm upper bound on
.

Proposition 2.5 (A Firm Upper Bound on Capacity of MIMO
With Sum Constraints): For any and

(48)

where

(49)

(50)

and is defined as in (43).
4) Discussion:
• Input Distributions: As the proof of Proposition 2.4 sug-

gests, a distribution on that achieves the capacity
asymptotically is the following. At most one of the
transmit antennas is used during the whole transmission,
with antenna being chosen with probability . For the
chosen antenna, all the input symbols have
magnitude one and their phases are chosen in such a way
that each symbol is of mean zero and different symbols
are uncorrelated. If no antenna is chosen, then all antennas
keep silent during the whole transmission period.
In the case when the MIMO channel is transmit separable
(Corollary 2.2), the distribution on suggested in the
proof is to only use the one strongest antenna (i.e., the th
antenna with ). The signals sent by this antenna
have the same law as those used for SISO channels.
As for SISO channels, the suggested distributions for the
above two cases (general and transmit separable) on
are not i.i.d..
Finally, for transmit separable, nonephemeral channels
with no average-power constraint (Corollary 2.3), the
suggested input law is to use only the strongest antenna to
send symbols that all have mean zero, magnitude one, and
that are uncorrelated in time.

• Comparison with SISO Channels: We compare the asymp-
totic capacity of MIMO channels with sum power con-
straints to SISO channels. Consider the simple case when
the MIMO channel satisfies

(51)

for every antenna pair , where is the autocorre-
lation function of the SISO channel we compare the MIMO
with. Note that such a MIMO channel is transmit sepa-
rable. The asymptotic capacity of this MIMO channel fol-
lows from Corollary 2.2, and is given by

Thus, we see that the channel capacity at low SNR grows
linearly with the number of receive antennas , but does
not grow with the number of transmit antennas . The
former observation is easy to understand, because the re-
ceived signal energy is linear in ; the latter is not sur-
prising when we recall that an optimal input distribution for
MIMO channels with sum power constraints is to only use
one transmit antenna at any time. Intuitively, having mul-
tiple transmit antennas is not helpful at low SNR because
any benefit due to diversity brought by multiple transmit
antennas is nulled by the cost of tracking the additional
fading processes.

C. MIMO Channels With Individual Power Constraints

The MIMO channel model we consider under individual
power constraints is exactly the same as the model we consider
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under sum power constraints, as explained in Section II-B1.
The difference is in the form of the power constraints.

1) The Individual Power Constraints: The individual peak-
power constraint on the MIMO channel is that the time-
channel input of the th antenna must satisfy, with proba-
bility one

(52)

The individual average-power constraint is that

(53)

The capacity of the channel described in (33) (or (34)) under the
individual power constraints (52) and (53) is denoted as
and is given by

(54)

with the supremum taken over all distributions on satisfying
(52) and (53). We define

(55)

when the limit exists.
2) Results on MIMO With Individual Power Constraints: We

have failed to derive the asymptotic capacity of a general MIMO
fading channel with individual power constraints. Upper and
lower bounds on the asymptotic capacity are presented in Sec-
tion V. Here we present the asymptotic capacity for transmit
separable channels.

Proposition 2.6 (Asymptotic Capacity—Transmit Separable):
If the MIMO channel is transmit separable, then the limit in (55)
exists and is given by

(56)

The next corollary is a simpler case of the above proposition.

Corollary 2.4 (Asymptotic Capacity—Transmit Separable,
Nonephemeral, No Average Power Constraint): If the channel is
transmit separable and nonephemeral, and if no average-power
constraint is imposed , then

(57)

3) Discussion:
• Input Distributions: As the proof of Proposition 2.6 shows,

an input law that achieves the capacity asymptotically on
a transmit separable MIMO channel is to send the same
signal on all antennas, with the signal (on each antenna)
having the distribution that achieves the low-SNR capacity
of SISO channels. If the signal common to the antennas is
an FSK signal, this is the STORM input distribution [13].
As mention for the SISO channel, the block length of the
input is taken to be the block length of the channel model
in [13], whereas here we let to achieve the max-
imum capacity asymptote.

• Comparison With SISO Channels: We compare the asymp-
totic capacity of MIMO channels with individual power
constraints to SISO channels. Consider the case when the
MIMO channel satisfies (51) for every antenna pair where

is the autocorrelation function of the SISO channel.
Substituting in (60), we get the following expression for
the asymptotic capacity of this MIMO channel:

(58)

(59)

The channel capacity grows linearly with the number of
receive antennas —this is like the case of sum peak-
power constraints and for similar reasons. The channel ca-
pacity grows quadratically with the number of transmit an-
tennas . Increasing the number of transmit antennas
reduces the pressure from the peak-power constraint be-
cause the peak constraint is applied on individual antennas.
This causes a gain in capacity. The quadratic dependence
stems from the fact that, at vanishingly low peak and av-
erage-power constraints, the capacity grows quadratically
with the power constraints. A similar observation is made
in [18] for the case that the peak constraint is held fixed
as the SNR goes to zero, and a noncoherent block-fading
MIMO channel.

• Sum and Individual Power Constraints: We compare
the asymptotic capacities of a transmit separable MIMO
channel under sum and individual power constraints. The
former is given by (Corollary 2.2)

For the case under individual power constraints, we note
that the actually allowed (peak or average) transmit power
is times that in the case under sum power constraints.
Therefore, we are interested in the value (Proposition 2.6)

(60)

where is the average of . Thus, the
asymptotic capacity under sum power constraints is

times that under individual power con-
straints, and is generally larger than the latter. The two
values are equal only when all the transmit antennas are
equally strong, i.e., .

D. SISO Channels With Delay Spread

1) The Model: A SISO channel with delay spread is de-
scribed as follows. Its time- complex-valued channel output

is given by

(61)

where is the time- complex-valued channel input;
models the additive noise; and models the fading in tap
. We again assume that is a sequence of i.i.d. random

variables of law . The fading processes are assumed to
be independent across the taps, but correlated in time within
each tap, so that the processes are
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independent. The autocorrelation function of the fading in tap
is denoted by and it is assumed that it is square-summable
and that it possesses a spectral density function . We define

(62)

The following two definitions are analogous to those for MIMO
channels.

Definition 2.4: A SISO channel with delay spread is said to be
nonephemeral if the fading processes
are all nonephemeral, i.e., if

for all

Definition 2.5: A SISO channel with delay spread is said
to be delay separable if there are nonnegative constants

and an autocorrelation function with cor-
responding spectral density function such that

for all and .

The definition says that a SISO channel with delay spread is
delay separable if the fading in all the taps have the same law
up to some scaling constants. Note that if a channel is delay
separable, then it is nonephemeral if, and only if, .

We assume that the input signals are subject to the same con-
straints as considered earlier for SISO channels with flat fading,
i.e., that constraints (4) and (5) are imposed. The capacity of this
channel is denoted as and is given by

(63)

where the supremum is taken over all distributions on that
satisfy (4) and (5). We define

(64)

when the limit exists.
2) Results on SISO With Delay Spread: We identify the

asymptotic capacity of SISO channels with delay spread that
are delay separable.

Proposition 2.7 (Asymptotic Capacity—Delay Separable): If
the SISO channel with delay spread (61) is delay separable, then
the limit in (64) exists and is given by

(65)

where

(66)

Corollary 2.5 (Asymptotic Capacity—Delay Separable,
Nonephemeral, No Average Power Constraint): If the channel
is delay separable and nonephemeral, and if no average-power
constraint is imposed , then

(67)

3) Discussion:
• Input Distributions: As the proof of Proposition 2.7 shows,

a signaling scheme that achieves the capacity asymptoti-
cally is to send FSK signals with a certain probability, and
to send the all-zero signal otherwise. Here, the FSK signals
can be described as follows. The time- input is

where is a random variable, uniformly dis-
tributed over the set for some
integer . Note that in contrast to the SISO flat-fading
channels, for SISO channels with delay spread it is in gen-
eral not optimal to replace FSK with PSK.

• Relation With MIMO Channels: An upper bound on
is the capacity of the following multiple-input

single-output (MISO) channel with individual power
constraints

(68)

Here and are the same as in the SISO channel
with delay spread we are considering, and the input signals
satisfy with probability one and
for all . Indeed, with the following additional conditions,
the channel (68) is the same as (61)

whenever (69)

Generally speaking, condition (69) is very strong on MISO
channels. Therefore, it is usually not optimal to upper-
bound by the capacity of the MISO channel
with individual power constraints. However, as the proof
of Proposition 2.7 shows, this upper bound is tight in the
low-SNR limit for delay separable channels.

• Delay Spread Does Not Waste Energy at Low SNR: In a
delay separable channel, the actually received peak (av-
erage) signal power is times the received peak
(average) signal power in the corresponding SISO flat-
fading channel. Proposition 2.7 tells us that at low SNR,
the asymptotic capacity of the delay separable channel is
the same as that of a SISO flat-fading channel with the
same received power. Thus, having the power distributed in
different taps does not reduce the channel capacity at low
SNR. The delay spread channel is similar to a Gaussian
channel with noise power which depends on the weighted
sum of the past channel input powers. An analogous result
for this heating up channel was observed in [27].
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III. SISO CHANNELS

In this section, we shall prove the results given in Section
II-A. We start with the upper bound.

Proof of Proposition 2.2: To prove that
, where is defined in (12), it suffices to show

that

(70)

for all and all distributions on satisfying the peak-
and average-power constraints (4) and (5). To this end, we use
the chain rule of mutual information to write

(71)

where the last equality follows because the channel has no feed-
back. To prove (70), it thus suffices to show that

(72)

By shifting the indices by and adding random variables we
have

(73)

It thus follows by (73) that to prove (72) (and hence (70)), it
suffices to prove

(74)

for all distributions on satisfying the constraints (4) and
(5). To that end, we write

(75)

and bound the two terms on the RHS separately. As to the first
term, we note that the variance of is given by

so that the differential entropy of is bounded by

(76)

To study the term , we note that when is
known, the past channel inputs and outputs provide information
about only through the prediction of . So conditional on

and has the form

(77)

where
(78)

is the conditional expectation of conditional on
, and where

(79)

is the error in predicting based on . Conditional
on , since and are jointly PCN, we have that
is zero-mean PCN with variance that does not depend on .
We thus conclude that conditional on is PCN
with mean and variance . We
next show that for all

(80)

and therefore

(81)

Inequality (80) is justified by noting that the prediction error
(i.e., the variance of ) is minimized when all the past in-
puts have maximum amplitude, i.e., .
In this case, the estimation of based on re-
duces to estimation based on
where , so are i.i.d. random variables of law

[22]. The error of the latter estimation is given by
. Combining (76) and (81) we obtain

(82)

We next continue with the proof of (74) by further
upper-bounding the RHS of (82). Let . By
the average-power constraint (5)

(83)

By the concavity of the function, the RHS of (82) is max-
imized over all distributions satisfying the peak constraint (4)
and the constraint by

with probability
with probability

Consequently, for some

(84)

Maximizing the RHS of (84) over all yields the op-
timal choice and the maximum value , and
thus establishes (74).

Proof of Proposition 2.1: The proof consists of two parts.
The first part shows that

if

if
(85)

This combines with Proposition 2.2 to prove that is upper-
bounded by the RHS of (8). The second part demonstrates that

is also lower-bounded by the RHS of (8).
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We begin with the first part. By (22) we have that

(86)

We study two different cases corresponding to and to
. For the case , we have by (13) and (86)

Thus, in this case

(87)

where the second equality follows by a second-order Taylor ex-
pansion of the function and (22). In the case where ,
we have by (13) and (86) that

so that

(88)

The limits (87) and (88) establish (85).
We next turn to the second part. We shall now choose a joint

distribution on for every and show that under this
distribution

(89)

where the RHS of (89) is equal to the RHS of (7) (or (8)). The
expression on the LHS of (89) indeed forms a lower bound on

because, by Lemma A.1, for any and any distribu-
tion on satisfying the peak- and average-power constraints
(4) and (5)

(90)

and, therefore, for any

This inequality also holds in the limit as .

For a fixed , the proposed distribution on can be de-
scribed as follows:

where

with probability
with probability

for some , and are random variables satisfying

and

Examples of distributions on were given in Section II.
Under the proposed distribution on , the mutual information

when is small can be computed by applying [11,
Corollary 1], which is restated in this paper as Lemma B.1. We
apply the lemma by letting and be the
diagonal matrix with diagonal entries . The calcu-
lation shows that

(91)

Noting that by (3)

(92)

we obtain from (91) that

(93)

Equality (89) follows when we choose that maxi-
mizes the RHS of (93).

We shall now prove Proposition 2.3. Before doing so, we
present a lemma which studies the problem of predicting the
current fade based on the past channel inputs and outputs.
We have seen in the proof of Proposition 2.2 that if all the past
inputs satisfy , then this problem
is reduced to predicting based on a noisy observation of the
past , where is a sequence
of i.i.d. PCN noise. As shown in the next lemma, this problem
becomes more difficult when is not always .

Lemma 3.1: If the autocorrelation function of the unit-
variate fading process is absolutely summable, and if the
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input symbols satisfy the peak-power constraint (4), then
the conditional distribution of conditional on the past inputs

and outputs is PCN with a variance
which does not depend on , and

satisfies

(94)

where is uniform in .
Proof: See Appendix C.

Proof of Proposition 2.3: Since we are interested in the fact
that i.i.d. inputs do not generally achieve the channel capacity at
low SNR, we shall concentrate on the proof of the upper bound.
The achievability part can be proved by choosing an i.i.d. dis-
tribution on taking values in and by then applying
Lemma B.1.

As in the proof of Proposition 2.2, to show that
if

if
(95)

it suffices to show that for all i.i.d. distributions on satis-
fying the peak- and average-power constraints (4) and (5)

if

if

(96)

To prove (96), we decompose as in (75) and
treat the two terms on the RHS separately. The first term satisfies

(97)

To study the second term, we note that given , the past channel
inputs and outputs provide information about only through
the prediction of . Denoting

we can express in the same form as (77). By Lemma 3.1,
given and , the distribution of is PCN of variance

, thus, the distribution of is PCN of variance
. So we have

(98)

In the following calculations, let . Note that since
are i.i.d., for all . We obtain from (75),

(97), and (98) that

(99)

where the equality follows by calculations using the first-order
Taylor expansion of (Lemma 3.1), the second-

order Taylor expansion of , and the fact that
are i.i.d.; the last inequality follows because when

.
From (99) it follows that

(100)
Inequality (96) (and thus (95)) follows from (100) because when

, the maximum of the RHS of (100) is and

is achieved by ; when , the maximum is
and is achieved by

IV. MIMO CHANNELS WITH SUM POWER CONSTRAINTS

In this section, we shall prove the results on MIMO chan-
nels with sum power constraints. We shall first prove the upper
bound (Proposition 2.5) in two special cases, namely, for MISO
channels and for single-input multiple-output (SIMO) channels,
and then combine the proofs of these two special cases to prove
Proposition 2.5 generally for MIMO channels. The asymptotic
capacity results will then be proved with the help of Proposi-
tion 2.5.

We start with the upper bound on the capacity of the SIMO
channel. Consider the channel (34) with . We drop the
superscript and rewrite the channel as

(101)

Similarly, below we write instead of . The sum
power constraints reduce to constraints on the scalars

(102)

(103)

We denote the capacity of this channel by . For
this SIMO channel, Proposition 2.5 reduces to the following.

Lemma 4.1: The capacity is upper-bounded
by

(104)

where

(105)
Proof: Analogously to (74), to prove (104) it suffices to

show that

(106)

for all distributions on satisfying (102) and (103). To prove
(106), we expand its LHS as

(107)
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and proceed to bound the two terms separately. For we
have

(108)

We now consider . Because there is no
dependence between the fading processes , we have
that, conditional on and , the random variables

are mutually independent. Therefore

(109)

where the second equality follows because, conditional on
and , the signal at the th receive antenna

is independent of the past outputs of other antennas. From
(107), (108), and (109) we have

(110)

For every , the value of

can be upper-bounded in the same way as (84), thus we have
from (110)

where . Maximizing the RHS of this inequality
over yields (106).

We now turn to the MISO channel. Consider the channel
model in (34) when . Dropping the superscript we
rewrite the channel as

(111)

Similarly, below we write instead of and
instead of . Denote the capacity of this channel under the
sum constraints (38) and (39) by . Proposition
2.5 reduces to the following lemma.

Lemma 4.2: The capacity is upper-bounded
by

(112)

where

(113)

Proof: In analogy to the SISO case, to prove (112) it suf-
fices to show that

(114)

for all input distributions satisfying (38) and (39). To prove
(114), we expand its LHS as

(115)

and bound the two terms on the RHS of (115) separately. As
in the SISO case, is upper-bounded by the differential
entropy of a PCN random variable with the same variance as

. The variance of is given by

Hence

(116)

We now consider the term . To bound its
value, we consider for every the random variable
given by

(117)

where and are i.i.d. random variables of
law , which are independent of the channel inputs and
fading processes. It is easy to justify that, with our definition,

is a sequence of i.i.d. random variables inde-
pendent of the channel inputs and the fading processes. Thus,
we may replace the additive noise with for every
in the channel model without actually changing the channel law.
When we do this, the time- output can be written as

(118)
Conditional on and on for all

and , the current output
is independent of and . Thus, we have

(119)
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Conditional on , for every , the values of
provide information about only

through the prediction of . Furthermore, this prediction
(and, in particular, the prediction error) is independent be-
tween different ’s. The error in predicting based on

is . We thus obtain that, condi-
tional on and , the random variable is

PCN with variance . Consequently, the
conditional differential entropy
is

(120)

From (115), (116), (119), and (120) it follows that

(121)

We shall now maximize the RHS of the inequality over the dis-
tribution on . Let for all .
Due to the concavity of the function, the expectation of
the on the RHS of (121) is minimized when for all

, with probability

and with probability . This minimum
value of the expectation of the is . Thus, we
have from (121)

(122)

To prove (114), it remains to maximize the RHS of the above
inequality over . Note that due to the peak- and average-power
constraints (38) and (39), where is defined
in (143). Thus, the maximum value of the RHS of (122) is

.

We now turn to prove the upper bound on the capacity of the
MIMO channel with sum power constraints.

Proof of Proposition 2.5: As in the SISO case, to show
, it suffices to prove

(123)

for all distributions on satisfying (38) and (39). As in (110)
for the SIMO channel, the LHS of (123) is upper-bounded by

(124)

By (122), when fixing for all , each summand
on the RHS of (124) is upper-bounded by

(125)

Thus, we obtain from (124) and (125) that

(126)

Note that for input distributions satisfying (38) and (39) we have
. Thus, maximizing of the RHS of (126) on yields

the value . This establishes (123).

With the upper bound established, we now proceed to prove
the results on the capacity asymptote.

Proof of Proposition 2.4: The proof consists of two parts.
The first part shows that

(127)

It then follows from Proposition 2.5 and (127) that

(128)

The second part of the proof shows that the RHS of (42) (which
is the same as the RHS of (127)) also forms a lower bound on

.
To prove (127), we use the second-order Taylor expansion of

the function and the second-order Taylor expansion of the
function (21) to obtain

(129)

where the term is uniform in . Now (127) follows by
(129) and (49).
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We now start the second part of the proof. To derive a lower
bound on the asymptotic capacity, we shall find a distribution
on for every , such that

(130)

Note that by Lemma A.1, the LHS of (130) forms a lower bound
on . This combined with (128) proves (127).

For every and every vector , consider the
input distribution

where the random variables are chosen such
that with probability

and with probability

The random variables are chosen in the same way as for
the SISO channels, i.e., they satisfy

and

It can be checked that this input distribution satisfies the sum
power constraints (38) and (39).

To compute for this distribution, we again use
Lemma B.1. Calculation shows that

Similarly as (92), we have that by (21)

Thus, for every , under the input distributions chosen
according to

(131)

Choosing to be the vector that achieves the maximum in (130)
completes the proof.

We shall now derive Corollary 2.2 from Proposition 2.4.

Proof of Corollary 2.2: If the channel is transmit separable,
we have and . Equation (42)
reduces to

(132)

Assume without loss of generality that for all
, i.e., that the first transmit antenna is the strongest.

We shall next show that, under this assumption, it is optimal to
concentrate all the transmit power on the first antenna. To be
more precise, we shall show that for any , if is given by

otherwise
(133)

then

(134)

Note that whenever . Inequality (134)
follows because, according to (135),

Thus, we conclude that the maximization over in (132)
can be reduced to a maximization over the set

. This establishes (44).

Proof of Corollary 2.3: In (44), when and
, the optimal choice of is .

V. MIMO CHANNELS WITH INDIVIDUAL POWER CONSTRAINTS

In this section, we shall prove some capacity bounds for
MIMO channels with individual power constraints, and then
use these bounds to prove the main results given in Section II-C
about such channels.

We shall first give an upper bound on the capacity that is valid
for any SNR. To this end, we introduce a few definitions. Let
be the set of all probability distributions on

and (135)
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Let be the set of all length- binary sequences

(136)

Further, for any , let be a set of probability distributions
on defined as

(137)

Proposition 5.1: For any and any

(138)

where

(139)

where is taken to be .

The proof of this upper bound is a combination of the proofs
for MISO and SIMO channels. We shall give a proof of this
bound for MISO channels. The bound for SIMO channels and
for general MIMO channels can be proved in exactly the same
way as in the sum power constraint case, therefore we omit these
two parts.

For MISO channels , the above proposition reduces
to the following lemma.

Lemma 5.1: For any and any

(140)

where

(141)

Proof: In analogy to the SISO case, to prove (138), it suf-
fices to show

(142)

for all input distributions satisfying the individual power con-
straints (52) and (53), and for all . To this end, we follow
the proof of Lemma 4.2, but, instead of as defined in (117),
we introduce

for every to replace the additive noise . Here
and are defined in the same way as

for (117), i.e., they are i.i.d. random variables of law
and are independent of the other channel variables. Instead of
(118), we write as

Following the steps in the proof of Lemma 4.2 we have, instead
of (121)

(143)

By the concavity of the function, to maximize the RHS
of (143) over distributions on , it suffices to consider the
case when each input signal has either magnitude zero or
one, i.e., it suffices to consider the case when the vector

takes value in . Let be the proba-

bility distribution of . Note that,
according to the individual average-power constraint (53),
must satisfy . We thus obtain that maximizing the
RHS of (143) yields as defined in (141). This
establishes (142).

The next corollary, which follows from Proposition 5.1, gives
an upper bound on the asymptotic capacity of MIMO channels
with individual power constraints.

Corollary 5.1: For any and satisfying

(144)

Proof: Inequality (144) follows from (138) and (139) by
application of the second order Taylor expansion of the function

and the first-order Taylor expansion of .
The latter is given by

(145)

which can be obtained from (19).
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Proof of Proposition 2.6: We first consider the upper bound
(144) for transmit separable channels. For such channels, we
have and . Choosing to be

and denoting

(146)

(147)

Note that since

(148)

the square of the LHS of (148) is less than or equal to itself.
Thus, from (146) and (148) we have

(149)

From (147) and (149) we obtain

(150)

Noting that the RHS of (150) depends on only through ,
we replace by . Then (150) reduces to

(151)

The RHS of (151) is the same as that of (56).
To derive a lower bound on the asymptotic capacity, we pro-

pose an input distribution on for every . Such distri-
butions are given by

where and are chosen in the same way as for SISO chan-
nels, as described in Section III. We apply Lemma B.1 to obtain

(152)

By Lemma A.1, this forms a lower bound on

Combining (151) and (152) establishes (56).

Proof of Corollary 2.4: Note that when and
the channel is nonephemeral, i.e., for all

, the choice of that maximizes the RHS of
(56) is . Thus, in this case, (56) reduces to (57).

For channels that are nonephemeral, with no average-power
constraint , but that are not necessarily transmit sep-
arable, we have the following upper and lower bounds that in
general do not coincide.

Corollary 5.2: If the MIMO channel is nonephemeral and if
no average-power constraint is imposed , we have an
upper bound on the capacity asymptote given by

(153)

and a lower bound given by

(154)

Proof: The upper bound (153) is obtained by choosing
in (56). The lower bound (154) is obtained

by using the input distributions given in the proof of Proposi-
tion 2.6, with with probability one.

VI. SISO CHANNELS WITH DELAY SPREAD

In this section we shall prove Proposition 2.7 and Corol-
lary 2.5.

Proof of Proposition 2.7: As shown in Section II-D, the
capacity of the SISO channel with delay spread (61) is upper-
bounded by the capacity of the MISO channel (68) with the
same individual peak- and average-power constraints. The latter
is obtained by choosing in (56), which yields the same
value as the RHS of (65). Thus, to prove (65), it only remains
to find a lower bound on the asymptotic capacity that coincides
with its RHS.

For every , consider the following distribution on the
input signals . Let
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where is equal to with probability and is equal to with
probability ; is chosen such that ,
where ; is uniformly distributed over the set

for some . The asymptotic value of
for this input distribution is calculated using Lemma

B.1 to yield

By Lemma A.1, this gives us the desired lower bound on the
asymptotic capacity.

Proof of Corollary 2.5: When the channel is nonephemeral
and , the choice of that maximizes the

RHS of (65) is .

APPENDIX A
A LOWER BOUND ON THE CAPACITY

In this appendix, we present a general lower bound on the ca-
pacity of the SISO fading channel considered in this paper. This
lemma can be extended to MIMO channels with sum power con-
straints or individual power constraints, and to SISO channels
with delay spread. The proofs for these three cases are exactly
the same as for SISO channels.

Lemma A.1 (Lower Bound on Capacity): For any and
any distribution on satisfying the peak- and average-power
constraints (4) and (5)

(155)

Proof: We extend the distribution on to a distribution
on in such way that the length- blocks of input symbols

are i.i.d. according to the law of . Clearly, if
the given distribution on satisfies constraints (4) and (5),
then so does the induced distribution on . We next show
that under this distribution on

(156)

from which the Lemma A.1 follows. To prove (156), we let
and write

(157)

where the first inequality follows by omitting terms in the mu-
tual information; the next equality by the chain rule; the next
equality because the input symbols in different blocks are mu-
tually independent; the next inequality again by omitting terms
in the mutual information; and the last equality because every
block of input symbols has the same distribution as the first
block . Inequality (156) follows from (157) because

APPENDIX B
SECOND-ORDER ASYMPTOTICS OF MUTUAL INFORMATION

In this appendix, we restate a special case of [11, Corollary
1]. Consider the following channel:

(158)

where and are random -vectors and is an
random matrix. The entries of can be correlated with each
other, and are assumed to be of mean zero and jointly PCN.
The coordinates of the additive noise vector are i.i.d. random
variables of law .

Lemma B.1: If there exist and such that

(159)

for all , then

Note that since in this paper we are considering channels with
hard peak-power constraints ((4), or (38), or (52)), condition
(159) is always satisfied.

APPENDIX C
PROOF OF LEMMA 3.1

In this appendix, we shall prove Lemma 3.1. Define by
. According to the assumptions of Lemma

3.1, we have that is finite, that , and that the past
inputs satisfy the peak-power constraint (4). Let denote
the infinite matrix, with rows and columns indexed by the nega-
tive integers, with row- column- entry for negative
integers and . Let denote the infinite diagonal matrix with
row- column- entry , for negative integers . Let be the
infinite column vector with th entry for negative integers

. For fixed, is the covariance matrix of the
observation , and is the covariance between the vari-
able to be estimated, , and the observation . Although

is an infinite matrix, its powers are well defined in terms
of absolutely convergent sums. Indeed, it is easy to show by in-
duction on that for any . In
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view of this fact, for sufficiently small is
well defined by an absolutely convergent series

(160)

The orthogonality principle can be used to check that the op-
timal estimator can be represented by

(161)

with the minimum mean-square error given by

Substituting (160) into (161) yields

where

Let be the matrix obtained by replacing each entry of
by its magnitude, and define and similarly. Note that

, and the sum of the entries of is less than or equal to
. Therefore, for

Lemma 3.1 is proved.
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