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Abstract—This paper studies the capacity of discrete-time
multipath fading channels. It is assumed that the number of paths
is nite, i.e., that the channel output is in uenced by the present
and by the L previous channel inputs. A noncoherent channel
model is considered where neither transmitter nor receiver are
cognizant of the fading’s realization, but both are aware of its
statistic. The focus is on capacity at high signal-to-noise ratios
(SNR). In particular, the capacity pre-loglog—de ned as the
limiting ratio of the capacity to loglog(SNR) as SNR tends to
in nity—is studied. It is shown that, irrespective of the number
of paths L, the capacity pre-loglog is 1.

I. INTRODUCTION

This paper studies the capacity of multipath (frequency-
selective) fading channels. A noncoherent channel model is
considered where neither transmitter nor receiver are cognizant
of the fading’s realization, but both are aware of its statistic.
Our focus is on the high signal-to-noise ratio (SNR) regime.
It has been shown in [1] for noncoherent frequency- at

fading channels that if the fading process is of nite entropy
rate, then at high SNR capacity grows double-logarithmically
with the SNR.1 For noncoherent multipath fading channels, it
has been recently demonstrated that if the delay spread is large
in the sense that the variances of the path gains do not decay
faster than geometrically, then capacity is bounded in the SNR
[3]. For such channels, capacity does not tend to in nity as
the SNR tends to in nity.
The above condition can only be met by multipath fading

channels that have an in nite number of paths in the sense
that the channel output is in uenced by the present and by all
previous channel inputs. In this paper we consider multipath
fading channels with a nite number of paths, i.e., the channel
output is only in uenced by the present and by the L previous
channel inputs. In order to characterize the capacity of this
channel at high SNR, we study the capacity pre-loglog, de ned
as the limiting ratio of capacity to log log SNR as SNR tends
to in nity. We show that the pre-loglog is not diminished by
the multipath behavior, i.e., irrespective of the value of L the
pre-loglog is 1. To state this result precisely we begin with a
mathematical description of the channel model.

A. Channel Model

Let C and Z
+ denote the set of complex numbers and the

set of positive integers, respectively. We consider a discrete-
time multipath fading channel whose channel output Yk ∈ C

1It is well known that when the receiver knows the fading perfectly, then
capacity increases logarithmically in the SNR [2]. Thus communicating over
noncoherent at-fading channels at high SNR is power inef cient.

at time k ∈ Z+ corresponding to the time-1 through time-k
channel inputs x1, . . . , xk ∈ C is given by

Yk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k−1∑
�=0

H
(�)
k xk−� + Zk, k = 1, . . . ,L

L∑
�=0

H
(�)
k xk−� + Zk, k = L + 1, L + 2, . . . .

(1)

Here H
(�)
k denotes the time-k gain of the �-th path; {Zk} is

a sequence of independent and identically distributed (IID),
zero-mean, variance-σ2, circularly-symmetric, complex Gaus-
sian random variables; and L ∈ Z

+
0 (where Z

+
0 denotes the

set of nonnegative integers) denotes the number of paths that
in uence Yk . For L = 0, the channel (1) reduces to the
at-fading channel that was studied in [1]; and for L = ∞,
Equation (1) describes the multipath fading channel that was
studied in [3]. In this paper we shall focus on the case
where the number of paths is nite, i.e., where L < ∞. We
assume that for each path � = 0, . . . ,L the stochastic process{
H

(�)
k , k ∈ Z+

}
is a zero-mean stationary process. We denote

its variance and its differential entropy rate by

α� � E
[∣∣H(�)

k

∣∣2] , � = 0 . . . , L (2)

and

h� � lim
n→∞

1
n

h
(
H

(�)
1 , . . . , H(�)

n

)
, � = 0, . . . ,L, (3)

respectively. Without loss of generality, we assume that α0 >
0. We further assume that

α� < ∞, � = 0, . . . ,L (4)

and
min
�∈L

h� > −∞, (5)

where the set L is de ned as L � {ν = 0, . . . ,L : αν > 0}.
We nally assume that the L + 1 processes{

H
(0)
k , k ∈ Z

+
}
, . . . ,

{
H

(L)
k , k ∈ Z

+
}

are independent (“uncorrelated scattering”), that they are
jointly independent of {Zk}, and that the joint law of(

{Zk},
{
H

(0)
k , k ∈ Z

+
}
, . . . ,

{
H

(L)
k , k ∈ Z

+
})

does not depend on the input sequence {xk}. We consider a
noncoherent channel model where neither the transmitter nor
the receiver is cognizant of the realization of

{
H

(�)
k , k ∈ Z+

}
,

� = 0, . . . ,L, but both are aware of their law. We do not
assume that the path gains are Gaussian.
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B. Channel Capacity

Let An
m denote the sequence Am, . . . , An. We de ne the

capacity as

C(SNR) � lim
n→∞

1
n

sup I
(
Xn

1 ; Y n
1

)
, (6)

where the supremum is over all joint distributions on
X1, . . . , Xn satisfying the power constraint

1
n

n∑
k=1

E
[|Xk|2

] ≤ P, (7)

and where SNR is de ned as

SNR � P

σ2
. (8)

It can be shown that for the above channel model

sup I(Xm
1 ; Y m

1 ) + sup I(Xn
1 ; Y n

1 )
≤ sup I(Xm+n

1 ; Y m+n
1 ) + o(m + n), m, n ∈ Z

+ (9)

(where lim(m+n)→∞ o(m + n)/(m + n) = 0) so that, by a
trivial generalization of Fekete’s lemma2, the limit in (6) exists
and is given by

lim
n→∞

1
n

sup I
(
Xn

1 ; Y n
1

)
= sup

n∈Z+

1
n

sup I
(
Xn

1 ; Y n
1

)
. (10)

By Fano’s inequality, no rate above C(SNR) is achievable.
(See [4] for a de nition of an achievable rate.) We do not claim
that there is a coding theorem associated with (6), i.e., that
C(SNR) is achievable. A coding theorem will, for example,
hold if the processes{

H
(0)
k , k ∈ Z

+
}
, . . . ,

{
H

(L)
k , k ∈ Z

+
}

are jointly ergodic, see [5, Thm. 2].
We de ne the capacity pre-loglog as

Λ � lim
SNR→∞

C(SNR)
log log SNR

. (11)

For at-fading channels (i.e., when L = 0) we have Λ = 1
[1]. For multipath fading channels with an in nite number of
paths (i.e., when L = ∞), it has been shown in [3] that when
the sequence {α�} decays not faster than geometrically, then
capacity is bounded in the SNR and hence Λ = 0. One might
therefore expect that the pre-loglog decays with L. It turns out,
however, that this is not the case.

C. Main Result

Theorem 1: Consider the above channel model, and assume
that L < ∞. Then, irrespective of L, the capacity pre-loglog
is given by

Λ = lim
SNR→∞

C(SNR)
log log SNR

= 1. (12)

Proof: See Section II.
Thus for nite L, the pre-loglog is not affected by the multipath
behavior.

2Fekete’s lemma states that if a sequence {an} is superadditive, i.e., an +
am ≤ am+n, m, n ∈ Z

+, then the limit limn→∞ an/n exists and is given
by supn∈Z+ an/n.

II. PROOF OF THEOREM 1

In Section II-A we derive a capacity upper bound and show
that the ratio of this bound to log log SNR tends to 1 as
SNR tends to in nity. In Section II-B we propose a coding
scheme which achieves a capacity pre-loglog of 1. Both results
combine to prove Theorem 1.

A. Converse

We begin with the chain rule for mutual information [4]

I
(
Xn

1 ; Y n
1

)
=

n∑
k=1

I
(
Xn

1 ; Yk

∣∣Y k−1
1

)
(13)

and upper bound then each summand on the right-hand side
(RHS) of (13) using the general upper bound for mutual
information [1, Eq. (27)]

I
(
Xn

1 ; Yk

∣∣Y k−1
1

) ≤ E[log |Yk|2
]− h

(
Yk

∣∣Xn
1 , Y k−1

1

)
+ ξ
(
1 + logE

[|Yk|2
]− E[log |Yk|2

])
+ log Γ(ξ)− ξ log ξ + log π (14)

for any ξ > 0. Here Γ(·) denotes the Gamma function.
We evaluate the terms on the RHS of (14) individually. We

use [3, Eq. (15)] to upper bound

E
[
log |Yk|2

] ≤ E
[
log

(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

(15)

and [3, Eq. (24)] to lower bound

h
(
Yk

∣∣Xn
1 , Y k−1

1

) ≥ E
[
log

(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

+ inf
�∈L

(h� − α�) , (16)

where we de ne α� � 0, � = L + 1, L + 2, . . .. The next term
is readily evaluated as

logE
[|Yk|2

]
= log

(
σ2 +

k−1∑
�=0

α�E
[|Xk−�|2

])
. (17)

Finally, we use [3, Eq. (30)] to lower bound

E
[
log |Yk|2

] ≥ E
[
log

(
σ2 +

k−1∑
�=0

α�|Xk−�|2
)]

+ log δ2

− 2ε(δ, η)− 2
η

(
2
e

+ log(πe)
)

+
2
η

inf
�∈L

(h� − α�) , (18)

where 0 < δ ≤ 1, 0 < η < 1, and where ε(δ, η) > 0 tends to
zero as δ ↓ 0.
Subtracting (18) from (17), and lower bounding

E
[
log
(
σ2 +

∑k−1
�=0 α�|Xk−�|2

)]
≥ log σ2 yields

logE
[|Yk|2

]− E[log |Yk|2
]

≤ log

(
1 +

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)
+ Ψ, (19)
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where we de ne

Ψ � log
1
δ2

+2ε(δ, η)+
2
η

(
2
e

+ log(πe)
)
− 2

η
inf
�∈L

(h� − α�) .

(20)
Thus we obtain from (19), (16), (15), and (14)

I
(
Xn

1 ; Yk

∣∣Y k−1
1

)
≤ − inf

�∈L
(h� − α�)

+ ξ

(
1 + log

(
1 +

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)
+ Ψ

)
+ log Γ(ξ)− ξ log ξ + log π. (21)

Let α(L) be de ned as

α(L) �
L∑

�=0

α�. (22)

We choose now

ξ =
(
1 + log

(
1 + α(L)SNR

))−1

and use that [1, Eq. (337)]

log Γ(ξ) = log
1
ξ

+ o(1)

and that ξ log ξ = o(1) (where the term o(1) vanishes as ξ
tends to zero) to obtain

I
(
Xn

1 ; Yk

∣∣Y k−1
1

)
≤ − inf

�∈L
(h� − α�)

+
1 + log

(
1 +
∑k−1

�=0 α�E
[|Xk−�|2

]
/σ2
)

+ Ψ

1 + log
(
1 + α(L)SNR

)
+ log

(
1 + log

(
1 + α(L)SNR

))
+ log π + o(1). (23)

Using (23) in (13), and noting that ξ—and hence also the
correction term o(1)—does not depend on k yields then

1
n

I
(
Xn

1 ; Y n
1

) ≤ log
(
1 + log

(
1 + α(L)SNR

))
+Υn,P+o(1),

(24)
where we de ne Υn,P as

Υn,P �
1 + 1

n

∑n
k=1 log

(
1+
∑k−1

�=0 α�E
[|Xk−�|2

]
/σ2
)

+ Ψ

1 + log
(
1 + α(L)SNR

)
− inf

�∈L
(h� − α�) + log π. (25)

Note that by Jensen’s inequality

1
n

n∑
k=1

log

(
1 +

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)

≤ log

(
1 +

1
n

n∑
k=1

k−1∑
�=0

α�E
[|Xk−�|2

]
/σ2

)

≤ log
(
1 + α(L)SNR

)
, (26)

where the last inequality follows by rewriting the double sum
as 1

n

∑n
k=1 E

[|Xk|2
]
/σ2
∑n−k

�=0 α�, and by upper bounding
then

∑k−n
�=0 α� ≤ α(L) and using the power constraint (7).

Consequently, we can upper bound Υn,P by

Υn,P ≤ 1 + Ψ− inf
�∈L

(h� − α�) + log π (27)

and obtain therefore from (6), (24), and (27)

C(SNR) ≤ log
(
1 + log

(
1 + α(L)SNR

))
+ 1 + Ψ

− inf
�∈L

(h� − α�) + log π + o(1). (28)

Noting that ξ ↓ 0 as SNR tends to in nity (and hence
limSNR→∞ o(1) = 0), this yields the desired result

Λ � lim
SNR→∞

C(SNR)
log log SNR

≤ 1. (29)

B. Direct Part

In order to show that

Λ � lim
SNR→∞

C(SNR)
log log SNR

≥ lim
SNR→∞

C(SNR)
log log SNR

≥ 1 (30)

we shall derive a capacity lower bound and analyze then its
ratio to log log SNR as SNR tends to in nity.
To this end we evaluate 1

nI(Xn
1 ; Y n

1 ) for the fol-
lowing distribution on the inputs {Xk}. Let Xb =(
Xb(L+τ)+1, . . . , X(b+1)(L+τ)

)
for some τ ∈ Z+. We shall

choose {Xb} to be IID with
Xb =

(
0, . . . , 0︸ ︷︷ ︸

L

, X̃bτ+1, . . . , X̃(b+1)τ

)
,

where X̃bτ+1, . . . , X̃(b+1)τ is a sequence of indepen-
dent, zero-mean, circularly-symmetric random variables with
log |X̃bτ+ν|2 being uniformly distributed over the interval
[log x2

min,ν , log x2
max,ν ], i.e.,

log |X̃bτ+ν|2 ∼ U
(
[log x2

min,ν , logx2
max,ν ]

)
, ν = 1, . . . , τ.

The parameters xmin,ν and xmax,ν will be chosen later.
Let κ � � n

L+τ 	, and let Yb denote the vector(
Yb(L+τ)+1, . . . , Y(b+1)(L+τ)

)
. We have

I
(
Xn

1 ; Y n
1

) ≥ I
(
Xκ−1

0 ;Yκ−1
0

)
=

κ−1∑
b=0

I
(
Xb;Yκ−1

0

∣∣Xb−1
0

)

≥
κ−1∑
b=0

I(Xb;Yb), (31)

where the rst inequality follows by restricting the number
of observables in each of the terms; the subsequent equality
follows by the chain rule for mutual information; and the last
inequality follows by restricting the number of observables
and by noting that {Xb} is IID.
We continue by lower bounding each summand on the RHS

of (31) according to [6, Sec. III-B]. We use again the chain
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rule and that reducing observations cannot increase mutual
information to obtain

I(Xb;Yb) ≥ I
(
X̃

(b+1)τ
bτ+1 ; Y (b+1)(L+τ)

b(L+τ)+L+1

)
=

τ∑
ν=1

I
(

X̃bτ+ν ; Y (b+1)(L+τ)
b(L+τ)+L+1

∣∣∣ X̃bτ+ν−1
bτ+1

)

≥
τ∑

ν=1

I(X̃bτ+ν; Yb(L+τ)+L+ν), (32)

where we additionally have used in the last inequality that
X̃bτ+1, . . . , X̃(b+1)τ are independent.
De ning

Wbτ+ν �
L∑

�=1

H
(�)
b(L+τ)+L+νXb(L+τ)+L+ν−� + Zb(L+τ)+L+ν

(33)
each summand on the RHS of (32) can be written as

I(X̃bτ+ν ; Yb(L+τ)+L+ν)

= I
(
X̃bτ+ν; H(0)

b(L+τ)+L+νX̃bτ+ν + Wbτ+ν

)
. (34)

A lower bound on (34) follows from the following lemma.
Lemma 2: Let the random variables X , H , and W have
nite second moments. Assume that bothX andH are of nite
differential entropy. Finally, assume that X is independent of
H ; that X is independent of W ; and that X −H −W forms
a Markov chain. Then,

I(X ; HX + W ) ≥ h(X)− E[log |X |2]+ E
[
log |H |2]

− E
[
log

(
πe

(
σH +

σW

|X |
)2
)]

, (35)

where σ2
W ≥ 0 and σ2

H > 0 are the variances of W and H ,
respectively.3

Proof: See [6, Lemma 4].
It can be easily veri ed that for the channel model

given in Section I-A and for the above coding scheme the
lemma’s conditions are satis ed. We can therefore lower
bound I(X̃bτ+ν; Yb(L+τ)+L+ν) by

I(X̃bτ+ν ; Yb(L+τ)+L+ν)

≥ h(X̃bτ+ν)− E
[
log |X̃bτ+ν|2

]
+ E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2]
− E
⎡
⎣log

⎛
⎝πe

(
√

α0 +

√
E[|Wbτ+ν |2]
|X̃bτ+ν|

)2
⎞
⎠
⎤
⎦ . (36)

Using that the differential entropy of a circularly-symmetric
random variable is given by (e.g., [1, Eqs. (320) & (316)])

h(X̃bτ+ν) = E
[
log |X̃bτ+ν|2

]
+ h
(
log |X̃bτ+ν |2

)
+ log π,

(37)

3Note that the assumptions that X and H have nite second moments and
are of nite differential entropy guarantee that E

ˆ
log |X|2˜

and E
ˆ
log |H|2˜

are nite, see [1, Lemma 6.7e)].

and evaluating h(log |X̃bτ+ν |2) for our choice of X̃bτ+ν , we
obtain for the rst two terms on the RHS of (36)

h
(
log |X̃bτ+ν|2

)−E[log |X̃bτ+ν|2
]

= log log
x2
max,ν

x2
min,ν

+log π.

(38)
Upper bounding

E
[|Wbτ+ν |2

]
=

L∑
�=1

α�E
[|Xb(L+τ)+L+ν−�|2

]
+ σ2

≤ max
�=0,...,ν−1

x2
max,� · α(L) + σ2 (39)

(where we de ne x2
max,0 � 0), and lower bounding |X̃bτ+ν |2 ≥

x2
min,ν , the last term on the RHS of (36) can be upper bounded
by

E

⎡
⎣log

⎛
⎝πe

(
√

α0 +

√
E[|Wbτ+ν |2]
|X̃bτ+ν|

)2
⎞
⎠
⎤
⎦

≤ log

⎛
⎜⎜⎝πe

⎛
⎜⎝√α0 +

√√√√ max
�=0,...,ν−1

x2
max,� · α(L) + σ2

x2
min,ν

⎞
⎟⎠

2
⎞
⎟⎟⎠ (40)

and we thus obtain from (36), (38), and (40)

I(X̃bτ+ν ; Yb(L+τ)+L+ν)

≥ log log
x2
max,ν

x2
min,ν

+ E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2]− 1

− 2 log

⎛
⎜⎝√α0 +

√√√√ max
�=0,...,ν−1

x2
max,� · α(L) + σ2

x2
min,ν

⎞
⎟⎠ . (41)

Following [6, Eqs. (102) & (103)], we choose now (assum-
ing that P > 1)

x2
max,ν = Pν/τ , ν = 1, . . . , τ

x2
min,ν = P(ν−1)/τ log P, ν = 1, . . . , τ.

With this choice we have

x2
max,ν

x2
min,ν

=
P1/τ

log P
, ν = 1, . . . , τ (42)

and

max
�=0,...,ν−1

x2
max,�

x2
min,ν

=
{

0, ν = 1
1/ logP, ν = 2, . . . , τ.

(43)

Thus applying (42) & (43) to (41) yields

I(X̃bτ+ν ; Yb(L+τ)+L+ν)

≥ log log
P1/τ

log P
+ E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2]− 1

− 2 log

(
√

α0 +

√
α(L)

log P
+

σ2

P(ν−1)/τ log P

)

≥ log log
P1/τ

log P
+ E
[
log
∣∣H(0)

1

∣∣2]− 1
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− 2 log

⎛
⎝√α0 +

√
α(L) + σ2

log P

⎞
⎠ , P > 1, (44)

where the last inequality follows by using that the pro-
cess

{
H

(0)
k , k ∈ Z+

}
is stationary and that, for P > 1,

P(ν−1)/τ ≥ 1.
Note that the RHS of (44) depends neither on ν nor on b.

We therefore obtain from (44), (32), and (31)

I
(
Xn

1 ; Y n
1

) ≥ κτ log log
P1/τ

log P
+ κτΞP, P > 1, (45)

where we de ne ΞP as

ΞP � E
[
log
∣∣H(0)

1

∣∣2]− 1− 2 log

⎛
⎝√α0 +

√
α(L) + σ2

log P

⎞
⎠ .

(46)
Dividing the RHS of (45) by n, and computing the limit as n
tends to in nity yields the capacity lower bound

C(SNR) ≥ lim
n→∞

1
n

I
(
Xn

1 ; Y n
1

)
≥ τ

L + τ
log log

P1/τ

log P
+

τ

L + τ
ΞP, P > 1, (47)

where we have used that limn→∞ κ/n = 1/(L + τ).
By noting that (for any xed τ )

lim
SNR→∞

log log
(
P1/τ/ logP

)
log log SNR

= 1 (48)

lim
SNR→∞

ΞP

log log SNR
= 0 (49)

we infer from (47) that the capacity pre-loglog Λ is lower
bounded by

Λ � lim
SNR→∞

C(SNR)
log log SNR

≥ lim
SNR→∞

C(SNR)
log log SNR

≥ τ

L + τ
.

(50)
The claim (30) follows now by letting τ tend to in nity.

III. CONCLUSION

We considered a discrete-time, noncoherent, multipath fad-
ing channel where the number of paths is nite, i.e., where
the channel output is in uenced by the present and by the
L previous channel inputs. It was shown that, irrespective of
the number of paths, the capacity pre-loglog is 1 (which is
equal to the pre-loglog of a at-fading channel). Thus, when
the number of paths is nite, then the multipath behavior has
no signi cant effect on the high-SNR capacity. This is perhaps
surprising as it has been shown in [3] that if the channel output
is in uenced by the present and by all previous channel inputs,
and if the variances of the path gains do not decay faster than
geometrically, then capacity is bounded in the SNR. For such
channels the capacity does not tend to in nity as the SNR
tends to in nity and hence the capacity pre-loglog is zero.
The above results indicate that the high-SNR behavior of

the capacity of noncoherent multipath fading channels depends
critically on the assumed channel model. Thus, when studying
such channels at high SNR, one has to attach great importance
to the channel modeling, as slight changes in the model might
lead to completely different capacity results.
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