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Abstract

We consider a discrete-time memoryless Multiple-Input Multiple-Output (MIMO) fading channel where the fading
matrix can be written as the sum of a deterministic (line-of-sight) matrixD and a random matrix̃H whose entries
are IID zero-mean unit-variance complex circularly-symmetric Gaussian random variables. It is demonstrated that
if the realization of the fading matrix is known at the receiver but not at the transmitter, then the capacity of
this channel under an average power constraint is monotonically non-decreasing in the singular values ofD. This
complements a recent result of Kim and Lapidoth [1] demonstrating the monotonicity of the mutual information
corresponding to isotropically distributed Gaussian input vectors. We also show that the optimal covariance matrix
of the Gaussian input vector has the same eigenvectors asD†D.

1 Introduction
We consider a discrete-time memoryless channel whose
output Y takes value in them-dimensional complex
Euclidean spaceCm and is given by

Y = Hx + Z (1)

where x ∈ C
n is the channel input; the random

vector Z has a NC

(
0, σ2Im

)
distribution for some

σ2 > 0; and the random matrixH ∈ Cm×n can be
written as

H = D + H̃ (2)

whereD ∈ C
m×n is a deterministicm× n matrix and

where them · n random components of the random
matrix H̃ ∈ Cm×n are IID NC(0, 1). HereNC(0, K)
denotes the zero-mean circularly-symmetric multivari-
ate Gaussian distribution of covariance matrixK, and
Im denotes them×m identity matrix. (In the scalar case
we writeNC(0, 1) rather thanNC(0, I1).) It is assumed
that H̃ andZ are independent, and that their joint law
does not depend on the inputx.

This channel model represents a narrowband fading
multiple-input multiple-output (MIMO) system with
perfect channel state information at the receiver.

We shall consider the capacity of this channel when
the realization of the fading matrixH is known to the
receiver, but only its probability law is known at the
transmitter. We shall assume that the transmitted signal
is subject to an average power constraint

E
[
X†X

] ≤ Es (3)

where we useA† to denote the Hermitian conjugate of
A. Making Es andσ2 implicit, we denote the capacity

of this channel byC(D):

C(D) = sup
X

I (X; HX + Z, H) (4)

whereI(X; HX+Z, H) denotes the mutual information
betweenX and the pair(HX + Z, H), and where the
supremum is over all random vectorsX ∈ C

n that are
independent of(H,Z) and that satisfy (3).

Expressing mutual information as a difference be-
tween differential entropies and noting that of all
random vectorsY of a given second moment ma-
trix E

[
YY†] differential entropy is maximized by the

zero-mean multivariate circularly-symmetric Gaussian
distribution, one can show that

I (X; HX + Z, H) ≤ I (XG; HXG + Z, H) (5)

where XG ∼ NC

(
0, E

[
XX†]), and where equality

holds only if X is zero-mean circularly-symmetric
Gaussian. That is, of all inputs to the channel of a
given second moment matrix, the zero-mean circularly-
symmetric Gaussian input vector maximizes mutual
information.

Evaluating the mutual information for such a Gaus-
sian input explicitly we obtain that

I (XG; HXG + Z, H) = EH

[
log det

(
Im +

1
σ2

HKH
†
)]

(6)
whereK = E

[
XGX†

G

]
.

Denoting the the mutual information corresponding
to aNC(0, K) input and to a mean matrixD by J(K, D),
we obtain from (6)

J(K, D) = EeH

[
log det

(
Im +

1
σ2

(H̃ + D)K(H̃ + D)†
)]

(7)
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and we can express the capacityC(D) as

C(D) = sup
K

J(K, D) (8)

where the supremum is over all positive semi-definite
matricesK satisfying the trace constraint

tr (K) ≤ Es. (9)

In fact, the set of all positive semi-definite matricesK
satisfying (9) is compact andJ(K, D) is (strictly)
concave inK so that the supremum in (8) is achieved.
Furthermore, it can be shown that the maximizingK
achieves (9) with equality and is unique.

It has recently been shown by Kim and Lapidoth [1]
that if K in (7) is proportional to the identity matrix, i.e.,
if one only considers isotropic Gaussian inputs, then
the resulting mutual information is monotonic in the
singular values of the matrixD. At ISIT’03, following
the presentation of that result, H. Boche asked [2]
whether a similar result holds for channel capacity.
Here we shall answer this affirmatively.

Theorem 1:Consider two line-of-sight matricesD?

andD and let{√d?
i } and{√di} be the decreasingly or-

dered singular values of the matricesD? andD, respec-
tively. If d?

i ≥ di, for every i ∈ {1, . . . , min{m, n}},
thenC(D?) ≥ C(D).

The proof of this theorem is given in Section 4. It is
simplified by the following theorem demonstrating that
the capacity-achieving covariance matrix of the input
vectorXG has the same eigenvectors asD†D.

Theorem 2:If the line-of-sight matrixD is “diago-
nal”1, thenC(D) is achieved by a Gaussian input vector
of a diagonal covariance matrix.

More generally, the set of eigenvectors of the
capacity-achieving covariance matrix must coincide
with those ofD†D.

The proof of Theorem 2 is given in Section 3. It has
recently been brought to our attention that this result
was independently derived by Venkatesanet al. [3].

2 Preliminary Results
For Theorem 1 to be meaningful we must show that
the capacityC(D) depends on the mean matrixD only
via its singular values. This, (see Lemma 2) as well as
some other preliminary results, will be proved in this
section.

We begin by noting that the law of the additive
isotropic Gaussian noiseZ is invariant to deterministic
rotations

UZ L= Z, UU† = Im (10)

and that the law of̃H is similarly invariant under left
and right deterministic rotations:

UH̃V† L= H̃, UU† = Im, VV† = In. (11)

1By a “diagonal”m×n matrix we refer to a matrix whose(i, j)
component is zero wheneveri 6= j, for 1 ≤ i ≤ m and1 ≤ j ≤ n.

Here
L= denotes equality in law.

These symmetries imply the following.
Lemma 1:The mutual informationI(X; HX+Z, H)

of the MIMO Ricean channel (1) with perfect side-
information at the receiver and with line-of-sight ma-
trix D induced by an inputX equals the mutual
information of a MIMO Ricean channel with line-of-
sight matrixD̂ = UDV† induced by the input̂X = VX,
where U ∈ Cm×m and V ∈ Cn×n are arbitrary
deterministic unitary matrices.

Proof: Let D̂ = UDV† where U ∈ Cm×m and
V ∈ Cn×n are deterministic unitary matrices. Then

I ( X ; (H̃ + D)X + Z, H̃
)

= I
(
X; (H̃ + U†D̂V)X + Z, H̃

)
= I

(
X; U

(
(H̃ + U†D̂V)X + Z

)
, H̃
)

(12)

= I
(
X; (UH̃V† + D̂)VX + UZ, H̃

)
= I

(
VX; (UH̃V† + D̂)VX + UZ, UH̃V†

)
(13)

= I
(
X̂; (H̃ + D̂)X̂ + Z, H̃

)
(14)

where (12) (respectively (13)) follows because rotating
the output (respectively input) does not change mutual
information, and where (14) follows by defininĝX =
VX and from (10) and (11).

Applying Lemma 1 to the zero-mean Gaussian inputs
we obtain:

Corollary 1: The mutual informationJ(K, D) of the
MIMO Ricean channel (1) with line-of-sight matrixD
induced by aNC(0, K) input equals the mutual infor-
mation of the MIMO Ricean channel with line-of-sight
matrix D̂ = UDV† induced by aNC

(
0, VKV†) input,

i.e.,
J(K, D) = J(VKV†, UDV†). (15)

Proof: Follows from the above lemma by consid-
ering the inputX to beNC(0, K) distributed whence
X̂ = VX is NC

(
0, VKV†) distributed.

The preceding corollary will now be used to prove
the following lemma, which makes Theorem 1 mean-
ingful:

Lemma 2: If D can be written in the formD =
UD̂V† where U ∈ C

m×m and V ∈ C
n×n are deter-

ministic unitary matrices then

C(D) = C(D̂). (16)

In particular, by the singular value decomposition the-
orem,C(D) depends onD only via its singular values.

Moreover, the covariance matrix̂K∗ achievesC(D̂)
if, and only if, K∗ = VK̂∗V† achievesC(D). Likewise,
K∗ achievesC(D) if, and only if, K̂∗ = V†K∗V
achievesC(D̂).

Proof: Assume thatD can be written asD =
UD̂V† whereU ∈ Cm×m andV ∈ Cn×n are determin-
istic unitary matrices. By (8) capacity can be expressed



as

C(D) = sup
K

J(K, D)

= sup
K

J(K, UD̂V†)

= sup
K

J(V†KV, D̂) (17)

= sup
K̂

J(K̂, D̂) (18)

= C(D̂)

where (17) follows from (15). Here (18) follows by
noting that sinceV is unitary it follows that for anyK,

tr
(
V†KV

)
= tr (K) (19)

so that the mappingK 7→ V†KV is a bijective mapping
from the set of all positive semi-definite matricesK
with tr (K) ≤ Es onto itself.

The relationship between the input that achieves
C(D) and the one that achievesC(D̂) follows from
(15).

3 Structure of the Optimal Input
Covariance Matrix

In this section we prove Theorem 2. We only consider
the case whereD is “diagonal”. The more general case
follows from the second part of Lemma 2. Starting from
any covariance matrixK ∈ C

n×n satisfying (9) and
picking any index1 ≤ k ≤ n, we will show that one
can null all the off-diagonal elements in thek-th row
and k-th column to produce a positive semi-definite
matrix K̄ ∈ C

n×n satisfying (9) and for which the
corresponding mutual information is at least as high
as for K, and is in fact strictly higher ifK̄ 6= K.
Repeating this proceduren times will prove that an
optimal covariance matrix must be diagonal. The details
follow.

Let D ∈ C
m×n be “diagonal”, and letK ∈ Cn×n be

an arbitrary positive semi-definite matrix fulfilling the
power constraint tr(K) ≤ Es. Fix some1 ≤ k ≤ n and
let the n × n unitary matrix Π be a diagonal matrix
all of whose diagonal entries are1 except for thek-th
entry, which is−1. Let Π̃ be anm×m unitary matrix
such that

Π̃†DΠ = D. (20)

For example, in the case wherem ≥ k the matrixΠ̃ can
be chosen as a diagonal matrix all of whose diagonal
entries are1 except for thek-th entry, which is−1. In
the case wherem < k the matrixΠ̃ can be chosen as
the identity matrix.

Consider now the positive semi-definite matrixK̃ =
ΠKΠ† whose entries are identical to those ofK except
that its off-diagonal entries in thek-th row and in the
k-th column have changed sign. SinceΠ is unitary,
the trace of K̃ is identical to that ofK and thus,

in particular, tr
(
K̃
)

≤ Es. We shall next show that

J(K̃, D) = J(K, D). Indeed,

J(K̃, D) = J(ΠKΠ†, D) (21)

= J(K, Π̃†DΠ) (22)

= J(K, D) (23)

where we have used the definition ofK̃ in (21); Corol-
lary 1 in (22); and (20) in (23).

Consider now the matrix

K̄ =
1
2

(
K + K̃

)
. (24)

Its entries are identical to those ofK except that its
off-diagonal elements in thek-th row and in thek-th
column are zero. In particular, its trace is identical to
that of K and thus satisfies tr

(
K̄
) ≤ Es. Moreover, by

the (strict) concavity ofJ(K, D) in K it follows that
the covariance matrix̄K achieves at least as high a
mutual information asK while still meeting the power
constraint tr

(
K̄
) ≤ Es:

J(K̄, D) ≥ 1
2

(
J(K, D) + J(K̃, D)

)
(25)

= J(K, D) (26)

where (25) holds with equality if, and only if,̄K = K
and where (26) follows from (23).

We have thus shown that nulling the off-diagonal
elements in any rowk and columnk of any covariance
matrix increases (strictly if they were not all zero to
start with) the mutual information, and Theorem 2
follows.

4 Outline of the Proof of Theorem 1
In this section we prove the main result of this paper,
namely, the monotonicity of capacity as a function
of the singular values of the line-of-sight matrixD.
SinceC(D) depends onD only via its singular values,
it suffices to concentrate on the case whereD is
“diagonal”. The proof of the theorem hinges on the
following two lemmas:

Lemma 3 (Anderson’s Theorem, [4]):Let E ⊆ C
m

be convex and symmetric about the origin. Let

f : C
m → R+, ξ 7→ f(ξ) (27)

be a non-negative function such that

• f(−ξ) = f(ξ);
• the set{ξ : f(ξ) ≥ s} is convex for everys > 0;
•
∫
E f(ξ) dξ < ∞.

Then for any vectorχ ∈ Cm and any0 ≤ c ≤ 1∫
E

f(ξ + cχ) dξ ≥
∫
E

f(ξ + χ) dξ. (28)

Lemma 4:Let m, n ≥ 1 be given. Let1 ≤ k ≤
n. Let the diagonal matrixL = diag (() l1, . . . , ln) ∈
Cn×n have non-negative diagonal elements and also be



fixed. For anyξ ∈ Cm andn−1 vectorsai ∈ Cm, i =
1, . . . , k − 1, k + 1, . . . , n let A[ξ : (ai)] denote the
m × n complex matrix whose columns are

a1, . . . ,ak−1, ξ,ak+1, . . .an.

Then for any fixed vectors{ai} the function

g(ξ) = det
(
Im + A[ξ : (ai)] L A†[ξ : (ai)]

)
(29)

is symmetric and convex inξ ∈ Cm.
In other words,det(Im + ALA†) is a symmetric

convex function of each of the columns ofA when the
other columns are held fixed.

Proof: We begin by noting that it suffices to treat
the case whereL is the identity matrix. To see this, note
that if we defineL1/2 = diag (()

√
l1, . . . ,

√
ln) then

det(Im + ALA†) = det(Im + AL1/2L1/2A†)

= det
(
Im + (AL1/2)(AL1/2)†

)
and

A [ξ : (ai)] L1/2 = A
[√

lkξ :
(√

liai

)]
.

Thus, the presence of the diagonal matrixL is tanta-
mount to a mere scaling of the columns ofA, a scaling
that does not affect the symmetry and the convexity.

We shall thus show that ifM ∈ C
m×n is a complex

matrix andk is an integer such that1 ≤ k ≤ n, then

det(Im + MM†) (30)

is a symmetric and convex function ofmk, thek-th col-
umn of M. ExpressingMM† as MM† =

∑n
i=1 mim

†
i

whereM = [m1, . . . ,mn] we have

det (Im + MM†) = det

mkm
†
k + Im +

n∑
i=1
i6=k

mim
†
i


= det

(
mkm

†
k + VΛV†

)
(31)

= det
(
V†(mkm

†
k + VΛV†)V

)
(32)

= det
(
(V†mk)(V†mk)† + Λ

)
= det

(
χχ† + Λ

)
(33)

= det
(
(Λ−1/2χ)(Λ−1/2χ)† + Im

)
det(Λ)

=
(
1 + ‖Λ−1/2χ‖2

)
det(Λ) (34)

=

(
1 +

m∑
i=1

1
λi

|χi|2
)

m∏
j=1

λj

=
m∏

i=1

λi +
m∑

i=1

|χi|2
m∏

j=1
j 6=i

λj

where in (31) we have used thatIm +
∑n

i=1
i6=k

mim
†
i is a

positive definite matrix that is independent ofmk and
that can be written asVΛV† with V ∈ Cm×m unitary
andΛ = diag (()λ1, . . . , λm) ∈ Rm×m a positive defi-
nite diagonal matrix with decreasingly ordered diagonal

elementsλ1 ≥ λ2 ≥ . . . ≥ λm > 0; equality (32)
follows from the fact that the determinant of a square
matrix is unitarily invariant, i.e.,det(V†BV) = det(B),
whereB ∈ Cm×m is any complex square matrix and
V ∈ Cm×m is unitary; and in (33) we have defined
χ = V†mk where χ = [χ1, . . . , χm]T ∈ C

m. The
above chain of equalities shows thatdet(Im + MM†)
is a symmetric and convex function ofχ. But sinceχ
is a linear function ofmk we conclude that it is also
symmetric and convex inmk.

We now sketch the proof of Theorem 1 using
Lemma 3 and Lemma 4. LetD? and D be two “di-
agonal” matrices with decreasingly ordered “diagonal”
elements{√d?

i } and{√di}, respectively, withd?
i ≥ di

for i ∈ {1, . . . , min{m, n}}. To prove the theorem it
suffices to consider the case

d?
k > dk and d?

i = di, i 6= k (35)

since the general case follows from the fact that(√
d?
1,
√

d?
2, . . . ,

√
d?

l

)
≥
(√

d1,
√

d?
2, . . . ,

√
d?

l

)
≥
(√

d1,
√

d2, . . . ,
√

d?
l

)
≥ . . .

≥
(√

d1,
√

d2, . . . ,
√

dl

)
wherel = min{m, n} and where the inequalities hold
elementwise, so that we have to prove only one of the
series of inequalities. From Theorem 2 we know that if
D is “diagonal” the capacity-achievingK is diagonal.
We will therefore only consider diagonal matricesK,
and we will show that in this case

det
(

Im +
1
σ2

(
H̃ + D?

)
K
(
H̃ + D?

)†)
≥st det

(
Im +

1
σ2

(
H̃ + D

)
K
(
H̃ + D

)†)
(36)

for any diagonal positive semi-definite matrixK, i.e.,
that the LHS of (36) is stochastically larger [5] than its
RHS:

Pr

[
det
(

Im +
1
σ2

(
H̃ + D?

)
K
(
H̃ + D?

)†)
≤ s

]
≤ Pr

[
det
(

Im +
1
σ2

(
H̃ + D

)
K
(
H̃ + D

)†)
≤ s

]
(37)

for every s > 0. From this it will follow by the
monotonicity of the logarithm function that

EeH

[
log det

(
Im +

1
σ2

(
H̃ + D?

)
K
(

H̃ + D?
)†)]

≥ EeH

[
log det

(
Im +

1
σ2

(
H̃ + D

)
K
(
H̃ + D

)†)]
(38)

i.e., that J(K, D?) ≥ J(K, D), and the theorem will
follow by (8).



We now proceed to outline the proof of (37). For any
s > 0 define the set of matrices

Fs =
{

A ∈ C
m×n : det

(
Im +

1
σ2

AKA†
)

≤ s

}
(39)

and the parameterized set of vectors

Fs ((ai)i6=k) = {ξ ∈ C
m : A [ξ : (ai)] ∈ Fs} . (40)

(Recall the notationA[ξ : (ai)], previously introduced
in Lemma 4.)

Using Lemma 4 one can show that for any(ai)i6=k

and s > 0 the set Fs((ai)i6=k) is symmetric and
convex. Thus, it meets the requirements imposed on
E in Lemma 3.

Let H̃k be the k-th column of H̃ and pH̃k
(·)

its probability density. Recall that the columns of
H̃ are independentNC(0, Im). Conditioning on the
columns{H̃i}i6=k we have

Pr

[
det
(

Im +
1
σ2

(
H̃ + D?

)
K
(
H̃ + D?

)†)
≤ s

∣∣∣∣ {H̃i = h̃i}i6=k

]
=
∫
Fs((h̃i+

√
d?

i ei)i6=k)

pH̃k
(h̃ −√d?

kek) dh̃

≤
∫
Fs((h̃i+

√
d?

i ei)i6=k)

pH̃k
(h̃ −

√
dkek) dh̃ (41)

=
∫
Fs((h̃i+

√
diei)i6=k)

pH̃k
(h̃−

√
dkek) dh̃ (42)

= Pr

[
det
(

Im +
1
σ2

(
H̃ + D

)
K
(
H̃ + D

)†)
≤ s

∣∣∣∣ {H̃i = h̃i}i6=k

]
whereei = [0, . . . , 0, 1, 0, . . . , 0]T denotes thei-th unit
vector of lengthm. This establishes (37) by multiplying
both sides with the joint density of{H̃i}i6=k and inte-
grating over their domain. Here we have used Lemma 3
with f(·) = pH̃k

(·) and c =
√

dk/d?
k < 1 to obtain

(41) and used (35) to obtain (42).
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