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Abstract—We study the secrecy of a distributed storage system
for passwords. The encoder, Alice, observes a length-n password
and describes it using two hints, which she then stores in different
locations. The legitimate receiver, Bob, observes both hints. In
one scenario we require that the number of guesses it takes Bob
to guess the password approach 1 as n tends to infinity and in
the other that the size of the list that Bob must form to guarantee
that it contain the password approach 1. The eavesdropper, Eve,
sees only one of the hints; Alice cannot control which. For each
scenario we characterize the largest normalized (by n) exponent
that we can guarantee for the number of guesses it takes Eve to
guess the password.

I. INTRODUCTION

Suppose that some sensitive information X (e.g. password)
is drawn from a finite set X according to some PMF PX .
A (stochastic) encoder, Alice, maps (possibly using random-
ization) X to two hints M1 and M2, which she then stores
in different locations. The hints are intended for a legitimate
receiver, Bob, who knows where they are stored and has access
to both. An eavesdropper, Eve, sees one of the hints but not
both; we do not know which. Given some notion of ambiguity,
we would ideally like Bob’s ambiguity about X to be small
and Eve’s large.

Which hint is revealed to Eve is a subtle question. We adopt
a conservative approach and assume that, after observing X ,
an adversarial genie reveals to Eve the hint that minimizes her
ambiguity. Not allowing the genie to observe X would lead
to a weaker form of secrecy (an example is given in [1]).

There are several ways to define ambiguity. For example, we
could require that Bob be able to reconstruct X whenever X
is ”typical” and that the conditional entropy of X given Eve’s
observation be large. For some scenarios, such an approach
might be inadequate. Firstly, this approach may not properly
address Bob’s needs when X is not typical. For example, if
Bob must guess X , this approach does not guarantee that the
expected number of guesses be small: It only guarantees that
the probability of success after one guess be large. It does
not indicate the number of guesses that Bob might need when
X is atypical. Secondly, conditional entropy need not be an
adequate measure of Eve’s ambiguity: if X is some password
that Eve wishes to uncover, then we may care more about the
number of guesses that Eve needs than about the conditional
entropy [2].

In this paper, we assume that Eve wants to guess X with
the least number of guesses of the form ”Is X = x?”. We
quantify Eve’s ambiguity about X by the expected number
of guesses that she needs to uncover X . In this sense, Eve
faces an instance of the Massey-Arikan guessing problem

[3], [4]. For each possible observation z in some finite set
Z , Eve chooses a guessing function G(· |z ) from X onto
the set {1, . . . , |X |}, which determines the guessing order:
if Eve observes z, then the question ”Is X = x?” will be
her G(x|z)-th question. Eve’s expected number of guesses is
E[G(X|Z)]. This expectation is minimized if for each z ∈ Z
the guessing function G(· |z ) orders the possible realizations
of X in decreasing order of their posterior probabilities given
Z = z.

As to Bob, we will consider two different criteria: In the
”guessing version” of the problem the criterion is the expected
number of guesses it takes Bob to guess X , and in the ”list
version” the criterion is the first moment of the size of the list
that Bob must form to guarantee that it contain X .1 We shall
see that the two criteria lead to similar results.

The former criterion is natural when Bob can check whether
a guess is correct: If X is some password, then Bob can stop
guessing as soon as he has gained access to the account that
is secured by X .

The latter criterion is appropriate if Bob does not know
whether a guess is correct. For example, if X is a task that
Bob must perform, then the only way for Bob to make sure
that he performs X is to perform all the tasks in a list
comprising the tasks that have positive posterior probabilities
given his observation. In this scenario, a good measure of
Bob’s ambiguity about X is the expected number of tasks
that he must perform, and this will be small whenever Alice
is a good task-encoder for Bob [5]. To describe the list of
tasks that Bob must perform more explicitly, let us denote by

P[M1 = m1,M2 = m2 |X = x ] , m1 ∈M1, m2 ∈M2

the probability that Alice produces the pair of hints
(M1,M2) = (m1,m2) upon observing that X = x. It
is 0-1 valued if Alice does not use randomization. Upon
observing that (M1,M2) = (m1,m2), Bob produces the list
Lm1,m2

of all the tasks x ∈ X whose posterior probabil-
ity P[X = x|M1 = m1,M2 = m2] is positive. Our notion of
Bob’s ambiguity about X is E

[
|LM1,M2 |

]
.

The guessing and the list-size criterion for Bob lead to
similar results in the following sense: Clearly, every guess-
ing function G(·|M1,M2) for X that maps the elements
of X that have zero posterior probability to larger values

1Our setup differs from the one in [2] in the following sense: Instead of
mapping X to a public message using a secret key, which is available to Bob
but not to Eve, here Alice produces two hints and stores them so that Bob
sees both but Eve sees only one. Moreover, unlike [2] we do not measure
Bob’s ambiguity in terms of the probability that X is not his first guess.



than those that have a positive posterior probability satisfies
E
[
G(X|M1,M2)

]
≤ E

[
|LM1,M2

|
]
. Conversely, one can prove

that every pair of ambiguities for Bob and Eve that is achiev-
able in the ”guessing version” is, up to polylogarithmic factors
of |X |, also achievable in the ”list version” provided that we
increaseM1 orM2 by a logarithmic factor of |X | [1]. These
polylogarithmic factors wash out in the asymptotic regime
where the sensitive information is an n-tuple and n tends to
infinity.

With no extra effort we can generalize the model and replace
expectations with ρ-th moments. This we do to better bring
out the role of Rényi entropy. For an arbitrary ρ > 0, we thus
study the ρ-th (instead of the first) moment of the list-size
and of the number of guesses. Moreover, we shall allow some
side-information Y that is available to all parties. We shall
thus assume that the pair (X,Y ) takes value in the finite set
X × Y according to PX,Y .

II. PROBLEM STATEMENT

We consider two problems, which we call the ”guessing
version” and the ”list version”. They differ in the definition
of Bob’s ambiguity. In both versions a pair (X,Y ) is drawn
from the finite set X × Y according to the PMF PX,Y , and
ρ > 0 is fixed. Upon observing (X,Y ) = (x, y), Alice draws
the hints M1 and M2 from the finite setM1×M2 according
to some conditional PMF

P[M1 = m1,M2 = m2 |X = x, Y = y ] . (1)

In the ”guessing version” Bob’s ambiguity about X is

A
(g)

B (PX,Y ) = min
G

E
[
G(X|Y,M1,M2)

ρ]
. (2)

In the ”list version” Bob’s ambiguity about X is

A
(l)

B (PX,Y ) = E
[
|LYM1,M2

|ρ
]
, (3)

where for all y ∈ Y and (m1,m2) ∈M1 ×M2

Lym1,m2
= {x : P[X = x |Y = y,M1 = m1,M2 = m2 ] > 0}

is the list of all the tasks whose posterior probability

P[X = x |Y = y,M1 = m1,M2 = m2 ]

=
PX,Y (x, y)P[M1=m1,M2=m2 |X=x, Y =y ]∑
x̃ PX,Y (x̃, y)P[M1=m1,M2=m2 |X= x̃, Y =y ]

(4)

is positive. In both versions Eve’s ambiguity about X is

AE(PX,Y )= min
G1,G2

E
[
G1(X |Y,M1 )

ρ∧G2(X |Y,M2 )
ρ]
, (5)

where α ∧ β denotes the minimum of α and β.
Optimizing over Alice’s mapping, i.e., the choice of the

conditional PMF in (1), we wish to characterize the largest
ambiguity that we can guarantee that Eve will have subject to
a given upper bound on the ambiguity that Bob may have.

Of special interest to us is the asymptotic regime where
(X,Y ) is an n-tuple (not necessarily drawn IID), and where

M1 =
{
1, . . . , 2nR1

}
,M2 =

{
1, . . . , 2nR2

}
,

where (R1, R2) is a nonnegative pair corresponding to the
rate. For both versions of the problem, we shall characterize
the largest exponential growth that we can guarantee for Eve’s
ambiguity subject to the constraint that Bob’s ambiguity tend
to one. This asymptote turns out not to depend on the version
of the problem, and in the asymptotic analysis AB can stand
for either A

(g)
B or A

(l)
B .

To phrase this mathematically, let us introduce the stochastic
process {(Xi, Yi)}i∈N with finite alphabet X ×Y . We denote
by PXn,Y n the PMF of (Xn, Y n). For a nonnegative rate-
pair (R1, R2), we call EE an achievable ambiguity-exponent
if there is a sequence of stochastic encoders such that Bob’s
ambiguity (which is always at least 1) satisfies

lim
n→∞

AB(PXn,Y n) = 1, (6)

and such that Eve’s ambiguity satisfies

lim inf
n→∞

log(AE(PXn,Y n))

n
≥ EE. (7)

We shall characterize the supremum EE of all achievable
ambiguity-exponents, which we call privacy-exponent. If (6)
cannot be satisfied, then the set of achievable ambiguity-
exponents is empty, and we say that the privacy-exponent is
negative infinity.

III. MAIN RESULTS

To describe our results, we shall need a conditional version
of Rényi entropy (originally proposed by Arimoto [6] and also
studied in [5])

Hα(X|Y ) =
α

1− α
log
∑
y∈Y

(∑
x∈X

PX,Y (x, y)
α
)1/α

, (8)

where α ∈ [0,∞] is the order and where the cases where α
is 0, 1, or ∞ are treated by a limiting argument. In addition,
we shall need the notion of conditional Rényi entropy-rate:
Let {(Xi, Yi)}i∈N be a discrete-time stochastic process with
finite alphabet X × Y . Whenever the limit as n tends to
infinity of Hα(X

n|Y n) /n exists, we denote it by Hα(X|Y )
and call it conditional Rényi entropy-rate. In this paper,
α = 1/(1 + ρ) takes value in the set (0, 1). To simplify
notation, we henceforth write ρ̃ for 1/(1 + ρ) and α ∨ β for
the maximum of α and β.

A. Finite Blocklength Results

In the next two theorems cs is related to how much can
be gleaned about X from (M1,M2) but not from one hint
alone; c1 is related to how much can be gleaned from M1;
and c2 is related to how much can be gleaned from M2.
More precisely, we shall see in Section V ahead that Alice
first maps (X,Y ) to the triple (Vs, V1, V2), which takes value
in a finite set Vs × V1 × V2, where |Vν | = cν , ν ∈ {s, 1, 2}.
Independently of (X,Y ) she then draws a (one-time-pad like)
random variable U uniformly over Vs and maps (U, Vs) to a
variable Ṽs choosing the (XOR like) mapping so that Vs can
be recovered from (Ṽs, U) while Ṽs alone is independent of
(X,Y ). The hints are M1=(Ṽs, V1) and M2=(U, V2). Since



the tuple (Ṽs, V1) takes value in the set Vs × V1 of size csc1
we must have that csc1 ≤ |M1|. Likewise, we must have that
csc2 ≤ |M2|. Because cs, c1, and c2 are positive integers,
they thus satisfy (9) ahead. Alice does not use randomization
if cs = 1.

Theorem 1 (Finite Blocklength Guessing Version): For ev-
ery triple (cs, c1, c2) ∈ N3 satisfying

cs≤|M1|∧|M2| , c1≤b|M1|/csc , c2≤b|M2|/csc , (9)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2)+1), (10)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ (1 + ln|X |)−ρ 2ρ(Hρ̃(X|Y )−log(c1+c2)). (11)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y )≥(1+ln|X |)−ρ2ρ(Hρ̃(X|Y )−log|M1||M2|)∨1, (12)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y )≤(|M1|ρ∧|M2|ρ)A (g)
B (PX,Y )∧2ρHρ̃(X|Y ). (13)

Theorem 2 (Finite Blocklength List Version): If |M1||M2|>
log|X |+ 2, then for every triple (cs, c1, c2) ∈ N3 satisfying

cs≤|M1|∧|M2| , c1≤b|M1|/csc , c2≤b|M2|/csc , (14a)
csc1c2 > log|X |+ 2, (14b)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(l)

B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2−log|X |−2)+2), (15)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ (1 + ln|X |)−ρ 2ρ(Hρ̃(X|Y )−log(c1+c2)). (16)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(l)

B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−log|M1||M2|) ∨ 1, (17)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y )≤(|M1|ρ∧|M2|ρ)A (l)
B (PX,Y )∧2ρHρ̃(X|Y ). (18)

We sketch a proof of Theorems 1 and 2 in Section V ahead.
Here, we discuss an important implication of the theorems:

Note 3: Let UB ≤ 2ρ(Hρ̃(X|Y )−log|M1||M2|) ∨ 1. There is
a choice of the conditional PMF in (1) so that, neglecting
polylogarithmic factors of |X |, Bob’s ambiguity satisfies the
upper bound UB, while Eve’s ambiguity is guaranteed to be
(|M1|ρ∧|M2|ρ)UB∧2ρHρ̃(X|Y ).

To show that Note 3 holds, we next argue that the bounds in
Theorems 1 and 2 are tight in the sense that with a judicious
choice of (cs, c1, c2) the achievability results (namely (10)–
(11) in the ”guessing version” and (15)–(16) in the ”list
version”) match the corresponding converse results (namely

(12)–(13) in the ”guessing version” and (17)–(18) in the ”list
version”) up to polylogarithmic factors of |X |. By possibly
relabeling the hints, we can assume w.l.g. that |M2| ≤ |M1|.
If |M2| exceeds 2Hρ̃(X|Y ) we can choose (cs, c1, c2) =
(|M2| , 1, 1). Neglecting polylogarithmic factors of |X |, this
choice guarantees that Bob’s ambiguity be close to one, while
Eve’s ambiguity is 2ρHρ̃(X|Y ). Suppose now that |M2| does
not exceed 2Hρ̃(X|Y ). In this case we can choose (cs, c1, c2)
so that c1 ≥ c2 and, neglecting logarithmic factors of |X |,
so that csc2 = |M2| while csc1c2 assumes any given integer
value between |M2| and (|M1| |M2|)∧2Hρ̃(X|Y ). This indeed
proves the claim: neglecting polylogarithmic factors of |X |, we
can guarantee that Bob’s ambiguity satisfy any given upper
bound no smaller than the RHS of (12) or (17), while Eve’s
ambiguity satisfies (13) or (18) with equality.

B. Asymptotic Results

Consider now the asymptotic regime where (X,Y ) is an
n-tuple. In this case the results are the same for both versions
of the problem, and we thus refer to both A

(g)
B and A

(l)
B by

AB. With a judicious choice of (cs, c1, c2) one can show that
Theorems 1 and 2 imply the following asymptotic result:

Corollary 4: Let {(Xi, Yi)}i∈N be a discrete-time stochas-
tic process with finite alphabet X × Y , and suppose its con-
ditional Rényi entropy-rate Hρ̃(X|Y ) is well-defined. Given
any positive rate-pair (R1, R2), the privacy-exponent is

EE=

{
ρ(R1∧R2∧Hρ̃(X|Y )), R1+R2>Hρ̃(X|Y )

−∞, R1+R2<Hρ̃(X|Y ) .
(19)

In the full version of this paper [1], we generalize Corol-
lary 4 to a scenario where Bob’s ambiguity may grow expo-
nentially with a given normalized (by n) exponent EB.

IV. LISTS AND GUESSES

The results for the ”guessing version” and the ”list version”
are remarkably similar. To understand why, we relate task-
encoders to guessing functions. We show that a good guessing
function induces a good task-encoder and vice versa:

Theorem 5: Let (X,Y ) be drawn from the finite set X ×Y
according to the PMF PX,Y . Using the side-information Y ,
a stochastic task-encoder describes the task X by a chance
variable M , which it draws from a finite set M according to
some conditional PMF

P[M = m|X = x, Y = y] , m ∈M, x ∈ X , y ∈ Y. (20)

For any PMF (20) define for all m ∈M and y ∈ Y the lists

Lym = {x ∈ X : P[X = x|Y = y,M = m] > 0} . (21)

1) For every conditional PMF (20) the lists {Lym} induce
a guessing function G(·|Y ) for X such that

E[G(X|Y )
ρ
] ≤ |M|ρ E

[
|LYM |ρ

]
. (22)

2) Every guessing function G(·|Y ) for X and every posi-
tive integer v ≤ |X | satisfying

|M| ≥ v (blogd|X | /vec+ 1) (23)



induce a 0-1 valued conditional PMF (20)—i.e., a de-
terministic task-encoder—whose lists {Lym} satisfy

E
[
|LYM |ρ

]
≤ E[dG(X|Y ) /veρ] . (24)

To prove Theorem 5, we need the following fact:
Fact 6: Fix a positive integer u, and let h(·) map every

k ∈ {1, . . . , u} to blogkc. Then,∣∣{k̃∈{1, . . . , u} : h(k̃) = h(k)
}∣∣≤ k, k ∈ {1, . . . , u} . (25)

Proof: If k, k̃ ∈ {1, . . . , u} are such that h(k̃) = h(k),
then 2blogkc ≤ k̃ < 2blogkc+1. Hence, (25) holds.

Proof of Theorem 5: As to the first part, suppose we are
given a conditional PMF (20) with corresponding lists {Lym}
as in (21). For each y ∈ Y , order the lists {Lym}m∈M in
increasing order of their cardinalities, and order the elements
in each list in some arbitrary way. Now consider the guessing
order where we first guess the elements of the first (and
smallest) list in their respective order followed by those
elements in the second list that have not yet been guessed
(i.e., that are not contained in the first list) and we continue
until concluding by guessing those elements of the last (and
longest) list that have not been previously guessed. Let G(·|Y )
be the corresponding guessing function, and observe that

E[G(X|Y )
ρ
] =

∑
x,y

PX,Y (x, y) |{x̃ : G(x̃|y) ≤ G(x|y)}|ρ

(a)

≤
∑
x,y

PX,Y (x, y) |M|ρ min
m : x∈Lym

|Lym|
ρ

≤ |M|ρ E
[
|LYM |ρ

]
,

where (a) holds because for all x, x̃ ∈ X and y ∈ Y a
necessary condition for G(x̃|y) ≤ G(x|y) is that x̃ ∈ Lym̃ for
some m̃ ∈ M satisfying |Lym̃| ≤ minm : x∈Lym |Lym|, and the
number of lists whose size does not exceed minm : x∈Lym |Lym|
is at most |M|.

As to the second part, suppose we are given a guessing
function G(·|Y ) for X and a positive integer v ≤ |X |
that satisfies (23). Let Z = {0, . . . , v − 1} and S =
{0, . . . , blogd|X | /vec}. From (23) it follows that |M| ≥
|Z| |S|. It thus suffices to prove the existence of a task-
encoder that uses only |Z| |S| possible descriptions, and we
thus assume w.l.g. that M = Z × S. That is, using the side-
information y the task-encoder (deterministically) describes x
by m = (z, s). The encoding involves two steps:

Step 1: In Step 1 the encoder first computes Z ∈ Z as the
remainder of the Euclidean division of G(X|Y ) − 1 by |Z|.
It then constructs from G(·|Y ) a guessing function G(·|Y, Z)
for X as follows. Given Y = y and Z = z, the task X must be
in the set Xy,z , {x ∈ X : (G(x|y)− 1) ≡ z mod |Z|}. The
encoder constructs the guessing function G(·|y, z) so that—in
the corresponding guessing order—we first guess the elements
of Xy,z in increasing order of G(x|y). For l ∈ {1, . . . , |Xy,z|}
our l-th guess xl is thus the element of Xy,z for which
G(xl|y) = z + 1 + (l − 1) |Z|. Once we have guessed all
the elements of Xy,z we guess the remaining elements of X
in some arbitrary order. This order is immaterial because X is

guaranteed to be in the set Xy,z . Since z + 1 ∈ {1, . . . , |Z|}
we find that G(x|y, z) = dG(x|y) / |Z|e whenever x ∈ Xy,z .
But X is guaranteed to be in the set Xy,z . Hence, the guessing
function G(·|Y, Z) for X satisfies

G(X|Y,Z) = dG(X|Y ) / |Z|e . (26)

Step 2: In Step 2 the encoder first computes S =
blogG(X|Y,Z)c ∈ S, and then describes the task X by
M , (Z, S). Given Y = y, Z = z, and S = s, the task
X must be in the set X y,zs , {x ∈ X : blogG(x|y, z)c = s}.
Fact 6 and the fact that the guessing function G(·|y, z) is
a bijection imply that |X y,zs | ≤ G(x|y, z) for all x ∈ X y,zs .
Since X is guaranteed to be in the set X y,zs we have |X Y,ZS | ≤
G(X|Y, Z). From M = (Z, S) and (21) we obtain that the
list LYM is contained in the set X Y,ZS and thus satisfies

|LYM | ≤ G(X|Y, Z) . (27)

Recalling that |Z| = v we conclude from (26) and (27)

E
[
|LYM |ρ

]
≤ E[G(X|Y,Z)ρ] = E[dG(X|Y ) /veρ] . (28)

Since Z and S are deterministic given (X,Y ) the conditional
PMF (20) associated with M = (Z, S) is 0-1 valued.

The choice of v as b|M| / (blog|X |c+ 1)c and [5, Equa-
tion (26)], i.e., dξeρ < 1+ 2ρξρ, ξ ≥ 0, imply our next result:

Corollary 7: Every guessing function G(·|Y ) for X in-
duces a deterministic task-encoder corresponding to a 0-1
valued conditional PMF (20) that satisfies

E
[
|LYM |ρ

]
≤1+2ρ E[G(X|Y )

ρ
]

(
|M|

log|X |+ 1
−1
)−ρ

. (29)

Combined with Arikan’s bounds [4, Theorem 1 and Propo-
sition 4] on E[G(X|Y )

ρ
], Equations (22) and (29) provide an

upper and a lower bound on the smallest E
[
|LYM |ρ

]
that is

achievable for a given |M|. These bounds are weaker than
[5, Theorem 1.1 and Theorem 6.1] in the finite blocklength
regime but tight enough to prove the asymptotic results [5,
Theorem 1.2 and Theorem 6.2].

Another interesting corollary to Theorem 5 results from the
choice of v as 1:

Corollary 8: For |M| = blog|X |c+1 every guessing func-
tion G(·|Y ) induces a deterministic task-encoder for which

E
[
|LYM |ρ

]
≤ E

[
G(X|Y )

ρ]
. (30)

The corollary can be used to show that the results for
the ”guessing version” and the ”list version” differ only by
polylogarithmic factors of |X | [1].

V. ON THE PROOF OF THEOREMS 1 AND 2

To prove Theorems 1 and 2, we must quantify how addi-
tional side-information Z helps guessing. We show that if Z
takes value in a finite set Z , then it can reduce the ρ-th moment
of the number of guesses by at most a factor of |Z|−ρ.

Lemma 9: Let (X,Y, Z) be drawn from the finite set X ×
Y × Z according to the PMF PX,Y,Z . Then,

E[G∗(X|Y, Z)ρ] ≥ E
[
dG∗(X|Y ) / |Z|eρ

]
, (31)



where G∗(·|Y,Z) minimizes E
[
G(X|Y,Z)ρ

]
and G∗(·|Y )

minimizes E
[
G(X|Y )

ρ]. Equality holds whenever Z =
f(X,Y ) for some f : X×Y → Z for which f(x, y) = f(x̃, y)
implies either dG∗(x|y) / |Z|e 6= dG∗(x̃|y) / |Z|e or x = x̃.
Such a function always exists because for all l ∈ N at most
|Z| different x ∈ X satisfy dG∗(x|y) / |Z|e = l.

Proof: If g(x,y) ∈ arg minz∈Z G
∗(x|y,z) for (x, y) ∈

X × Y , then E[G∗(X|Y,Z)ρ]≥minG E[G(X|Y, g(X,Y ))
ρ
].

It thus suffices to prove (31) for the case where Z is determin-
istic given (X,Y ), and we thus assume w.l.g. that Z=g(X,Y )
for some function g : X × Y→Z . Consider

E[G(X|Y,Z)ρ] =
∑
x,y

PX,Y (x, y)G(x|y, g(x, y))ρ , (32)

where G(·|Y, g(X,Y )) is a guessing function. Note that
G(x|y, g(x, y))=G(x̃|y, g(x̃, y)) implies g(x, y) 6=g(x̃, y) for
all y ∈ Y and distinct x, x̃ ∈ X . For every l ∈ N there are thus
at most |Z| different x ∈ X for which G(x|y, g(x, y)) = l. For
each y ∈ Y order the possible realizations of X in decreasing
order of PX,Y (x, y), i.e., in decreasing order of their posterior
probabilities given Y =y, and let xyj denote the j-th element.
Clearly, (32) is minimum over g(·, ·) and G(·|Y, g(X,Y )) if
for l ∈ N and y ∈ Y we have G(x|y, g(x, y)) = l whenever
x = xyj for some j satisfying (l − 1) |Z| + 1 ≤ j ≤ l |Z|
or, equivalently, dj/ |Z|e = l. Since G∗(·|Y ) minimizes
E
[
G(X|Y )

ρ], it orders the elements of X in decreasing order
of their posterior probabilities given Y . We can thus choose
xyj to be the unique x ∈ X for which G∗(x|y) = j. Hence,
(32) is minimized if f(·, ·) satisfies the specifications in the
lemma, g(·,·) = f(·,·), and G(x|y,f(x,y)) = dG∗(x|y) / |Z|e.
The minimum equals the RHS of (31).

Lemma 9 and [5, Equation (26)] imply the following result:
Corollary 10: Let (X,Y ) be drawn from the finite set X ×

Y according to the PMF PX,Y , and let Z be a finite set.
There exists a functionf:X ×Y→Z such that forZ=f(X,Y)

min
G

E[G(X|Y, Z)ρ] < 1+ 2ρ |Z|−ρmin
G

E[G(X|Y )
ρ
] . (33)

Conversely, every chance variable Z with alphabet Z satisfies

min
G

E[G(X|Y,Z)ρ] ≥ |Z|−ρmin
G

E
[
G(X|Y )

ρ] ∨ 1. (34)

We now sketch the proofs of Theorems 1 and 2 starting
with the direct part. Fix (cs, c1, c2) ∈ N3 satisfying (9)
in the ”guessing version” and (14) in the ”list version”.
For each ν ∈ {s, 1, 2} let Vν be a chance variable taking
value in the set Vν = {0, . . . , cν − 1}. Corollary 10 and [4,
Proposition 4] imply that there is a 0-1 valued conditional
PMF P[(Vs, V1, V2) = (vs, v1, v2) |X = x, Y = y] for which

min
G

E
[
G(X|Y,Vs,V1,V2)ρ

]
<1+2ρ(Hρ̃(X|Y )−log(csc1c2)+1), (35)

and likewise [5, Theorem 6.1] implies that there is a 0-1 valued
conditional PMF for which

E
[
|LYVs,V1,V2

|ρ
]
<1+2ρ(Hρ̃(X|Y )−log(csc1c2−log|X |−2)+2). (36)

Both (9) and (14) imply |M1| ≥ csc1 and |M2| ≥ csc2. It
thus suffices to prove (10)–(11) and (15)–(16) for a conditional

PMF (1) that assigns positive mass only to csc1 elements of
M1 and csc2 elements of M2, and we thus assume w.l.g.
that M1 = Vs × V1 and M2 = Vs × V2. Hence, we can
choose M1 = (Vs ⊕csU, V1) and M2 = (U, V2), where U is
independent of (X,Y ) and uniformly distributed over Vs, and
where ⊕cs denotes modulo-cs addition. For this choice (10)
follows from (35) and (15) from (36). The proof of (11) and
(16) is more involved. It builds on the following two ideas:
1) Since U is computable from both (X,M1) and (X,M2)
we can w.l.g. assume that Eve must guess (X,U) instead
of X . 2) Given two guessing functions G1(·, · |Y,M1 ) and
G2(·, · |Y,M2 ) for (X,U), one can show that G1(·, · |Y,M1 )∧
G2(·, · |Y,M2 ) behaves like a guessing function G(·, ·|Y, Z)
for (X,U), where the additional side-information Z assumes
at most cs(c1 + c2) different values. Once 1) and 2) have
been established, the proof is concluded by Corollary 10, [4,
Theorem 1], and Hρ̃(X,U |Y )=H 1

1+ρ
(X |Y )+logcs.

The converse is straightforward: In the ”guessing version”
the bound (12) on Bob’s ambiguity follows from Corollary 10
and [4, Theorem 1]. In the ”list version” (17) follows from [5,
Theorem 6.1] and the observation that A

(l)
B is minimized if

the PMF in (1) is 0-1 valued. Clearly, Eve’s ambiguity satisfies
AE(PX,Y ) ≤ mink∈{1,2}

(
minGk E[Gk(X|Y,Mk)

ρ
]
)

, and
Corollary 10 implies for each k∈{1, 2} and l∈{1,2}\{k}

min
G

E[G(X|Y,M1,M2)
ρ
] ≥ |Ml|−ρmin

Gk
E[Gk(X|Y,Mk)

ρ
] .

Since minG E[G(X|Y,M1,M2)
ρ
] ≤ E

[
|LYM1,M2

|ρ
]

we thus
find that in both versions Eve’s ambiguity exceeds Bob’s by
at most a factor of |M1|ρ ∧ |M2|ρ. Due to [4, Proposi-
tion 4] and because Eve can guess X using only Y we have
minG E[G(X|Y )

ρ
] ≤ 2ρHρ̃(X|Y ). Hence, (13) and (18) hold.

VI. EXTENSIONS

In the full version of this paper [1], we discuss several
modifications of the model: We extend the analysis to a
scenario where Eve observes only the first (less secure) hint
and to a setting where Alice produces one (public) hint and
encrypts it using a secret key, which is available to Bob but
not to Eve. We also generalize the asymptotic results to the
case where Bob and Eve must reconstruct Xn within a given
distortion D (cf. [5], [7]).

REFERENCES

[1] A. Bracher, E. Hof, and A. Lapidoth, ”Secrecy constrained encoding for
guessing decoders and list-decoders,” in preparation.

[2] N. Merhav and E. Arikan, ”The Shannon cipher system with a guessing
wiretapper,” IEEE Trans. Inf. Theory, IT-45, No. 6, pp. 1860–1866, Sep.
1999.

[3] J. L. Massey, ”Guessing and entropy,” Proc. of IEEE Int. Symp. on Inf.
Theory (ISIT), p. 204, Jun. 1994.

[4] E. Arikan, ”An inequality on guessing and its applications to sequential
decoding,” IEEE Trans. Inf. Theory, IT-42, No. 1, pp. 99–105, Jan. 1996.

[5] C. Bunte and A. Lapidoth, ”Encoding tasks and Rényi entropy,”
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