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ABSTRACT

The capacity of discrete-time, noncoherent, multipath fading
channels is considered. It is shown that if the variances of
the path gains decay faster than exponentially, then capacity
is unbounded in the transmit power.

Index Terms— Channel capacity, information rates, mul-
tipath channels, fading channels, noncoherent.

1. INTRODUCTION

This paper studies the capacity of multipath (frequency-
selective) fading channels. A noncoherent channel model
is considered where neither transmitter nor receiver are cog-
nizant of the fading’s realization, but both are aware of its
statistic. Our focus is on the high signal-to-noise ratio (SNR)
regime.

For the special case of noncoherent frequency-flat fad-
ing channels (where we have only one path), it was shown
by Lapidoth & Moser [1] that if the fading process is of fi-
nite entropy rate, then at high SNR capacity grows double-
logarithmically with the SNR. This is in stark contrast to the
logarithmic growth of the capacity of coherent fading chan-
nels (where the realization of the fading is known to the
receiver) [2]. Thus, communicating over noncoherent flat-
fading channels at high SNR is power inefficient.

Recently, it has been demonstrated that communicating
over noncoherent multipath fading channels at high SNR is
not merely power inefficient, but may be even worse: if the
delay spread is large in the sense that the variances of the path
gains decay exponentially or slower, then capacity is bounded
in the SNR; see [3, Thm. 1]. For such channels, capacity does
not tend to infinity as the SNR tends to infinity.

In contrast, if the variances of the path gains decay faster
than double-exponentially, then capacity is unbounded in the
SNR; see [3, Thm. 2]. This condition is certainly satisfied
if the number of paths is finite, i.e., if the channel output is
only influenced by the present and by the L previous chan-
nel inputs. (Here only the variances of the first (L + 1) path
gains are positive, while the other variances are zero.) It was
shown in [4] that in this case capacity is not only unbounded
in the SNR, but its growth with the SNR is also independent

of the number of paths and equals the growth of the capacity
of noncoherent frequency-flat fading channels, i.e.,

lim
SNR→∞

C(SNR)
log log SNR

= 1.

Thus, for finite L, the capacity pre-loglog is unaffected by the
number of paths L.

The above results demonstrate that whether the capacity
of a multipath channel is unbounded in the SNR depends crit-
ically on the decay rate of the variances of the path gains.
However, [3, Thm. 1] only accounts for decay rates that are
exponentially or slower, whereas [3, Thm. 2] only regards de-
cay rates that are faster than double-exponentially. Thus, [3,
Thm. 1] & [3, Thm. 2] fail to characterize the capacity of
channels for which the variances of the path gains decay faster
than exponentially but slower than double-exponentially. In
this paper, we bridge this gap by showing that if the variances
of the path gains decay faster than exponentially, then capac-
ity is unbounded in the SNR.

1.1. Channel Model

Let C and N denote the set of complex numbers and the set
of positive integers, respectively. We consider a discrete-time
multipath fading channel whose channel output Yk ∈ C at
time k ∈ N corresponding to the time-1 through time-k chan-
nel inputs x1, . . . , xk ∈ C is given by

Yk =
k−1∑
�=0

H
(�)
k xk−� + Zk, k ∈ N. (1)

Here {Zk} models additive noise, andH
(�)
k denotes the time-

k gain of the �-th path. We assume that {Zk} is a sequence
of independent and identically distributed (IID), zero-mean,
variance-σ2, circularly-symmetric, complex Gaussian ran-
dom variables. For each path � ∈ N0 (where N0 denotes the
set of nonnegative integers), we assume that

{
H

(�)
k , k ∈ N

}
is a zero-mean, complex stationary process. We denote its
variance and its differential entropy rate by

α� � E
[∣∣H(�)

k

∣∣2] , � ∈ N0 (2)
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and

h� � lim
n→∞

1
n

h
(
H

(�)
1 , . . . , H(�)

n

)
, � ∈ N0. (3)

Without loss of generality we assume that α0 > 0. We further
assume that ∞∑

�=0

α� � α < ∞ (4)

and
inf
�∈L

h� > −∞, (5)

where the set L is defined as L � {� ∈ N0 : α� > 0}. We
finally assume that the processes{

H
(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .

are independent (“uncorrelated scattering”); that they are
jointly independent of {Zk}; and that the joint law of(

{Zk},
{
H

(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .

)
does not depend on the input sequence {xk}. We consider
a noncoherent channel model where neither transmitter nor
receiver is cognizant of the realization of

{
H

(�)
k , k ∈ N

}
,

� ∈ N0, but both are aware of their law. We do not assume
that the path gains are Gaussian.

1.2. Channel Capacity

Let An
m denote the sequence Am, . . . , An. We define the ca-

pacity as

C(SNR) � lim
n→∞

1
n

sup I
(
Xn

1 ; Y n
1

)
, (6)

where the supremum is over all joint distributions on
X1, . . . , Xn satisfying the power constraint

1
n

n∑
k=1

E
[|Xk|2

] ≤ P, (7)

and where SNR is defined as

SNR � P

σ2
. (8)

By Fano’s inequality, no rate above C(SNR) is achievable.
(See [5] for a definition of an achievable rate.) We do not
claim that there is a coding theorem associated with (6), i.e.,
that C(SNR) is achievable. A coding theorem will hold, for
example, if there are only (L + 1) paths (for some L < ∞),
and if the processes corresponding to these paths{

H
(0)
k , k ∈ N

}
, . . . ,

{
H

(L)
k , k ∈ N

}
are jointly ergodic, see [6].

In [3] a necessary and a sufficient condition for C(SNR)
to be bounded in SNR was derived:

Theorem 1. Consider the above channel model. Then(
lim

�→∞

α�+1

α�
> 0
)

=⇒
(

sup
SNR>0

C(SNR) < ∞
)

(9)

and(
lim

�→∞
1
�

log log
1
α�

= ∞
)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

,

(10)
where we define a/0 � ∞ for every a > 0 and 0/0 � 0.

Proof. For the first condition (9) see [3, Thm. 1], and for the
second condition (10) see [3, Thm. 2].

For example, when α� = e−�, then capacity is bounded,
and when α� = exp

(− exp(�κ)
)
for some κ > 1, then ca-

pacity is unbounded. Roughly speaking, we can say that
when {α�} decays exponentially or slower, then C(SNR) is
bounded in SNR, and when {α�} decays faster than double-
exponentially, then C(SNR) is unbounded in SNR.

1.3. Main Result

Our main result is an improved achievability result. We derive
a weaker condition that satisfies to guarantee that capacity is
unbounded in the SNR.

Theorem 2. Consider the above channel model. Then(
lim

�→∞
1
�

log
1
α�

= ∞
)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

,

(11)
where we define 1/0 � ∞.

Proof. See Section 2.

By noting that(
lim

�→∞
α�+1

α�
= 0
)

=⇒
(

lim
�→∞

1
�

log
1
α�

= ∞
)

we obtain from Theorems 1 & 2 the immediate corollary:

Corollary 3. Consider the above channel model. Then

i)
(

lim
�→∞

α�+1

α�
> 0
)

=⇒
(

sup
SNR>0

C(SNR) < ∞
)

(12)

ii)
(

lim
�→∞

α�+1

α�
= 0
)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

, (13)

where we define a/0 � ∞ for every a > 0 and 0/0 � 0.

For example, when α� = exp(−�κ) for some κ > 1, then
capacity is unbounded.

Theorem 2 and Corollary 3 demonstrate that when {α�}
decays faster than exponentially, then C(SNR) is unbounded
in SNR, thus bridging the gap between (9) and (10).
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2. PROOF OF THEOREM 2

In order to prove Theorem 2, we shall derive in Section 2.1
a lower bound on capacity and then show in Section 2.2 that
this bound can be made arbitrarily large, provided that

lim
�→∞

1
�

log
1
α�

= ∞.

2.1. Capacity Lower Bound

To derive a lower bound on capacity, we evaluate
1
nI(Xn

1 ; Y n
1 ) for the following distribution on the inputs

{Xk}.
Let L(P) be such that

∞∑
�=L(P)+1

α� · P ≤ σ2. (14)

To shorten notation, we shall write in the following L instead
of L(P). Let τ ∈ N be some positive integer that possibly
depends on L, and let Xb = (Xb(L+τ)+1, . . . , X(b+1)(L+τ)).
We choose {Xb} to be IID with

Xb =
(
0, . . . , 0︸ ︷︷ ︸

L

, X̃bτ+1, . . . , X̃(b+1)τ

)
,

where X̃bτ+1, . . . , X̃(b+1)τ is a sequence of independent,
zero-mean, circularly-symmetric, complex random variables
with log |X̃bτ+ν|2 being uniformly distributed over the inter-
val
[
log P(ν−1)/τ , log Pν/τ

]
, i.e., for each ν = 1, . . . , τ

log |X̃bτ+ν |2 ∼ U
([

log P(ν−1)/τ , log Pν/τ
])

.

(Here and throughout this proof we assume that P > 1.)
Let κ � � n

L+τ � (where �a� denotes the largest integer
that is less than or equal to a), and let Yb denote the vector
(Yb(L+τ)+1, . . . , Y(b+1)(L+τ)). By the chain rule for mutual
information [5, Thm. 2.5.2] we have

I
(
Xn

1 ; Y n
1

) ≥ I
(
Xκ−1

0 ;Yκ−1
0

)
=

κ−1∑
b=0

I
(
Xb;Yκ−1

0

∣∣ Xb−1
0

)

≥
κ−1∑
b=0

I(Xb;Yb), (15)

where the first inequality follows by restricting the number
of observables; and where the last inequality follows by re-
stricting the number of observables and by noting that {Xb}
is IID.

We continue by lower bounding each summand on the
right-hand side (RHS) of (15). We use again the chain rule

and that reducing observations cannot increase mutual infor-
mation to obtain

I(Xb;Yb) =
τ∑

ν=1

I
(
X̃bτ+ν ;Yb

∣∣ X̃bτ+ν−1
bτ+1

)
≥

τ∑
ν=1

I
(
X̃bτ+ν ; Yb(L+τ)+L+ν

∣∣ X̃bτ+ν−1
bτ+1

)
≥

τ∑
ν=1

I
(
X̃bτ+ν ; Yb(L+τ)+L+ν

)
, (16)

where we have additionally used in the last inequality that
X̃bτ+1, . . . , X̃(b+1)τ are independent.

Defining

Wbτ+ν �
b(L+τ)+L+ν−1∑

�=1

H
(�)
b(L+τ)+L+νXb(L+τ)+L+ν−�

+ Zb(L+τ)+L+ν (17)

each summand on the RHS of (16) can be written as

I
(
X̃bτ+ν ; Yb(L+τ)+L+ν

)
= I
(
X̃bτ+ν ; H(0)

b(L+τ)+L+νX̃bτ+ν + Wbτ+ν

)
. (18)

A lower bound on (18) follows from the following lemma.

Lemma 4. Let the randomvariablesX ,H , andW have finite
second moments. Assume that both X and H are of finite
differential entropy. Finally, assume that X is independent
of H; that X is independent of W ; and that X�−−H�−−W
forms a Markov chain. Then

I(X ; HX + W ) ≥ h(X) − E[log |X |2]+ E
[
log |H |2]

− E
[
log
(

πe

(
σH +

σW

|X |
)2)]

, (19)

where σ2
H ≥ 0 and σ2

H > 0 denote the variances of W and
H . (Note that the assumptions that X and H have finite sec-
ond moments and are of finite differential entropy guarantee
that E

[
log |X |2] and E[log |H |2] are finite, see [1, Lemma

6.7e].)

Proof. See [7, Lemma 4].

It can be easily verified that for the channel model given
in Section 1.1 and for the above coding scheme the lemma’s
conditions are satisfied. We therefore obtain from Lemma 4

I
(
X̃bτ+ν; H(0)

b(L+τ)+L+νX̃bτ+ν + Wbτ+ν

)
≥ h

(
X̃bτ+ν

)− E[log |X̃bτ+ν |2
]

+ E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2]
− E

[
log
(

πe

(√
α0 +

√
E[|Wbτ+ν |2]
|X̃bτ+ν |

)2)]
. (20)
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Using that the differential entropy of a circularly-symmetric
random variable is given by (see [1, Eqs. (320) & (316)])

h
(
X̃bτ+ν

)
= E

[
log |X̃bτ+ν|2

]
+ h
(
log |X̃bτ+ν |2

)
+ log π,

(21)
and evaluating h(log |X̃bτ+ν |2) for our choice of X̃bτ+ν ,
yields for the first two terms on the RHS of (20)

h
(
X̃bτ+ν

)−E[log |X̃bτ+ν |2
]

= log log P1/τ + log π. (22)

We next upper bound

E
[|Wbτ+ν |2

]
|X̃bτ+ν|2

=
L∑

�=1

α�

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν|2

+
b(L+τ)+L+ν−1∑

�=L+1

α�

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν|2

+
σ2

|X̃bτ+ν |2
. (23)

To this end we note that for our choice of {Xk} and by the
assumption that P > 1, we have

E
[|X�|2

] ≤ P, � ∈ N, (24)

E
[|Xb(L+τ)+L+ν−�|2

] ≤ P(ν−�)/τ , � = 1, . . . , L, (25)

and
|X̃bτ+ν |2 ≥ P(ν−1)/τ ≥ 1, (26)

from which we obtain

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

≤ P(ν−�)/τ

P(ν−1)/τ
≤ 1, � = 1, . . . , L

(27)
and

E
[|Xb(L+τ)+L+ν−�|2

]
|X̃bτ+ν |2

≤ P, L < � < b(L + τ) + L + ν.

(28)
Applying (26)–(28) to (23) yields

E
[|Wbτ+ν |2

]
|X̃bτ+ν |2

≤
L∑

�=1

α� +
b(L+τ)+L+ν−1∑

�=L+1

α� · P + σ2

≤ α +
∞∑

�=L+1

α� · P + σ2

≤ α + 2σ2, (29)

with α being defined in (4). Here the second inequality fol-
lows because α�, � ∈ N0 and P are nonnegative, and the last
inequality follows from (14).

By combining (20) with (22) & (29), and by noting that
by the stationarity of

{
H

(0)
k , k ∈ N

}
E
[
log
∣∣H(0)

b(L+τ)+L+ν

∣∣2] = E
[
log
∣∣H(0)

1

∣∣2] ,

we obtain the lower bound

I
(
X̃bτ+ν ; H(0)

b(L+τ)+L+νX̃bτ+ν + Wbτ+ν

)
≥ log log P1/τ + E

[
log
∣∣H(0)

1

∣∣2]− 1

− 2 log
(√

α0 +
√

α + 2σ2
)
. (30)

Note that the RHS of (30) neither depends on ν nor on b. We
therefore have from (30), (16), and (15)

I
(
Xn

1 ; Y n
1

) ≥ κτ log log P1/τ + κτΥ, (31)

where we define Υ as

Υ � E
[
log
∣∣H(0)

1

∣∣2]− 1 − 2 log
(√

α0 +
√

α + 2σ2
)
. (32)

Dividing the RHS of (31) by n, and computing the limit as n
tends to infinity, yields the lower bound on capacity

C(SNR) ≥ τ

L + τ
log log P1/τ +

τ

L + τ
Υ, P > 1, (33)

where we have used that limn→∞ κ/n = 1/(L + τ).

2.2. Unbounded Capacity

We next show that

lim
�→∞

1
�

log
1
α�

= ∞ (34)

implies that the RHS of (33) can be made arbitrarily large. To
this end we note that by (34) we can find for every 0 < 	 < 1
an �0 ∈ N such that

α� < 	�, � > �0. (35)

We therefore have
∞∑

�=�′+1

α� <

∞∑
�=�′+1

	� = 	�′ 	

1 − 	
, �′ ≥ �0. (36)

We choose L so that it satisfies

	L 	

1 − 	
P ≤ σ2, (37)

i.e., we choose

L =

⎡
⎢⎢⎢

log
(
SNR �

1−�

)
log 1

�

⎤
⎥⎥⎥ (38)

(where �a� denotes the smallest integer that is greater than or
equal to a). We shall argue next that this choice also satis-
fies (14). Indeed, we have by (38) that L tends to infinity as
SNR → ∞, which implies that, for sufficiently large SNR, L
is greater than �0. It follows then from (36) and (37) that

∞∑
�=L+1

α� · P < 	L 	

1 − 	
P ≤ σ2. (39)

1-4244-2482-5/08/$20.00 ©2008 IEEE 643 IEEEI 2008



We continue by evaluating the RHS of (33) for our choice
of L (38) and for τ = L

C(SNR) ≥ τ

L + τ
log log P1/τ +

τ

L + τ
Υ

=
1
2

log
(

log P

L

)
+

1
2
Υ. (40)

Taking the limit as SNR tends to infinity yields

lim
SNR→∞

C(SNR)

≥ lim
SNR→∞

1
2

log

(
log(SNR · σ2)
log(SNR·�/(1−�))

log(1/�)

)
+

1
2
Υ

=
1
2

log log
1
	

+
1
2
Υ. (41)

As this can be made arbitrarily large by choosing 	 suffi-
ciently small, we conclude that

lim
�→∞

1
�

log
1
α�

= ∞

implies that C(SNR) is unbounded in SNR.

3. SUMMARY

We studied the capacity of discrete-time, noncoherent, mul-
tipath fading channels. It was shown that if the variances of
the path gains decay faster than exponentially, then capacity
is unbounded in the SNR. This complements previous results
obtained in [3] and [4].

The overall picture looks as follows:

• If the number of paths is infinite in the sense that the
channel output is influenced by the present and by all
previous channel inputs, and if the variances of the path
gains decay exponentially or slower, then capacity is
bounded even as the SNR grows without bound.

• If the number of paths is infinite but the variances of
the path gains decay faster than exponentially, then ca-
pacity tends to infinity as SNR→ ∞.

• If the number of paths is finite, then, irrespective of the
number of paths, the capacity pre-loglog is 1. Thus,
in this case the multipath behavior has no significant
effect on the high-SNR capacity.

We thus see that the high-SNR behavior of the capacity
of noncoherent multipath fading channels depends critically
on the assumed channel model. Consequently, when studying
such channels at high SNR, the channel modeling is crucial,
as slight changes in the model might lead to completely dif-
ferent capacity results.
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