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Abstract— The benefits afforded by feedback and/or causal
state information (SI) on the state-dependent discrete memory-
less multiple-access channel (SD-MAC) with cribbing encoder/s
are studied. Capacity regions are derived for communication
scenarios whose capacities without cribbing are still unknown.
It is shown that when the encoders can crib, the SD-MAC behaves
less like a MAC and more like a single-user channel: 1) feedback
does not help; 2) strictly causal SI does not help; and 3) causal
SI to both encoders is best utilized using Shannon strategies.
However, in asymmetric settings, the single-user-like behavior
may or may not occur. For example, the SD-MAC with only one
cribbing encoder is single-user-like when the state is revealed to
the cribbing encoder, but not if it is revealed to the noncribbing
encoder.

Index Terms— Conferencing, cribbing, feedback, multiple-
access channel, state information.

I. INTRODUCTION

ACRIBBING encoder for the multiple-access channel
(MAC) is an encoder that, in addition to its own message,

also gets to see the past channel inputs that were produced by
the other encoder. The symbol it produces at Time i is thus a
function of its message and of the symbols that were produced
by the other encoder before Time i .1 As we shall see, when the
encoders can crib, the state-dependent, discrete, memoryless
MAC (SD-MAC) behaves less like a MAC and more like a
single-user channel: feedback does not help, strictly-causal SI
does not help, and causal SI at both encoders is optimally
utilized using Shannon Strategies.2 The assumption that the
encoders can crib thus enables us to compute the capacity
regions for networks whose capacities without cribbing are
still unknown. And since cribbing cannot hurt, the cribbing
assumption can lead to useful outer bounds.
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1In the terminology of Willems and Van der Meulen who intro-

duced cribbing [21], the cribbing encoders we study in this paper are
“strictly-causally cribbing encoders”.

2In this paper, we call every function from the support set of the channel
state to the alphabet of a channel input a ”Shannon Strategy”. We say that
Shannon Strategies are optimal if the coding scheme that achieves capacity in
the absence of SI also achieves capacity in the presence of causal SI provided
that each encoder with causal SI first produces a sequence of Shannon
Strategies, and then computes its Time-i channel input by evaluating the i-th
Shannon Strategy for the realization of the channel state at Time i . Shannon
showed that causal SI to the encoder of the discrete, memoryless single-user
channel is optimally utilized using Shannon Strategies [14], [7, Sec. 7.5].

For example, the capacity of a discrete memoryless
multiple-access channel with feedback is, in general, still
unknown. However, as we shall see (Theorem 5), if the
encoders are allowed to crib then the capacity with feedback
is the same as without it. The latter capacity, which was
computed by Willems and Van der Meulen [21], is thus an
outer bound on the feedback capacity of the MAC without
cribbing. In fact, feedback does not increase capacity even
if only one encoder is allowed to crib (Theorem 8), thus
leading to a tighter outer bound on the feedback capacity
(Corollary 9). This bound is tight whenever one of the
encoders can compute the symbol produced by the other from
the channel output and the symbol it produced itself. And it
leads to an operational meaning to the Dependence-Balance
bound [8].

The fact that when the encoders can crib feedback does
not increase capacity lends credence to the explanation that
feedback on the MAC can increase capacity because knowing
the output allows each encoder to learn something about the
symbols produced by the other and thus learn something about
the other’s message. But this explanation fails to explain why
feedback does not increase capacity also when only one of the
encoders can crib.

Another example is the SD-MAC with strictly-causal state
information (SI) at the encoders. This channel was studied by
Lapidoth and Steinberg, who obtained inner and outer bounds
on its capacity [11]. The exact capacity is to date unknown.
However, when the encoders can crib, strictly-causal SI does
not increase capacity (Theorem 5), so the cribbing capacity is
an outer bound.

Things get more interesting when, rather than strictly-
causally, the SI is revealed to the encoders causally. Here too
only inner and outer bounds on the capacity are known [11].
We do know that Shannon Strategies are suboptimal [11].
However, when the encoders can crib, Shannon Strategies
are optimal, and we can thus characterize the capacity region
(Theorem 11). This region is, of course, an outer bound on
the region without cribbing.

The SD-MAC with cribbing encoders need not behave like a
single-user channel if information is furnished to the encoders
in an asymmetric way. For example, if both encoders crib and
the channel state is provided causally to only one encoder,
then Shannon Strategies need not be optimal (Example 2).
By analyzing various communication scenarios where the
SD-MAC with cribbing encoders behaves more like a single-
user channel and less like a MAC, and by providing several
examples of communication scenarios where it does not,
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we identify two conditions, which seem to be pivotal to the
behavior of the SD-MAC with two cribbing encoders:

Condition 1: The Time-i channel output and each encoder’s
message are conditionally independent given the information
available to the other encoder in forming it’s Time-(i + 1)
channel input.

Condition 2: At every time i , the information that is avail-
able strictly-causally only to Encoder 1 (e.g., its message
and possibly past channel states) and the information that
is available strictly-causally only to Encoder 2 are condi-
tionally independent given the information that is available
strictly-causally to both encoders (e.g., cribbed inputs).

As we shall see, Conditions 1 and 2 hold for each commu-
nication scenario for which we show that the SD-MAC with
two cribbing encoders is single-user-like, and our counterex-
amples violate Condition 1 and/or Condition 2. For example,
Conditions 1 and 2 hold for the SD-MAC with causal SI to
both cribbing encoders, for which Shannon Strategies are
optimal, and our example of an SD-MAC with causal SI to
only one of the cribbing encoders, for which Shannon
Strategies are suboptimal, violates Condition 1.

Another setting where allowing the encoders to crib simpli-
fies the analysis is the MAC or SD-MAC with feedback and
conferencing encoders. Conferencing encoders are allowed to
communicate with each other before or during the transmission
via noise-free bit pipes of given capacities. In the absence of
states and feedback, this network was introduced and solved
by Willems [19]. He showed that there is no loss in optimality
in requiring that the encoders conduct their conference before
transmission begins and in replacing the sequential dialogue by
two monologues each of which depends solely on the message
of the soliloquising transmitter. Consequently, the resulting
capacity is essentially that of the setting considered by Slepian
and Wolf [15] where the encoders do not conference but trans-
mit a common message in addition to their private messages.

It is unknown whether requiring the encoders to confer
before transmission begins is also optimal in the presence of
feedback. But this can be answered when the encoders can
crib: we derive the capacity of the MAC with conferencing
cribbing encoders that may be furnished with strictly-causal
SI and/or feedback and show that it is not increased if the
encoders confer during rather than before the transmission
phase (Theorem 19). Also in the setting with conferencing
encoders, strictly-causal SI and feedback to the cribbing
encoders do not increase capacity.

If cribbing is not allowed, then the feedback capacity
of the MAC with conferencing encoders is still unknown.
We know that it is contained in the cribbing capacity. In fact,
we can say more: The feedback capacity of the MAC with
conferencing encoders is contained not only in the cribbing
capacity of the MAC with conferencing encoders but in any
Dependence-Balance outer bound on the feedback capacity
of the MAC with a common message (Theorem 22).3 This
implies that, also in the presence of feedback, conferencing

3Note that the outer bounds in [8] apply to the case with two private
messages. The extension to the setting considered by Slepian and Wolf [15]
where the encoders additionally observe a common message is however
straightforward.

before transmission begins is optimal whenever a version of
the Dependence-Balance bound is tight.

Ours is, of course, not the only work that builds on the
original work of Willems and Van der Meulen [21], which
introduced the (stateless) MAC with cribbing encoders. Recent
work includes the work of Permuter and Asnani [1] on the
(stateless) MAC with “partial cribbing encoders” that observe
a deterministic function of each other’s channel input. Limiting
the cardinality of the co-domains of these functions leads to
models that are more conservative than the cribbing model,
especially when the cardinality of the input alphabets is very
large.

Cooperative encoding on the SD-MAC was studied by
Somekh-Baruch, Shamai, and Verdú [16] who computed the
capacity of the MAC under the assumption that both encoders
observe a common message and that Encoder 2 additionally
observes a private message and non-causal or causal SI.
Bross and Lapidoth [3] established the capacity of the
SD-MAC under the assumption that the encoders observe pri-
vate messages and that Encoder 2 cribs and observes the state
sequence in a non-causal fashion [3].4 For a comprehensive
survey of the literature on state-dependent single-user and
multi-terminal networks, see [9].

The remainder of this paper is structured as follows. First,
we briefly describe our notation. The second section is dedi-
cated to the SD-MAC with cribbing encoders that are furnished
with strictly-causal SI and feedback. In the third section, we
study the SD-MAC with causal SI at the cribbing encoders.
The results on the MAC with conferencing encoders are
presented in the fourth section. We conclude the paper with a
brief summary.

A. Notation

We denote by X1 and X2 the support sets of the channel
inputs produced by Encoder 1 and Encoder 2. The finite sup-
port set of the channel output is denoted by Y and that of the
channel state by S. We use |·| for the cardinality of a set, e.g.,
|Y| is the cardinality of the output alphabet Y . We sometimes
write (X1 ×X2, W (y|x1, x2),Y) for a MAC of transition law
W (y|x1, x2) and (X1 × X2 × S, W (y|x1, x2, s),Y) for an
SD-MAC of transition law W (y|x1, x2, s). We denote by XS

1
the set of all functions from S to X1 and similarly for XS

2 .
Random variables are denoted by upper-case letters and

their realizations or the elements of their support sets by
lower-case letters, e.g., Y denotes the random channel output
and y ∈ Y a value it may take.

Codewords, information exchanged during a conference,
and sequences of Shannon Strategies are denoted by bold
face lower or upper case letters depending on whether they
are deterministic or random, e.g., x1(m1) is the codeword
corresponding to Message m1 ∈ [1 : 2nR1] � {1, 2, . . . , 2nR1}.
The integer n stands for the block-length and unless otherwise
specified, sequences are assumed to be of length n.

Variables that occur at Time i are characterized by a
subscript i , and for k ∈ {1, 2} we define k to be the element

4If the input alphabet of the less-informed encoder is continuous, then one-
sided cribbing is as good as (and no better than) a common message.
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Fig. 1. SD-MAC with strictly-causal SI to the cribbing encoders.

of {1, 2} that is not k, e.g., for k = 1 we denote by Xk,i the
channel input of Encoder 1 at Time i and by Xk,i that of
Encoder 2. Sequences of variables that occur in the time-range
j to i bear a subscript j and a superscript i where the subscript
j = 1 may be dropped, e.g., X5

1,4 denotes the fourth and fifth
channel input produced by Encoder 1, and Y n denotes the
entire output sequence.

A joint probability mass function (PMF), its marginal PMF,
and its conditional PMF are all denoted by the same
function p(·), with the exact meaning specified by the sub-
scripts or arguments, e.g., pX1,X2(0, 1) denotes the probability
of the event (X1, X2) = (0, 1) and p(x1|x2) the probability
that X1 = x1 given X2 = x2.

We denote the set of ε-weakly-typical sequences of length
n by A(n)

ε , e.g., A(n)
ε (X, Y ) is the set of length-n sequences

(xn, yn) ∈ X n × Yn that are jointly ε-weakly-typical
w.r.t. pX,Y (·, ·).

B. Functional Representation Lemma

In some scenarios—particulary if an encoder cribs—it can
be shown that feedback is no better than strictly-causal SI, so if
the latter does not increase capacity, then nor does the former.
This is typically shown using the Functional Representation
Lemma:

Lemma 1 [21, Functional Representation Lemma]: Given
two discrete random variables X and Y , there exists a discrete
random variable S, which is independent of X , and a function
g : X × S → Y such that Y = g(X, S).

The lemma allows us to view a MAC W (y|x1, x2) as an
SD-MAC W (y|x1, x2, s) whose output can be computed from
its inputs and state. If the state is revealed strictly-causally
to a cribbing encoder, then this encoder can compute the
past channel outputs from the past states, the past symbols
it produced, and the past symbols that the other encoder
produced (which it has learned by cribbing).

II. CRIBBING AND STRICTLY-CAUSAL

STATE INFORMATION

The SI discussed in this section is strictly-causal, and either
both encoders crib (Section II-A) or only one (Section II-B).

A. Both Encoders Crib

We consider an SD-MAC where both encoders crib and
both obtain the SI strictly-causally (see Figure 1). There is no
need to address the case where the SI is revealed to only one,
because even revealing it to both does not increase capacity
(Proposition 3).

Recall that for k ∈ {1, 2} we defined k to be the element
of {1, 2} that is not k.

Definition 1: For any two sets M1, M2 and positive inte-
ger n ∈ N, an (n,M1,M2, ε) code for the SD-MAC (X1 ×
X2 ×S, W (y|x1, x2, s),Y) with strictly-causal SI to the crib-
bing encoders consists of two sequences of encoder mappings

fk,i : Mk × X i−1
k,1 × S i−1 → Xk, (1)

where k ∈ {1, 2}, i ∈ [1 : n], and a decoding mapping

φ : Yn → M1 × M2 (2)

such that the average probability of error Pe does not exceed ε,
where

Pe =
∑

(m1,m2)∈M1×M2,
sn∈Sn, yn /∈φ−1(m1,m2)

n∏
i=1

p(si ) W (yi |x1,i , x2,i , si )

|M1| |M2| , (3)

φ−1(m1, m2) ⊂ Yn is the decoding set of the message pair
(m1, m2), and

xk,i = fk,i (mk, xi−1
k,1 , si−1). (4)

The rate pair (R1, R2) of the code is

R1 = 1

n
log |M1|, R2 = 1

n
log |M2|. (5)

A rate pair (R1, R2) is achievable if for every ε > 0 and
sufficiently large n there exists an (n,M1,M2, ε) code with
rate pair (R̃1, R̃2) satisfying R̃1 ≥ R1 and R̃2 ≥ R2. The
capacity region is the closure of all achievable rate pairs.

We refer to this network as an SD-MAC W (y|x1, x2, s) with
encoders

x1,i (m1, xi−1
2,1 , si−1), x2,i(m2, xi−1

1,1 , si−1).

If the encoders are also furnished with feedback, then we refer
to the network as an SD-MAC W (y|x1, x2, s) with encoders

x1,i (m1, xi−1
2,1 , si−1, yi−1), x2,i(m2, xi−1

1,1 , si−1, yi−1).
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The capacity of the stateless MAC with cribbing encoders
was found by Willems and Van der Meulen:

Theorem 2 [21, Th. 5]: The capacity region of the MAC
W (y|x1, x2) with cribbing encoders

x1,i(m1, xi−1
2,1 ), x2,i (m2, xi−1

1,1 )

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|U) (6a)

R2 ≤ H (X2|U) (6b)

R1 + R2 ≤ I (X1, X2; Y ) (6c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (7)

The capacity is achieved by the Block-Markov coding
scheme of [21, Sec. V, Situation 5], which can be roughly
described as follows: The encoders transmit their messages
in blocks and—using the cribbed information—decode each
other’s previous message blocks in order to establish
cooperation. During every transmission block, the encoders
cooperatively send resolution information on the previous mes-
sage blocks, which each encoder individually superimposes
with its next message block. The resolution information can
be associated with the random variable U in Theorem 2. Since
Encoder 1 selects its channel input X1 based on the resolu-
tion information and on its fresh information, and similarly
Encoder 2, the channel inputs X1 and X2 are conditionally
independent given U .

We offer the following intuition why the above
Block-Markov coding scheme is optimal: One can check that
the Time-i channel output and each encoder’s message are
conditionally independent given the information available to
the other encoder in forming its Time-(i + 1) channel input,
i.e., Condition 1 holds. As a consequence, there is no loss in
optimality in requiring the encoders to decode each other’s
message (because if the decoder can decode a message,
then so can the other encoder). Since also Condition 2
holds, i.e., the messages of the encoders are conditionally
independent given the information that is available to both
encoders (namely, all previous channel inputs), the decoded
information is optimally utilized by the above Block-Markov
coding scheme, where the channel inputs are independent
conditional on the resolution information.

The capacity of the SD-MAC generally increases if the state
is revealed to the encoders in a strictly-causal fashion [11].
But this is not the case when the encoders are allowed to
crib. We state this as a proposition because this result will be
strengthened in Theorem 5, which also allows feedback.

Proposition 3: Revealing the channel state in a
strictly-causal fashion does not increase the capacity
region of the SD-MAC with cribbing encoders.

Proof: See Section A-A. �
The following may offer some intuition for this result:

It can be shown that Conditions 1 and 2 continue to hold
when strictly-causal SI is provided to the cribbing encoders.
As before, this implies that Block-Markov coding is optimal,
and we can thus assume that it is used. In the presence

of strictly-causal SI, we can view the cribbing link from
Encoder 1 to Encoder 2 as a point-to-point channel with input
X1 and output (X1, S). We know that the capacity of a point-
to-point channel does not increase if the encoder (in this case
Encoder 1) learns S strictly-causally. It is also clear that the
described channel is no better than a channel whose input and
output are both X1. Hence, strictly-causal SI does not enhance
the cribbing link from Encoder 1 to Encoder 2, and similarly
for the cribbing link from Encoder 2 to Encoder 1. This
implies that strictly-causal SI does not increase the amount
of resolution information learned by cribbing and thus does
not allow for additional cooperation between the encoders.
We expect, moreover, that strictly-causal SI does not help
the (fully-cooperative) transmission of resolution information
because it does not help on the point-to-point channel.

Allowing the encoders to crib cannot hurt. And once they
can crib the proposition shows that strictly-causal SI does not
help. Thus:5

Corollary 4: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, si−1), x2,i(m2, si−1)

is contained in that of the same SD-MAC with encoders

x1,i (m1, xi−1
2,1 ), x2,i (m2, xi−1

1,1 ).

Using the Functional Representation Lemma (Section I-B),
we can strengthen Proposition 3 and show that when the
encoders can crib the capacity is not increased even when
we allow both strictly-causal SI and feedback:

Theorem 5: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, xi−1
2,1 , si−1, yi−1), x2,i(m2, xi−1

1,1 , si−1, yi−1)

is that of the same SD-MAC with encoders

x1,i (m1, xi−1
2,1 ), x2,i (m2, xi−1

1,1 ).

Proof: See Section A-B. �
Allowing the encoders to crib cannot hurt. And once they

can crib the theorem shows that feedback does not help. Thus:6

Corollary 6: The capacity region of the MAC W (y|x1, x2)
with encoders

x1,i(m1, yi−1), x2,i(m2, yi−1)

is contained in that of the same MAC with encoders

x1,i (m1, xi−1
2,1 ), x2,i (m2, xi−1

1,1 ).

This outer bound is tight if each encoder can compute the
other encoder’s output from its own output and the channel
output.

5The outer bound of Corollary 4 is looser than that of [11, Proposition. 3],
but it is easier to evaluate. It is tighter than the full-cooperation bound
[11, Proposition. 1].

6This result is also obtained if we view the channel inputs as the Parallel
Channel Extension to the Dependence-Balance bound and set Z = (X1, X2)
in [8, Th. 3]. We discuss the Dependence-Balance bound for the MAC
with conferencing encoders in Section IV-B ahead. If the encoders do
not conference, then the Dependence-Balance bound [8, Th. 3] is that of
Theorem 22 ahead with C1,2 = C2,1 = 0.
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Fig. 2. SD-MAC with strictly-causal SI to the cribbing Encoder 2.

Proof: Theorem 5 implies that the feedback capacity reg-
ion is contained in the cribbing capacity region. To see that
this outer bound is tight if each encoder can compute the other
encoder’s output based on its own output and the channel
output, observe that for such channels feedback is as good
as the combination of feedback and cribbing. �

The outer bound of Corollary 6 will be strengthened in
Corollary 9 ahead, where we show that even one cribbing
encoder is better than feedback.

B. One Encoder Cribs

Suppose now that only one encoder cribs. One could then
consider a scenario as in Figure 2 where the strictly-causal
SI is furnished to the cribbing encoder or one where it is
furnished to the non-cribbing encoder. Likewise for feedback.
We shall see that in the former case the SI is useless but in
the latter case it can be beneficial. Feedback does not increase
capacity in either case.

An (n,M1,M2, ε) code with strictly-causal SI to the
cribbing Encoder 2 consists of two sequences of encoder
mappings

f1,i : M1 → X1, (8a)

f2,i : M2 × X i−1
1,1 × S i−1 → X2, (8b)

where i ∈ [1 : n], such that the average probability of error
does not exceed ε and

x1,i = f1,i (m1), (9a)

x2,i = f2,i (m2, xi−1
1,1 , si−1). (9b)

We refer to this network as an SD-MAC W (y|x1, x2, s) with
encoders

x1,i(m1), x2,i(m2, xi−1
1,1 , si−1).

The capacity of this network when the state is null was found
by Willems and Van der Meulen:

Theorem 7 [21, Th. 2]: The capacity region of the MAC
W (y|x1, x2) with encoders

x1,i(m1), x2,i (m2, xi−1
1,1 )

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|U) (10a)

R2 ≤ I (X2; Y |X1, U) (10b)

R1 + R2 ≤ I (X1, X2; Y ) (10c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (11)

The capacity is achieved by the Block-Markov coding
scheme of [21, Sec. V, Situation 2], which is similar to the one
for the case where both encoders crib: The encoders divide
their messages into blocks, and during every transmission
block, the encoders cooperatively send resolution information,
which each encoder individually superimposes with its next
message block. Here, only the cribbing Encoder 2 decodes
the previous message blocks of Encoder 1, and the encoders
thus only send resolution information on the previous message
blocks of Encoder 1. Since the decoder obtains no resolution
information about the message blocks of Encoder 2, the rate
at which Encoder 2 can transmit its message blocks is upper-
bounded by (10b).

To explain why this scheme is optimal, we offer a similar
intuition as in the case where both encoders crib: The Time-i
channel output and the message of Encoder 1 are conditionally
independent given the information available to Encoder 2 in
forming its Time-(i+1) channel input. As a consequence, there
is no loss in optimality in requiring Encoder 2 to decode the
message of Encoder 1. Since the messages of the encoders
are conditionally independent given the information that is
available to both encoders (namely, all previous channel inputs
of Encoder 1), the decoded information is optimally utilized
by the above Block-Markov scheme, where the channel inputs
are independent conditional on the resolution information.

Suppose now that the state is not null. If none of the
encoders cribs, then strictly-causal SI to even just one of the
encoders can increase capacity [10], [12]. This is still true
when one of the encoders cribs provided that it is the
non-cribbing encoder to whom the SI is furnished:

Remark 1: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i (m1, si−1), x2,i (m2, xi−1
1,1 )
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can be strictly larger than that of the same SD-MAC with
encoders

x1,i(m1), x2,i(m2, xi−1
1,1 ).

This is illustrated by the following example:
Example 1: Consider an SD-MAC whose inputs X1, X2 and

state S ∼ Ber(1/2) are binary, and whose output Y is

Y = (X1, X2 ⊕ S). (12)

Suppose that Encoder 2 cribs. In the absence of SI, the rate
pair (R1, R2) = (0, 1) is not achievable. But it is achievable
if SI is provided to the non-cribbing encoder.

The example is formally analyzed in Appendix A-C. The
intuition is that the non-cribbing encoder can transmit the state
sequence to the decoder and thus help it decode the cribbing
encoder’s message.

The scenario where strictly-causal SI is provided only to
the cribbing encoder is different: in this case the SI is useless.
We present this result in a stronger form by also allowing
feedback:

Theorem 8: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, yi−1), x2,i(m2, xi−1
1,1 , si−1, yi−1)

is that of the same SD-MAC with encoders

x1,i(m1), x2,i(m2, xi−1
1,1 ).

Proof: See Section A-D. �
It is perhaps surprising that feedback to the non-cribbing

encoder does not help. After all, it enables Encoder 1 to
decode the message blocks of Encoder 2 and therefore allows
for additional cooperation by allowing the encoders to also
send resolution information on the previous message blocks
of Encoder 2. It turns out that this additional cooperation does
not increase capacity. Perhaps this is because once the decoder
has retrieved the message of Encoder 1 it knows just as much
about the message of Encoder 2 as Encoder 1, and therefore
the resolution information that the encoders can offer on the
previous message blocks of Encoder 2 cannot help the decoder.

Allowing one encoder to crib cannot hurt. And once one
encoder cribs the theorem shows that strictly-causal SI to the
cribbing encoder and feedback to both encoders do not help.
Thus:7,8

Corollary 9: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, yi−1), x2,i(m2, si−1, yi−1)

is contained in that of the same SD-MAC with encoders

x1,i(m1), x2,i(m2, xi−1
1,1 ).

7The outer bound of Corollary 9 on the feedback capacity of the MAC is
also obtained if we view the cribbed channel input as the Parallel Channel
Extension to the Dependence-Balance bound: setting Z = X1 in [8, Th. 3]
results in the capacity region with a cribbing Encoder 2 and likewise Z = X2
in that with a cribbing Encoder 1 (see Footnote 6).

8The network without feedback is a special case of the double-state MAC
that was studied in [10] and [12].

Since a null state can be viewed as being known to either
encoder, the capacity region of the stateless MAC W (y|x1, x2)
with encoders

x1,i(m1, yi−1), x2,i(m2, yi−1)

is contained in the intersection of the capacity region of the
same MAC with encoders

x1,i(m1), x2,i (m2, xi−1
1,1 )

and that of the same MAC with encoders

x1,i (m1, xi−1
2,1 ), x2,i (m2).

Remark 2: The outer bound in Corollary 9 is expressed in
terms of the capacity region of an enhanced network where one
of the encoders can crib and where capacity is known and is
not increased by feedback. It is reminiscent of the outer bound
on the feedback capacity of a broadcast channel (BC) in terms
of the capacity region of an enhanced network where one of
the receivers also sees the signal received by the other. The
enhanced network is a physically degraded BC whose capacity
is known and is not increased by feedback [6].

The outer bound of Corollary 9 on the capacity of the MAC
with feedback need not be tight. But for some channels it is:

Corollary 10: If (at least) one encoder can compute the
other encoder’s output from its own output and the channel
output, then the outer bound of Corollary 9 on the feedback
capacity of the stateless MAC is tight.9 Moreover, one-sided
feedback to the encoder that can perform this computation is
as good as feedback to both.

Proof: Feedback to the encoder that can compute the other
encoder’s output based on its own output and the channel
output is at least as beneficial as allowing it to crib. Hence
the outer bound of Corollary 9 is achievable. �

Remark 3 [17]: If X1 is computable from (X2, Y ),
then (10) and (11) are equivalent to the Cover-Leung con-
straints

R1 ≤ I (X1; Y |X2, U) (13a)

R2 ≤ I (X2; Y |X1, U) (13b)

R1 + R2 ≤ I (X1, X2; Y ), (13c)

where the joint PMF is of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (14)

Since the Cover-Leung region is achievable by one-sided
feedback (no matter to which encoder) [4], [18], Remark 3
yields an alternative proof of Corollary 10 and allows us to
even strengthen it:

Remark 4: If (at least) one encoder can compute the other
encoder’s output from its own output and the channel output,
then one-sided feedback (no matter to which encoder) is as
good as feedback to both encoders.

9Note the analogy to Corollary 6, which states that the feedback capacity of
the MAC is contained in the capacity without feedback but with two cribbing
encoders and that the bound is tight if each encoder can compute the other
encoder’s output based on its own output and the channel output.
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Fig. 3. SD-MAC with causal SI to the cribbing encoders.

III. CRIBBING AND CAUSAL STATE INFORMATION

The SI in this section is causal. In Section III-A both
encoders crib and both are cognizant of the SI. In Section III-B
both encoders crib but the SI presented to them differ. Finally,
in Section III-C only one encoder cribs and only the cribbing
encoder is presented with the SI.

A. Both Encoders Crib and Observe the State

Consider an SD-MAC where both encoders crib and both
obtain the SI causally (see Figure 3). For this setting an
(n,M1,M2, ε) code is defined as in Definition 1 except that
the inputs are allowed to depend also on the current channel
state. The cribbing, however, is still strictly-causal. The code
thus consists of two sequences of encoder mappings

fk,i : Mk × X i−1
k,1 × S i → Xk, (15)

where k ∈ {1, 2}, i ∈ [1 : n], such that the average probability
of error does not exceed ε and

xk,i = fk,i (mk, xi−1
k,1 , si ). (16)

(Recall that for k ∈ {1, 2} we defined k to be the element
of {1, 2} that is not k.) We refer to this network as an
SD-MAC W (y|x1, x2, s) with encoders

x1,i (m1, xi−1
2,1 , si ), x2,i (m2, xi−1

1,1 , si ).

On the single-user channel Shannon showed how to opti-
mally use causal state information [14]: Each message m
is mapped to a length-n sequence of functions hm,1, . . . ,
hm,n ∈ XS , and the Time-i channel input that the encoder
produces to convey Message m is hm,i (Si ). The elements
of XS are called Shannon Strategies, and the mapping of
messages to n-tuples of Shannon Strategies is obtained using
random coding by choosing a capacity-achieving distribution
on XS . Once this mapping has been chosen, the Time-i
encoder output depends only on the message and the Time-i
state Si . Knowledge of the past states is unnecessary.

In the absence of cribbing, the capacity of the SD-MAC
with causal SI to the encoders is to date unknown. A naive
approach is to extend Shannon’s approach by choosing a
product distribution on XS

1 × XS
2 , by using random coding

(and time-sharing) to produce n-tuples of Shannon Strategies
hm,i,k ∈ XS

k , and by having the Time-i output of Encoder k be
hm,i,k (Si ) whenever it wishes to convey Message m. Unlike the

single-user channel, on the MAC this naive approach is not
optimal [11].

When the encoders can crib the MAC behaves more like
a single-user channel in the sense that combining Shannon
Strategies with the scheme that achieves capacity in the
absence of SI is optimal. The capacity of the SD-MAC with
causal SI to the cribbing encoders is achieved by a
Block-Markov coding scheme like that of
[21, Sec. V, Situation 5]: At the beginning of each transmission
block, the encoders use the past state information and the
past cribbed information pertaining to the previous block to
determine the resolution message to be transmitted in the
present block. They then transmit this common message and
their fresh information in the present block by applying the
Slepian-Wolf coding scheme for the MAC with a common
message but with input alphabets comprising the Shannon
Strategies XS

1 and XS
2 . In the following theorem the elements

of XS
k , k ∈ {1, 2} are indexed by tk ∈ [

1 : |XS
k |], and the

Shannon Strategy indexed by tk is denoted gk(tk, ·).
It is important to note that cribbing allows an encoder to

observe the previous channel inputs that were produced by the
other encoder but not the previous strategies that were used to
produce these inputs. If at Time i − 1 this other encoder uses
the Shannon Strategy tk , then at Time i the cribbing encoder
will not learn tk but only the result of applying gk(tk, ·) to the
state Si−1.

Theorem 11: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, xi−1
2,1 , si ), x2,i(m2, xi−1

1,1 , si )

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|S, U) (17a)

R2 ≤ H (X2|S, U) (17b)

R1 + R2 ≤ I (T1, T2; Y ) (17c)

for some random variables U, T1, and T2; functions g1 : T1 ×
S → X1 and g2 : T2 ×S → X2; and a joint PMF of the form

p(u, t1, t2, x1, x2, s, y)

= p(u) p(t1|u) p(t2|u) p(s)

×�{x1=g1(t1,s)}�{x2=g2(t2,s)}W (y|x1, x2, s). (18)

Proof: See Section A-E. �
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One can show that Conditions 1 and 2, which we believe to
be key to the single-user-like behavior of the MAC with two
cribbing encoders, also hold for the network of Theorem 11.

As we next show, in the setting of Theorem 11 providing
additional feedback and/or strictly-causal SI S̃i−1 does not
increase capacity. Consider the SD-MAC (X1 × X2 ×
S × S̃, W (y|x1, x2, (s, s̃)),Y), which is governed by two
(possibly correlated) channel states S and S̃, with encoders

x1,i(m1, xi−1
2,1 , si , s̃i−1, yi−1), x2,i (m2, xi−1

1,1 , si , s̃i−1, yi−1).

We know that in the absence of causal SI, i.e., if S is null, the
capacity region does not increase if the encoders are furnished
with strictly-causal SI and feedback (Theorem 5). A similar
result holds if S is not null:

Theorem 12: The capacity region of the SD-MAC
W (y|x1, x2, (s, s̃)) with encoders

x1,i(m1, xi−1
2,1 , si , s̃i−1, yi−1), x2,i(m2, xi−1

1,1 , si , s̃i−1, yi−1)

is that (of Theorem 11) of the same SD-MAC with encoders

x1,i(m1, xi−1
2,1 , si ), x2,i(m2, xi−1

1,1 , si ).

Proof: See Section A-F. �
Allowing the encoders to crib cannot hurt. And once they

can crib the theorem shows that strictly-causal SI and feedback
do not help. Thus:

Corollary 13: The capacity region of the SD-MAC
W (y|x1, x2, (s, s̃)) with encoders

x1,i (m1, si , s̃i−1, yi−1), x2,i (m2, si , s̃i−1, yi−1)

is contained in that of the same SD-MAC with encoders

x1,i(m1, xi−1
2,1 , si ), x2,i(m2, xi−1

1,1 , si ).

B. Both Encoders Crib and Observe Distinct States

Consider the SD-MAC (X1 × X2 × S1 × S2 × S,
W (y|x1, x2, (s1, s2, s)),Y), which is governed by three
(possibly correlated) state sequences {S1,i }, {S2,i }, and {Si },
and assume that both encoders crib. The state S1 is revealed to
Encoder 1 causally and likewise S2 to Encoder 2. The state S is
revealed to both encoders but strictly-causally. For this setting
an (n,M1,M2, ε) code consists of two sequences of encoder
mappings

fk,i : Mk × X i−1
k,1 × S i

k,1 × S i−1 → Xk , (19)

where k ∈ {1, 2}, i ∈ [1 : n], such that the average probability
of error does not exceed ε and

xk,i = fk,i (mk, xi−1
k,1 , si

k,1, si−1).

We refer to this network as an SD-MAC W (y|x1, x2,
(s1, s2, s)) with encoders

x1,i(m1, xi−1
2,1 , si

1,1, si−1), x2,i(m2, xi−1
1,1 , si

2,1, si−1).

An inner bound on the capacity region can be obtained by
considering a coding scheme that combines Shannon
Strategies with Block-Markov coding. The resulting scheme
is like the one of Theorem 11 except that the resolution
information is now computed by Encoder k not only based

on its past cribbing and the past realizations of S but also
based on the past realizations of Sk .

Theorem 14: For the SD-MAC W (y|x1, x2, (s1, s2, s)) with
encoders

x1,i (m1, xi−1
2,1 , si

1,1, si−1), x2,i (m2, xi−1
1,1 , si

2,1, si−1),

all rate pairs (R1, R2) satisfying

R1 ≤ I (T1; X1|S, S2, U) (20a)

R2 ≤ I (T2; X2|S, S1, U) (20b)

R1 + R2 ≤ I (T1, T2; Y ) (20c)

for some random variables U, T1, and T2; functions g1 : T1 ×
S1 → X1 and g2 : T2 × S2 → X2; and a joint PMF of the
form

p(u, t1, t2, x1, x2, s1, s2, s, y)

= p(u) p(t1|u) p(t2|u) p(s1, s2, s)�{x1=g1(t1,s1)}
×�{x2=g2(t2,s2)}W (y|x1, x2, (s1, s2, s)) (21)

are achievable.
Proof: See Section A-G. �

When S1 and S2 are the same and S is denoted S̃ the setting
reduces to that of Theorem 12 and the bound is tight. But it
need not be tight when S1 and S2 differ:

Remark 5: The inner bound of Theorem 14 need not be
tight.

An example where the inner bound of Theorem 14 is loose
is the following:

Example 2: For the SD-MAC W (y|x1, x2, s2) with cribbing
encoders, binary inputs, a binary channel state S2 ∼ Ber(1/2),
and a binary output Y = X2 ⊕ S2, for which S and S1 are
null, any rate pair in the set

{
(R1, R2) ∈ (R+

0 )2 : R1 + R2 ≤ 1
}

(22)

is achievable. The inner bound of Theorem 14 does not contain
the rate pair (R1, R2) = (0, 1) and is thus loose.10

The example is formally analyzed in Appendix A-H. Here,
we provide an informal description of the proof idea: The rate
pair (0, 1) is achievable by having Encoder 2 produce the XOR
of its data bit with the state S2 so as to have the output be
the data bit. If, however, the encoders use the coding scheme
of Theorem 14, then R2 = 1 is not achievable. The reason is
that this coding scheme requires the encoders to estimate each
other’s private message to establish the resolution message.
And it is impossible for Encoder 1 to decode the data bits that
are fed to Encoder 2 because the cribbing only allows it to
see the outputs of Encoder 2, which are the result of the XOR
of the data bits with S2.

Our next result is an outer bound on the capacity region of
the network of Theorem 14.

Theorem 15: The capacity region of the SD-MAC
W (y|x1, x2, (s1, s2, s)) with encoders

x1,i(m1, xi−1
2,1 , si

1,1, si−1), x2,i(m2, xi−1
1,1 , si

2,1, si−1)

10The capacity region of this SD-MAC can be obtained from Theorem 18
ahead: since the output Y = X2 ⊕ S2 is independent of the input X1 we can
w.l.g. assume that only Encoder 2 cribs.
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Fig. 4. SD-MAC with causal SI to the cribbing Encoder 2.

is contained in the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|S1, U) (23a)

R2 ≤ H (X2|S2, U) (23b)

R1 + R2 ≤ I (T1, T2; Y ) (23c)

for some random variables U, T1, and T2; functions g1 : T1 ×
S1 → X1 and g2 : T2 × S2 → X2; and a joint PMF of the
form

p(u, t1, t2, x1, x2, s1, s2, s, y)

= p(u) p(t1|u) p(t2|u) p(s1, s2, s)�{x1=g1(t1,s1)}
×�{x2=g2(t2,s2)}W (y|x1, x2, (s1, s2, s)). (24)

Proof: See Section A-I. �
The inner and outer bounds of Theorems 14 and 15

coincide when there exists a one-to-one relationship between
(S, S1) and (S, S2).11 In this case Shannon Strategies and
Block-Markov coding is thus optimal.

Corollary 16: For an SD-MAC W (y|x1, x2, (s1, s2, s)) with
encoders

x1,i (m1, xi−1
2,1 , si

1,1, si−1), x2,i (m2, xi−1
1,1 , si

2,1, si−1)

and a one-to-one relationship between (S, S1) and (S, S2) the
capacity region coincides with the outer bound of Theorem 15.

Proof: We show that the achievable region of Theorem 14
coincides with the outer bound of Theorem 15. Fix sets T1 and
T2; functions g1 : T1 × S1 → X1 and g2 : T2 × S2 → X2; and
a joint PMF of the form (21). Theorem 15 implies that a rate
pair (R1, R2) is achievable if it satisfies (20). Note that

I (T1; X1|S, S2, U)
a)= I (T1; X1|S, S1, U) (25)
b)= H (X1|S, S1, U) (26)
c)= H (X1|S1, U), (27)

where a) holds because (S, S1) and (S, S2) are in a one-to-one
relationship, b) is true because X1 = g1(T1, S1), and c) holds
because (21) implies that X1, (S1, U), and S form a Markov
chain in that order. Similarly, one can show that

I (T2; X2|S, S1, U) = H (X2|S2, U). (28)

11This scenario is not equivalent to a common causal SI because
S1 and S2 are revealed here causally while S is only revealed strictly-causally.

Hence, the rate constraints in (20) are equivalent to those
in (23). Since (21) and (24) are identical, we conclude that
the regions of Theorems 14 and 15 coincide. �

The corollary implies that Shannon Strategies and
Block-Markov coding is optimal if the state S1, which is
available causally to Encoder 1, is available strictly-causally to
Encoder 2, and similarly for S2. We next show that this also
holds if Encoder 2 observes S1 strictly-causally and, rather
than observing S2 strictly-causally, Encoder 1 is presented with
feedback.

Theorem 17: For an SD-MAC W (y|x1, x2, (s1, s2, s)) with
encoders

x1,i (m1, xi−1
2,1 , si

1,1, si−1, yi−1), x2,i (m2, xi−1
1,1 , si

2,1, si−1),

and where S1 is computable from (S, S2), the capacity region
is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|S1, U) (29a)

R2 ≤ I (T2; X2, Y |X1, S, S1, U) (29b)

R1 + R2 ≤ I (T1, T2; Y ) (29c)

for some random variables U, T1, and T2; functions g1 : T1 ×
S1 → X1 and g2 : T2 × S2 → X2; and a joint PMF of the
form

p(u, t1, t2, x1, x2, s1, s2, s, y)

= p(u) p(t1|u) p(t2|u) p(s1, s2, s)�{x1=g1(t1,s1)}
×�{x2=g2(t2,s2)}W (y|x1, x2, (s1, s2, s)). (30)

The capacity region does not increase if additional feedback
is furnished to Encoder 2, i.e., if the encoders are of the form

x1,i(m1, xi−1
2,1 , si

1,1, si−1, yi−1), x2,i(m2, xi−1
1,1 , si

2,1, si−1, yi−1).

Proof: See Section A-J. �
The networks in Corollary 16 and Theorem 17 behave

single-user-like in the sense that combining Shannon
Strategies with the coding scheme that achieves capacity in the
absence of SI is optimal, and one can check that they satisfy
Conditions 1 and 2.

C. One Encoder Cribs

Suppose now that only Encoder 2 cribs and that it is the
only encoder furnished with SI (causally) (see Figure 4).
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For this setting an (n,M1,M2, ε) code consists of two
sequences of encoder mappings

f1,i : M1 → X1, (31a)

f2,i : M2 × X i−1
1,1 × S i → X2, (31b)

where i ∈ [1 : n], such that the average probability of error
does not exceed ε and

x1,i = f1,i (m1), (32a)

x2,i = f2,i (m2, xi−1
1,1 , si ). (32b)

We refer to this network as an SD-MAC W (y|x1, x2, s) with
encoders

x1,i (m1), x2,i (m2, xi−1
1,1 , si ).

We shall see that—as when both encoders crib and both
obtain SI—this network too is single-user-like. In fact, the
parallel to the single-user channel is even stronger: Define
T = [

1 : |XS
2 |], index the elements of XS

2 by t ∈ T ,
and let g(t, ·) denote the Shannon Strategy indexed by t .
The capacity of this network is achieved by applying the
Block-Markov coding scheme of [21, Sec. V, Situation 2] to
the (stateless) MAC with input alphabets X1 and T , output
alphabet Y , and transition law

Ŵ (y|x1, t) =
∑

s∈S
pS(s) W (y|x1, g(t, s), s).

Such a simple scheme is optimal for this network because
in this network the encoder whose output is cribbed is not
furnished with SI and hence need not use Shannon Strategies.
Consequently, the situation where an encoder uses a Shannon
Strategy h(·) but only h(S) is cribbed does not arise.

Theorem 18: The capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1), x2,i (m2, xi−1
1,1 , si )

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|U) (33a)

R2 ≤ I (T ; Y |X1, U) (33b)

R1 + R2 ≤ I (X1, T ; Y ) (33c)

for some random variables U and T ; a function g : T ×
S → X2; and a joint PMF of the form

p(u, t, x1, x2, s, y)

= p(u) p(x1|u) p(t|u) p(s)

×�{x2=g(t,s)}W (y|x1, x2, s). (34)

Proof: See Section A-K. �

IV. CONFERENCING ENCODERS

This section discusses the MAC with conferencing
encoders, which sequentially exchange information via
noise-free bit pipes of given capacities. Throughout, we denote
by C1,2 the capacity of the bit pipe from Encoder 1 to
Encoder 2 and by C2,1 that of the bit pipe from Encoder 2 to
Encoder 1. Section IV-A studies the MAC with conferencing
encoders under the assumption that at least one encoder

cribs. It discusses strictly-causal SI to the cribbing encoder(s)
and feedback to both encoders. In Section IV-B cribbing
is not allowed and we discuss feedback on the MAC with
conferencing encoders.

A. Cribbing

We assume that either both encoders crib (Section IV-A1)
or only one (Section IV-A2).

1) Both Encoders Crib: Consider an SD-MAC where both
encoders conference and crib. Recall that for k ∈ {1, 2} we
defined k to be the element of {1, 2} that is not k.

Definition 2: For any two sets M1, M2 and any pos-
itive integer n ∈ N, an (n,M1,M2, ε) code for
the MAC with a cribbing Encoder 1 that conferences
at rate C1,2 and a cribbing Encoder 2 that confer-
ences at rate C2,1 consists of four sequences of encoder
mappings

hk,i : Mk × X i−1
k,1 × Gi−1

k,1 → Gk,i , (35a)

fk,i : Mk × X i−1
k,1 × Gi

k,1 → Xk, (35b)

where k ∈ {1, 2}, i ∈ [1 : n], and a decoding mapping

φ : Yn → M1 × M2 (36)

such that the alphabets of the conferred information packets
satisfy

n∑

i=1

log2|Gk,i | ≤ nCk,k , (37)

and such that the average probability of error Pe does not
exceed ε, where

Pe =
∑

(m1,m2)∈M1×M1,
yn /∈φ−1(m1,m2)

∏n
i=1 W (yi |x1,i , x2,i )

|M1| |M2| , (38)

φ−1(m1, m2) ⊂ Yn is the decoding set of the message pair
(m1, m2), and

gk,i = hk,i (mk, xi−1
k,1 , gi−1

k,1 ), (39a)

xk,i = fk,i (mk, xi−1
k,1 , gi

k,1). (39b)

The rate pair (R1, R2) of the code is

R1 = 1

n
log |M1|, R2 = 1

n
log |M2|. (40)

We refer to this network as a MAC W (y|x1, x2) with
encoders

x1,i (m1, xi−1
2,1 , gi

2,1), x2,i (m2, xi−1
1,1 , gi

1,1).

If, in addition, strictly-causal SI and feedback are furnished
to the cribbing encoders, then an (n,M1,M2, ε) code con-
sists of four sequences of encoder mappings

hk,i : Mk × X i−1
k,1 × Gi−1

k,1 × S i−1 × Y i−1 → Gk,i , (41a)

fk,i : Mk × X i−1
k,1 × Gi

k,1 × S i−1 × Y i−1 → Xk, (41b)
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where k ∈ {1, 2}, i ∈ [1 : n], such that the average probability
of error Pe does not exceed ε, where

Pe =
∑

(m1,m2)∈M1×M2,
sn∈Sn, yn /∈φ−1(m1,m2)

∏n
i=1 p(si ) W (yi |x1,i , x2,i , si )

|M1| |M2| , (42)

φ−1(m1, m2) ⊂ Yn is the decoding set of the message pair
(m1, m2), and

gk,i = hk,i (mk, xi−1
k,1 , gi−1

k,1 , si−1, yi−1), (43a)

xk,i = fk,i (mk, xi−1
k,1 , gi

k,1, si−1, yi−1). (43b)

We refer to this network as an SD-MAC W (y|x1, x2, s) with
encoders

x1,i(m1, xi−1
2,1 , gi

2,1, si−1, yi−1), x2,i(m2, xi−1
1,1 , gi

1,1, si−1, yi−1).

Theorem 19: The capacity region of the MAC W (y|x1, x2)
with encoders

x1,i = x1,i(m1, xi−1
2,1 , gi

2,1), x2,i = x2,i(m2, xi−1
1,1 , gi

1,1)

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|U) + C1,2 (44a)

R2 ≤ H (X2|U) + C2,1 (44b)

R1 + R2 ≤ I (X1, X2; Y ) (44c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (45)

It is achievable also if the conference is restricted to take place
before transmission begins. Moreover, strictly-causal SI and/or
feedback do not increase the capacity region, i.e., the capacity
region of the SD-MAC W (y|x1, x2, s) with encoders

x1,i(m1, xi−1
2,1 , gi

2,1, si−1, yi−1), x2,i(m2, xi−1
1,1 , gi

1,1, si−1, yi−1)

is the set of rate pairs (R1, R2) satisfying (44) for some joint
PMF of the form (45).

Proof: See Section B-A. �
That conferencing prior to transmission is optimal in the

absence of cribbing, SI, and feedback was shown in [19]. It is
perhaps surprising that this is also optimal for the network of
Theorem 19, where during the transmission the encoders are
presented with additional information (such as cribbed inputs,
SI, and feedback).

2) One Encoder Cribs: Consider an SD-MAC with
conferencing encoders where only Encoder 2 cribs.
An (n,M1,M2, ε) code for this network consists of
four sequences of encoder mappings

h1,i : M1 × Gi−1
2,1 → G1,i , (46a)

h2,i : M2 × X i−1
1,1 × Gi−1

1,1 → G2,i , (46b)

f1,i : M1 × Gi
2,1 → X1, (46c)

f2,i : M2 × X i−1
1,1 × Gi

1,1 → X2, (46d)

where i ∈ [1 : n], such that the average probability of error
does not exceed ε and

g1,i = h1,i (m1, gi−1
2,1 ), (47a)

g2,i = h2,i (m2, xi−1
1,1 , gi−1

1,1 ), (47b)

x1,i = f1,i (m1, gi
2,1), (47c)

x2,i = f2,i (m2, xi−1
1,1 , gi

1,1). (47d)

We refer to this network as a MAC W (y|x1, x2) with encoders

x1,i (m1, gi
2,1), x2,i (m2, xi−1

1,1 , gi
1,1).

If, in addition, Encoder 2 observes the state sequence
strictly-causally and feedback is furnished to both encoders,
then an (n,M1,M2, ε) code consists of four sequences of
encoder mappings

h1,i : M1 × Gi−1
2,1 × Y i−1 → G1,i , (48a)

h2,i : M2 × X i−1
1,1 × Gi−1

1,1 × S i−1 × Y i−1 → G2,i , (48b)

f1,i : M1 × Gi
2,1 × Y i−1 → X1, (48c)

f2,i : M2 × X i−1
1,1 × Gi

1,1 × S i−1 × Y i−1 → X2, (48d)

where i ∈ [1 : n], such that the average probability of error
does not exceed ε and

g1,i = h1,i (m1, gi−1
2,1 , yi−1), (49a)

g2,i = h2,i (m2, xi−1
1,1 , gi−1

1,1 , si−1, yi−1), (49b)

x1,i = f1,i (m1, gi
2,1, yi−1), (49c)

x2,i = f2,i (m2, xi−1
1,1 , gi

1,1, si−1, yi−1). (49d)

We refer to this network as an SD-MAC W (y|x1, x2, s) with
encoders

x1,i(m1, gi
2,1, yi−1), x2,i(m2, xi−1

1,1 , gi
1,1, si−1, yi−1).

Theorem 20: The capacity region of the MAC W (y|x1, x2)
with encoders

x1,i(m1, gi
2,1), x2,i (m2, xi−1

1,1 , gi
1,1)

is the set of rate pairs (R1, R2) satisfying

R1 ≤ H (X1|U) + C1,2 (50a)

R2 ≤ I (X2; Y |X1, U) + C2,1 (50b)

R1 + R2 ≤ I (X1, X2; Y ) (50c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (51)

It is achievable also if the conference is restricted to take place
before transmission begins. Moreover, strictly-causal SI to
Encoder 2 and feedback to both encoders do not increase
the capacity region, i.e., the capacity region of the SD-MAC
W (y|x1, x2, s) with encoders

x1,i(m1, gi
2,1, yi−1), x2,i(m2, xi−1

1,1 , gi
1,1, si−1, yi−1)

is the set of rate pairs (R1, R2) satisfying (50) for some joint
PMF of the form (51).

Proof: See Section B-B. �
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Suppose now that cribbing is not allowed but feedback is
available to both encoders. An (n,M1,M2, ε) code for the
MAC with conferencing encoders and feedback is defined as
in Definition 2 except that it consists of four sequences of
encoder mappings

hk,i : Mk × Gi−1
k,1 × Y i−1 → Gk,i , (52)

fk,i : Mk × Gi
k,1 × Y i−1 → Xk, (53)

where k ∈ {1, 2}, i ∈ [1 : n], such that the average probability
of error does not exceed ε and

gk,i = hk,i (mk, gi−1
k,1 , yi−1), (54a)

x1,i = f1,i (mk, gi
k,1, yi−1). (54b)

We refer to this network as a MAC W (y|x1, x2) with encoders

x1,i(m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1).

Since cribbing cannot hurt we can use Theorem 20 to obtain
the following outer bound:

Corollary 21: The capacity region of the MAC W (y|x1, x2)
with encoders

x1,i (m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1)

is contained in that of the same MAC with encoders

x1,i(m1, gi
2,1), x2,i(m2, xi−1

1,1 , gi
1,1).

This outer bound is tight and conferencing prior to trans-
mission is optimal if Encoder 2 can compute the output of
Encoder 1 based on its own output and the channel output.

Proof: The outer bound follows from Theorem 20 and
the fact that cribbing cannot hurt. If Encoder 2 can compute
the output of Encoder 1 based on its own output and the
channel output, then feedback allows Encoder 2 to crib. But
since feedback does not increase capacity if one encoder cribs
(Theorem 20), the feedback capacity of such a MAC is that
of Theorem 20. �

B. Feedback and Conferencing on MACs in the Class D2

Consider the MAC W (y|x1, x2) with feedback and confer-
encing, i.e., with encoders

x1,i(m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1).

In this section, we strengthen the result of Corollary 21:
we derive tighter outer bounds on the capacity region
(Theorem 22) and exhibit a larger class of MACs for which
conferencing prior to transmission is optimal (Corollary 23).

By choosing to hold their conference before transmis-
sion begins, conferencing encoders can establish a common
message by exchanging fixed bit-portions of their private
messages. (The common message can comprise nC1,2 bits
of Encoder 1’s private message M1 and nC2,1 bits of M2.)
This is also true in the presence of feedback. Hence, the
feedback capacity of a MAC with conferencing encoders
contains the feedback capacity of the MAC with a common
message of rate C1,2 +C2,1.12 Since it is in general not known

12More precisely, the common message is of rate min{R1, C1,2} +
min{R2, C2,1}.

whether conferencing before transmission begins is optimal,
it is unknown whether this inclusion can be strict. Moreover,
this bound is not explicit because the feedback capacity of
a MAC with a common message is unknown. But any inner
bound to it would also yield an inner bound on the feedback
capacity of the MAC with conferencing.

An interesting question is whether this also holds for outer
bouds: Is every (known) outer bound on the feedback capacity
of the MAC with a common message also an outer bound
on the feedback capacity of the MAC with conferencing?
Here, we answer this question in the affirmative for the
different versions of the Dependence-Balance outer bound.
In [8, Th. 3] Hekstra and Willems established Dependence-
Balance outer bounds on the feedback capacity of the MAC
(without common message or conferencing). The different
versions can be readily extended to the setting with a common
message (in [13] this is done for the vanilla-version without
Adaptive Parallel Channel Extension). If we assume that the
common message comprises nC1,2 bits of Encoder 1’s private
message M1 and nC2,1 bits of M2, then—as we next show—
each of these versions also outer-bounds the feedback capacity
of the MAC with conferencing:

Theorem 22: The capacity region of the MAC W (y|x1, x2)
with encoders

x1,i(m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1)

is contained in the set of rate pairs (R1, R2) satisfying

R1 ≤ I (X1; Y, Z |X2, U) + C1,2 (55a)

R1 ≤ I (X1; Y |X2) + C1,2 (55b)

R2 ≤ I (X2; Y, Z |X1, U) + C2,1 (55c)

R2 ≤ I (X2; Y |X1) + C2,1 (55d)

R1 + R2 ≤ I (X1, X2; Y, Z |U) + C1,2 + C2,1 (55e)

R1 + R2 ≤ I (X1, X2; Y ) (55f)

for some joint PMF having the form

p(u, x1, x2, y, z)= p(u, x1, x2) W (y|x1, x2)p(z|x1, x2, y, u)

(56)

and satisfying the Dependence-Balance constraint

0 ≤ I (X1; X2|Y, Z , U) − I (X1; X2|U). (57)

Proof: See Section B-C. �
Remark 6: Hekstra and Willems refer to the random

variable Z in Theorem 22 as an Adaptive Parallel
Channel Extension [8]. The term alludes to the fact
that (55a), (55c), (55e), and (55f) would still hold if the
encoders were additionally furnished with feedback from a
channel with output Z, i.e., if they were to observe Z
strictly-causally. (A channel with output Z is adaptive in the
sense that its transition law may depend also on the auxiliary
random variable U.)

One possibility is to choose (nonadaptive) Parallel Channel
Extensions that allow for cribbing: If Z = (X1, X2), then
observing Z strictly-causally allows each encoder to crib,
and (55a) amounts to (44a) while (55c) amounts to (44b).
Similarly, if Z = X1, then observing Z strictly-causally allows
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Encoder 2 to crib, and (55a) amounts to (50a) while (55c)
amounts to (50b).

We have seen that (in the presence of feedback) conferenc-
ing is at least as good as a common message. Suppose now the
MAC is such that a version of the Dependence-Balance bound
is tight for its feedback capacity with a common message.
Then the theorem implies that also the converse holds, i.e.,
conferencing is no better than a common message. Thus:

Corollary 23: Suppose the MAC W (y|x1, x2) is such that
a version of the Dependence-Balance bound is tight for its
feedback capacity with a common message. Then this version
is also tight for the MAC with encoders

x1,i(m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1),

and conferencing prior to transmission is optimal.
We next exhibit a class of such MACs: the class D2 for

which Hekstra and Willems [8] exhibited the existence
of an Adaptive Parallel Channel Extension for which the
Dependence-Balance outer bound coincides with the Cover-
Leung inner bound.

Definition 3: A MAC is said to be in the class D2 if there
exist a finite alphabet A and two functions

fk : Y × Xk → A, k ∈ {1, 2},
such that W (y|x1, x2) = 0 whenever f1(y, x1) 	= f2(y, x2)
and such that for A � f1(Y, X1) (or, equivalently,
A � f2(Y, X2)) I (X1; X2|Y, A) = 0 whenever
I (X1; X2) = 0.

The following may offer some intuition on why for
every MAC in the class D2 there exists a version of the
Dependence-Balance bound that coincides with the
Cover-Leung inner bound: If the MAC is in the class D2
and feedback is presented to the encoders, then the
Parallel Channel Extension Z = A is physically present
because each encoder can compute A from its own output
and the channel output. Consequently, the assumption
that each encoder observes Z strictly-causally does not
make the Dependence-Balance bound loose. If, moreover,
I (X1; X2|Y, A) = 0 whenever I (X1; X2) = 0, then one can
show that Condition 2 holds, i.e., the encoder’s messages
are conditionally independent given the past channel outputs
and the past outputs of the Parallel Channel Extension,
which are available to both encoders. Since the encoders
are presented with feedback, Condition 1 trivially holds.
This suggests that the Cover-Leung inner bound, which is
based on Block-Markov coding, is tight.

As the next remark shows, the MACs that we encountered
in Corollaries 6, 10, and 21 are in the class D2:

Remark 7 [8]: If at least one encoder, say Encoder 2,
can compute the other encoder’s output from its own output
and the channel output, then the MAC is in the class D2
(choose A = X1).

Suppose now that the MAC is in the class D2. One can
readily extend the argument of Hekstra and Willems to the
setting with a common message and show that also in this
setting there exists a tight version of the Dependence-Balance
bound that coincides with the Cover-Leung inner bound.
Corollary 23 thus implies:

Theorem 24: Suppose the MAC W (y|x1, x2) is in the
class D2. Then its capacity region with encoders

x1,i(m1, gi
2,1, yi−1), x2,i (m2, gi

1,1, yi−1)

is the set of rate pairs (R1, R2) satisfying

R1 ≤ I (X1; Y |X2, U) + C1,2 (58)

R2 ≤ I (X2; Y |X1, U) + C2,1 (59)

R1 + R2 ≤ I (X1, X2; Y ) (60)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) W (y|x1, x2). (61)

Moreover, conferencing prior to transmission is optimal.
Proof: See Section B-D. �

Remark 8: If Encoder 2 can compute Encoder 1’s output
from its own output and the channel output, then feedback
allows it to crib, and the feedback capacity of Theorem 24 is
that of Theorem 20 with a cribbing Encoder 2. If both encoders
can compute the other encoder’s output from their own output
and the channel output, then feedback allows them both to crib
and the feedback capacity of Theorem 24 is that of Theorem 19
with two cribbing encoders.13

In the presence of feedback and conferencing
Conditions 1 and 2 are again key: all the networks
with conferencing and feedback that we solved satisfy these
conditions.

V. CONCLUSION

If at least one encoder cribs, then the SD-MAC behaves less
like a MAC and more like a single-user channel: providing
output feedback to both encoders and strictly-causal SI to the
cribbing encoder(s) does not increase capacity, and causal SI to
the cribbing encoder(s) is optimally utilized using Shannon
Strategies. In asymmetric communication scenarios the
SD-MAC with cribbing need not behave single-user-like. For
example, the capacity of the SD-MAC with one cribbing
encoder typically increases if strictly-causal SI is presented to
the encoder that does not crib. Moreover, Shannon Strategies
need not be optimal if both encoders crib but the causal SI is
provided to only one encoder. It remains an open problem to
characterize the capacity of the SD-MAC for scenarios where
it does not behave like a single-user channel. For the SD-MAC
with two cribbing encoders, we have argued that the following
two conditions are pivotal to the single-user-like behavior:

Condition 1: The Time-i channel output and each encoder’s
message are conditionally independent given the information
available to the other encoder in forming it’s Time-(i + 1)
channel input.

Condition 2: At every time i , the information that is avail-
able strictly-causally only to Encoder 1 and the information
that is available strictly-causally only to Encoder 2 are con-
ditionally independent given the information that is available
strictly-causally to both encoders.

13In the absence of conferencing, i.e., when C1,2 = C2,1 = 0, we made
similar observations in Footnotes 6 and 7.
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As to the feedback capacity when the encoders can confer-
ence, we characterized the capacity in two cases: when the
channel is in the class D2 and when at least one encoder
can crib. In both cases there is no loss of optimality in
having the encoders hold the conference prior to transmission.
Incidentally, in both cases Conditions 1 and 2 hold.

APPENDIX A
PROOFS RELATED TO CRIBBING

The following lemma is well-known. We prove it for the
sake of completeness.

Lemma 25: Two random variables X and Y are condition-
ally independent given Z if and only if the joint PMF of
(X, Y, Z) is of the form

p(x, y, z) = g1(x, z)g2(y, z). (62)

Proof: To see that (62) is necessary, assume the random
variables X , Z , and Y form a Markov chain in that order.
Then, their joint PMF can be written as

p(x, y, z) = p(x, z) p(y|x, z) = p(x, z) p(y|z) (63)

and is therefore of the form (62).
We next argue that (62) is sufficient. Indeed, if the joint PMF

of the random variables X , Y , and Z is of the form (62), then
the conditional PMF of X given Y and Z is

p(x |y, z) = p(x, y, z)

p(y, z)
(64)

= g1(x, z)g2(y, z)∑
x̃ g1(x̃, z)g2(y, z)

(65)

= g1(x, z)∑
x̃ g1(x̃, z)

(66)

=
∑

y g1(x, z)g2(y, z)
∑

x̃,y g1(x̃, z)g2(y, z)
(67)

= p(x |z) . (68)

Hence, X and Y are conditionally independent given Z . �

A. Proof of Proposition 3

Proof: The claim is established by means of a converse,
which is similar to the one in [21, Sec. V, Situation 5] but
accounts for the SI. Let Q ∼ Unif[1 : n] be independent of
(M1, M2, Sn), and denote

Ui � (Si−1, Xi−1
1,1 , Xi−1

2,1 ), (69a)

U � (UQ, Q), X1 � X1,Q, X2 � X2,Q, Y �YQ . (69b)

The rate of Encoder 1 satisfies

n(R1 − εn)
a)≤ I (M1; Y n, Sn, M2) (70)
b)= I (M1; Y n|Sn, M2) (71)
c)≤ I (Xn

1,1, M1; Y n|Sn, M2) (72)
d)= I (Xn

1,1; Y n|Sn, M2)

+I (M1; Y n|Sn, Xn
1,1, M2) (73)

e)= I (Xn
1,1; Y n|Sn, M2) (74)

f )≤
n∑

i=1

H (X1,i |Sn, Xi−1
1,1 , M2) (75)

g)=
n∑

i=1

H (X1,i |Si−1, Xi−1
1,1 , Xi−1

2,1 , M2, Sn
i ) (76)

h)≤
n∑

i=1

H (X1,i |Ui ) (77)

i)= nH (X1|U), (78)

where a) follows from Fano’s inequality, b) holds since
M1, Sn , and M2 are independent, c) is true because condi-
tioning cannot increase entropy, d) is due to the chain-rule,
e) holds since Xn

2,1 = f n
2,1(M2, Xn−1

1,1 , Sn−1) and since
(M1, M2) and Y n are conditionally independent given (Xn

1,1,
Xn

2,1, Sn), f ) is due to the non-negativity of entropy and to the
chain-rule, g) is true because Xi−1

2,1 = f i−1
2,1 (M2, Xi−2

1,1 , Si−2),
h) is a consequence of (69a) and of the fact that conditioning
cannot increase entropy, and i) is due to (69b). By symmetry,

n(R2 − εn) ≤ nH (X2|U). (79)

The sum-rate satisfies

n(R1 + R2 − εn)
a)≤ I (M1, M2; Y n) (80)

b)=
n∑

i=1

I (M1, M2; Yi |Y i−1) (81)

c)= nI (M1, M2; Y |Y Q−1, Q) (82)
d)≤ nI (X1, X2, M1, M2, Y Q−1, Q; Y ) (83)
e)= nI (X1, X2; Y ), (84)

where a) follows from Fano’s inequality, b) is due to the
chain-rule, c) is a consequence of (69b), d) holds since
conditioning cannot increase entropy, and e) is true because(
M1, M2, Y Q−1, Q

)
and Y are conditionally independent

given (X1, X2).
As we argue next, the joint PMF satisfies (7). Clearly, Y ,

(X1, X2), and U form a Markov chain in that order. It thus
remains to verify that X1 and X2 are conditionally independent
given U . Similarly as in [21, Eqs. (58)–(60)] we can write

p(ui , m1, m2)

= p(m1)p(m2)p(si−1)

×
i−1∏

j=1

p(x1, j |m1, x j−1
2,1 , s j−1)p(x2, j |m2, x j−1

1,1 , s j−1).

Since the joint PMF is of the form (62), Lemma 25 implies
that M1 and M2 are conditionally independent given Ui . As a
consequence, also X1,i and X2,i , which are obtained via the
encoding functions (1) and hence computable from (M1, Ui )
and (M2, Ui ), are conditionally independent given Ui . Since
Q is deterministic given U , it follows that X1, U , and X2 form
a Markov chain in that order. �

B. A Proof of Theorem 5

Proof: If we denote X = (X1, X2, S), then Lemma 1
implies that any SD-MAC of transition law W (y|x1, x2, s) can



BRACHER AND LAPIDOTH: FEEDBACK, CRIBBING, AND CAUSAL STATE INFORMATION ON THE MAC 7641

also be viewed as an SD-MAC whose output is a deterministic
function of the channel inputs, the state S, and a second
channel state V , which is independent of X1, X2, and S. Put
differently, the Time-i channel output is

Yi = g(x1,i, x2,i , Si , Vi ), (85)

where g : X1 ×X2 × S × V → Y is a function and {Vi } is an
IID state sequence. For i in [1 : n], define the super-state

�i � (Si , Vi ), (86)

and note that {�i } is also an IID state sequence. Providing
feedback and revealing the state Si strictly-causally to the
cribbing encoders is no better than revealing the super-state �i

strictly-causally (since Si is computable from �i and Yi is
deterministic given X1,i , X2,i , and �i ). According to
Proposition 3, revealing the super-state strictly-causally to the
cribbing encoders does not increase the capacity region. �

C. Analysis of Example 1

To see that in the absence of SI the rate pair
(R1, R2) = (0, 1) lies outside the capacity region of the
MAC with a cribbing Encoder 2, note that Y2 = X2 ⊕ S
is independent of (X1, X2). Since U , (X1, X2), and Y form a
Markov chain in that order, Y2 is also independent of the tuple
(X1, X2, U). The claim now follows from (10b) of Theorem 7:

R2 ≤ I (X2; Y |X1, U)
a)= I (X2; X1|X1, U) = 0, (87)

where a) holds since Y2 is independent of (X1, X2, U).
If the state S is revealed to Encoder 1 in a strictly-causal

fashion, then the rate pair (R1, R2) = (0, 1) is achievable.
To see this, assume that Encoder 2 sends the uncoded binary
representation of its message (and a zero at Time n) and that
Encoder 1 transmits the random state sequence by choosing
X1,i = Si−1. Then, the receiver can decode the message of
Encoder 2 since it can recover X2,i = Y2,i ⊕ Y1,i+1.

D. A Proof of Theorem 8

Proof: The claim is established by means of a converse,
which is similar to the one in [21, Sec. V, Situation 2]
but accounts for the SI and the feedback. If we denote
X = (X1, X2, S), then Lemma 1 implies that any SD-MAC
of transition law W (y|x1, x2, s) can also be viewed as an
SD-MAC whose output is a deterministic function of the
channel inputs, the state S, and a second channel state V,
which is independent of X1, X2, and S. Hence, the Time-i
channel output is

Yi = g(x1,i, x2,i , Si , Vi ), (88)

where g : X1 ×X2 × S × V → Y is a function and {Vi } is an
IID state sequence. Let Q ∼ Unif[1 : n] and denote

Ui � (Xi−1
1,1 , Y i−1), (89a)

U � (UQ , Q), X1 � X1,Q, X2 � X2,Q, (89b)

Y � YQ , S � SQ , V � VQ . (89c)

The rate of Encoder 1 satisfies

n(R1 − εn)
a)≤ I (Xn

1,1; Y n|Sn, V n, M2)

+I (M1; Y n|Sn, V n, Xn
1,1, M2) (90)

b)= I (Xn
1,1; Y n|Sn, V n, M2) (91)

c)≤ H (Xn
1,1|Sn, V n, M2) (92)

d)=
n∑

i=1

H (X1,i |Sn, V n, Xi−1
1,1 , M2) (93)

e)=
n∑

i=1

H (X1,i |Si−1, V i−1, Xi−1
1,1 , Xi−1

2,1 , M2, Sn
i , V n

i )

f )=
n∑

i=1

H (X1,i |Si−1, V i−1, Xi−1
1,1 , Xi−1

2,1 , Y i−1, M2, Sn
i , V n

i )

g)≤
n∑

i=1

H (X1,i |Xi−1
1,1 , Y i−1) (94)

h)= nH (X1|U), (95)

where a) follows from (73), b) is true because
X2,i = f2,i (M2, Xi−1

1,1 , Y i−1, Si−1) and (88) imply that Xn
2,1 =

f̃ n
2,1(M2, Xn−1

1,1 , Sn−1, V n−1) and because Y n is deterministic
given (Xn

1,1, Xn
2,1, Sn, V n), c) is due to the non-negativity of

entropy, d) is an application of the chain-rule, e) holds since
Xi−1

2,1 = f̃ i−1
2,1 (M2, Xi−2

1,1 , Si−2, V i−2) (by the arguments that
led to b)), f ) is true because (88) guarantees that Y i−1 can be
computed from (Xi−1

1,1 , Xi−1
2,1 , Si−1, V i−1) via g(·), g) holds

since conditioning cannot increase entropy, and h) follows
from (89).

The rate of the Encoder 2 satisfies

n(R2 − εn)
a)≤ I (M2; Y n, M1) (96)

b)=
n∑

i=1

I (M2; Yi |Y i−1, M1) (97)

c)=
n∑

i=1

I (M2; Yi |X1,i , Xi−1
1,1 , Y i−1, M1) (98)

d)≤
n∑

i=1

I (X2,i , M2; Yi |X1,i , Xi−1
1,1 , Y i−1, M1) (99)

e)≤
n∑

i=1

I (X2,i ; Yi |X1,i , Xi−1
1,1 , Y i−1) (100)

f )= nI (X2; Y |X1, U), (101)

where a) follows from Fano’s inequality, b) is due to
the chain-rule and to the independence of M1 and M2,
c) is true because Xi

1,1 = f i
1,1(M1, Y i−1), d) follows

from the fact that conditioning cannot increase entropy,
e) holds since (Xi−1

1,1 , Y i−1, M1, M2) and Yi are
conditionally independent given (X1,i , X2,i ) and since
conditioning cannot increase entropy, and f ) follows
from (89).
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The bound on the sum-rate follows from (84).
As we argue next, the joint PMF satisfies (11). Clearly, Y ,

(X1, X2), and U form a Markov chain in that order. It thus
remains to verify that X1 and X2 are conditionally inde-
pendent given U . Similarly as in [21, Eqs. (58)–(60)] we
can write

p(ui , m1, m2, si−1)

=
∑

xi−1
2,1

p(m1)p(m2)p(si−1)

×
i−1∏

j=1

[
p(x1, j |m1, y j−1)p(x2, j |m2, x j−1

1,1 , y j−1, s j−1)

× W (y j |x1, j , x2, j , s j )
]

= p(m1)p(m2)p(si−1)

×
i−1∏

j=1

[
p(x1, j |m1, y j−1)

∑

x2, j

p(x2, j |m2, x j−1
1,1 , y j−1, s j−1)

× W (y j |x1, j , x2, j , s j )
]
.

Since the joint PMF is of the form (62), Lemma 25
implies that M1 and (M2, Si−1) are conditionally independent
given Ui . As a consequence, also X1,i and X2,i , which
are computable from (M1, Ui ) and (M2, Ui , Si−1) via the
encoding functions, are conditionally independent given Ui .
Since Q is deterministic given U , it follows that X1, U , and
X2 form a Markov chain in that order. �

E. A Proof of Theorem 11

Proof: The proof is accomplished by means of a converse
and a direct part.

1) Converse: The converse is similar to that of Section A-A.
Let Q ∼ Unif[1 : n] be independent of (M1, M2) and denote

Ui �
(
Si−1, Xi−1

1,1 , Xi−1
2,1 ), (102a)

T1,i � (M1, Ui ), T2,i � (M2, Ui ), (102b)

U � (UQ , Q), T1 � (T1,Q, Q), T2 � (T2,Q, Q), (102c)

X1 � X1,Q, X2 � X2,Q, Y � YQ , S � SQ . (102d)

The rate of Encoder 1 satisfies

n(R1 − εn)

a)≤
n∑

i=1

H (X1,i |Si , Si−1, Xi−1
1,1 , Xi−1

2,1 , Sn
i+1, M2) (103)

b)=
n∑

i=1

H (X1,i |Si , Ui ) (104)

c)= nH (X1|S, U), (105)

where a) follows from (76) (note that e) and g) also hold
if causal SI is available and Xi

2,1 = f i
2,1(M2, Xi−1

1,1 , Si )),
b) holds because of (102a) and since conditioning cannot
increase entropy, and c) is due to (102). By symmetry,

n(R2 − εn) ≤ nH (X2|S, U). (106)

The sum-rate satisfies

n(R1 + R2 − εn)
a)≤ nI

(
M1, M2, Y Q−1, SQ−1, X Q−1

1,1 , X Q−1
2,1 , Q; Y

)

b)= nI
(
M1, M2, SQ−1, X Q−1

1,1 , X Q−1
2,1 , Q; Y

)
(107)

c)= nI (T1, T2; Y ), (108)

where a) follows from (82) and the fact that con-
ditioning cannot increase entropy, b) holds since Y ,(
Q, X Q−1

1,1 , X Q−1
2,1 , SQ−1, M1, M2

)
, and Y Q−1 form a Markov

chain in that order, and c) is due to (102).
As we argue next, the joint PMF satisfies (18). Clearly,

S and (U, T1, T2) are independent, and (U, T1, T2) and Y are
(by Lemma 25) conditionally independent given (X1, X2, S).
Furthermore, the encoding scheme (15) guarantees that there
exist functions g1 : T1 × S → X1 and g2 : T2 × S → X2 such
that

X1 = g1(T1, S), X2 = g2(T2, S). (109)

The joint distribution of (Ui , M1, M2) can be written as

p(ui , m1, m2)

= p(m1)p(m2)p(si−1)

×
i−1∏

j=1

p(x1, j |m1, x j−1
2,1 , s j )p(x2, j |m2, x j−1

1,1 , s j ).

Since the PMF is of the form (62), Lemma 25 implies that
M1 and M2 and therefore also the auxiliary random variables
T1,i and T2,i are conditionally independent given Ui . Since
Q is deterministic given U , it follows that T1, U , and T2 form
a Markov chain in that order.

2) Direct Part: We prove that combining Shannon
Strategies [14] with the Block-Markov coding scheme
of [21, Sec. V, Situation 5] is optimal.14 Assume that the
encoding is done in B blocks. Define T1 = [

1 : |XS
1 |] and

T2 = [
1 : |XS

2 |], index the elements of XS
1 by t1 ∈ T1 and

those of XS
2 by t2 ∈ T2, and define the functions g1 : T1 ×

S → X1 and g2 : T2 × S → X2 so that g1(t1, ·) denotes the
element of XS

1 indexed by t1 and g2(t2, ·) denotes the element
of XS

2 indexed by t2. Fix a sufficiently small ε > 0 and a
joint PMF

p(u, t1, t2) = p(u) p(t1 |u ) p(t2 |u ). (110)

a) Codebook generation: For b in [1 : B], draw 2n(R1+R2)

length-n sequences u from the PMF
∏n

i=1 p(ui ). Index them
m0 = (

m(1)
0 , m(2)

0

)
, m(1)

0 in [1 : 2nR1], m(2)
0 in [1 : 2nR2 ].

For k in {1, 2}, m0 in
{
(1, 1), . . . , (2nR1 , 2nR2)

}
, and mk

in [1 : 2nRk ] draw a length-n sequences tk from the PMF∏n
i=1 p

(
tk,i |ui (m0)

)
and label it tk(m0, mk).

14Since the encoders crib each other’s channel inputs and not the Shannon
Strategies, we cannot prove the direct part by simply evaluating the capacity
region of Theorem 2 for the SD-MAC into which the original channel is
transformed when the Shannon Strategies are viewed as channel inputs.
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b) Encoding: Split the messages m1 of Encoder 1 and
m2 of Encoder 2 into B − 1 blocks b in [1 : B − 1]
of equal length: m1 = m1,1, . . . , m1,B−1 and m2 = m2,1, . . . ,
m2,B−1. In the first block, Encoder 1 chooses the
sequences t1,1 = t1

(
(1, 1), m1,1

)
, and Encoder 2 chooses

t2,1 = t2((1, 1), m2,1). For b in [2 : B], cribbing and
strictly-causal SI allow Encoder 1 to form the estimate
m̂2,b−1 of m2,b−1 and Encoder 2 to form the estimate m̃1,b−1
of m1,b−1. The estimates are used to send resolution infor-
mation, which each encoder individually superimposes with
its next message block. Denote m̂0,b = (m1,b−1, m̂2,b−1)
and m̃0,b = (m̃1,b−1, m2,b−1). Let b be an element of
[2 : B −1]. In Block b, Encoder 1 chooses the sequence t1,b =
t1(m̂0,b, m1,b), and Encoder 2 chooses t2,b = t2(m̃0,b, m2,b).
In the last block B , only resolution information is sent,
i.e., t1,B = t1(m̂0,B , 1), t2,B = t2(m̃0,B, 1). Let b be an
element of [1 : B] and i an element of [1 : n]. At Time
(b − 1)n + i , Encoder 1 forms the channel input x1,(b−1)n+i
by evaluating the function g1(·, ·) for the index [t1,b]i and
the realization s(b−1)n+i of the channel state S(b−1)n+i and
likewise Encoder 2 forms x2,(b−1)n+i by evaluating g2(·, ·) for
[t2,b]i and s(b−1)n+i , i.e., x1,(b−1)n+i = g1

([t1,b]i , s(b−1)n+i
)
,

x2,(b−1)n+i = g2
([t2,b]i , s(b−1)n+i

)
.

c) Handling cribbed information: To enable cooperation
after Block b in [1 : B −1], Encoder 1 chooses m̂2,b such that

(
u(m̂0,b), t2(m̂0,b, m̂2,b), sbn

(b−1)n+1, xbn
2,(b−1)n+1

)

∈ A(n)
ε (U, T2, S, X2).

Likewise, Encoder 2 chooses m̃1,b such that
(
u(m̃0,b), t1(m̃0,b, m̃1,b), sbn

(b−1)n+1, xbn
1,(b−1)n+1

)

∈ A(n)
ε (U, T1, S, X1).

Note that the estimates m̂0,b and m̃0,b are formed after
Block b − 1 and that the previous channel inputs xbn

2,(b−1)n+1
and xbn

1,(b−1)n+1 are cribbed. Naturally, m̂0,1 = m̃0,1 =
m0,1 = (1, 1).

d) Decoding: The receiver retrieves the transmitted infor-
mation through backward decoding, i.e., it waits until the last
block B was transmitted and then looks for m̌0,B such that

(
u(m̌0,B), t1(m̌0,B, 1), t2(m̌0,B, 1), y Bn

(B−1)n+1

)

∈ A(n)
ε (U, T1, T2, Y ).

Fix b in [2 : B − 1] and assume that the decoder has already
found

m̌0,B, (m̌0,B−1, m̌1,B−1, m̌2,B−1), . . . , (m̌0,b+1, m̌1,b+1, m̌2,b+1).

To decode Block b, the receiver first sets m̌1,b = m̌(1)
0,b+1,

m̌2,b = m̌(2)
0,b+1 and then looks for m̌0,b such that

(
u(m̌0,b), t1(m̌0,b, m̌1,b), t2(m̌0,b, m̌2,b), ybn

(b−1)n+1

)

∈ A(n)
ε (U, T1, T2, Y ).

With the knowledge of m̌0,b, the information in Block b − 1
can be decoded next. The procedure stops after Block 2 since
m0,1 = (1, 1).

e) Analysis of the error probability: The error event is

E =
B−1⋃

b=1

({M̌1,b 	= M1,b} ∪ {M̌2,b 	= M2,b}
)
. (111)

Define the critical events

E1
b,m1

=
{(

u(M0,b), t1(M0,b, m1), Sbn
(b−1)n+1, Xbn

1,(b−1)n+1

)

∈ A(n)
ε (U, T1, S, X1)

}
,

E2
b,m2

=
{(

u(M0,b), t2(M0,b, m2), Sbn
(b−1)n+1, Xbn

2,(b−1)n+1

)

∈ A(n)
ε (U, T2, S, X2)

}
,

E0
b,m0

=
{(

u(m0), t1(m0, M1,b), t2(m0, M2,b), Y bn
(b−1)n+1

)

∈ A(n)
ε (U, T1, T2, Y )

}
,

and note that

E ⊆
B−1⋃

b=1

(
E1c

b,M1,b
∪ E2c

b,M2,b
∪

⋃

m1 	=M1,b

E1
b,m1

∪
⋃

m2 	=M2,b

E2
b,m2

)
∪

B⋃

b=2

(
E0c

b,M0,b
∪

⋃

m0 	=M0,b

E0
b,m0

)
. (112)

Because of the union bound, since on average over the
realization of the message pair (M1, M2) the probability of
each critical event is independent of the transmission block,
and since the codebook generation is symmetrical in the index
sequences, the error probability averaged over the ensemble of
codes satisfies

Pe ≤ (B − 1)

(
P

(
E1c

2,1

) + P
(
E2c

2,1

) +
∑

m1 	=1

P(E1
2,m1

)

+
∑

m2 	=1

P(E2
2,m2

) + P
(
E0c

2,(1,1)

)

+
∑

m0 	=(1,1)

P(E0
2,m0

)

)
, (113)

where (M0,2, M1,2, M2,2) = ((1, 1), 1, 1). By the weak-
typicality Lemma

P
(
E1c

2,1

)
, P

(
E2c

2,1

)
, P

(
E0c

2,(1,1)

) → 0 (n → ∞). (114)

The properties of weakly-typical sequences also imply
∑

m1 	=1

P
(
E1

2,m1

)

≤ 2nR1
∑

A(n)
ε (U,T1,S,X1)

p
(
un, sn, xn

1,1

)
p
(
tn
1,1|un)

(115)

≤ 2nR1 2n(H(U,T1,S,X1)+ε)

×2−n(H(U,S,X1)−ε)2−n(H(T1|U )−2ε) (116)

≤ 2−n(I (T1;S,X1|U )−4ε−R1) (117)

a)= 2−n(H(X1|S,U )−4ε−R1), (118)
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∑

m2 	=1

P
(
E2

2,m2

)

b)≤ 2−n(H(X2|S,U )−4ε−R2),
∑

m0 	=(1,1)

P
(
E0

2,m0

)

≤ 2n(R1+R2)
∑

A(n)
ε (U,T1,T2,Y )

p
(
un, tn

1,1, tn
2,1

)
p
(
yn)

≤ 2n(R1+R2)2n(H(U,T1,T2,Y )+ε)

2−n(H(U,T1,T2)−ε)2−n(H(Y )−ε) (119)

≤ 2−n(I (U,T1,T2;Y )−3ε−(R1+R2)) (120)
c)= 2−n(I (T1,T2;Y )−3ε−(R1+R2)), (121)

where a) holds since (U, T1) and S are independent and
since X1 is deterministic given (T1, S), b) is due to symmetry,
and c) holds since U , (T1, T2), and Y form a Markov chain
in that order.

Equations (113)–(121) imply that Pe → 0 (n → ∞)
provided that B grows sufficiently slowly with n and that the
rate pair satisfies

R1 < H (X1|S, U) − 4ε (122)

R2 < H (X2|S, U) − 4ε (123)

R1 + R2 < I (T1, T2; Y ) − 3ε. (124)

To conclude the proof, note that for k in {1, 2}
1

nB
log2 |Mk| = B−1

B Rk → Rk (B → ∞). (125)

�

F. A Proof of Theorem 12

Proof: To establish the claim, we slightly adapt the
converse in Section A-E. Assume the encoders observe the
channel state S causally and the channel state S̃ strictly-
causally. For X = (X1, X2, S, S̃), Lemma 1 implies that there
exists a random variable L, which is independent of X , and a
function g : X1 × X2 × S × S̃ × L → Y such that

Y = g(X1, X2, S, S̃, L). (126)

If we replace (102a) by

Ui � (Si−1, S̃i−1, Li−1, Xi−1
1,1 , Xi−1

2,1 ) (127)

and Si−1, si−1, and s j−1 by (Si−1, S̃i−1, Li−1),
(si−1, s̃i−1, li−1), and (s j−i , s̃ j−1, l j−1), then the converse
in Section A-E still applies. (Note that Si , si , and s j remain
unchanged.) �

G. A Proof of Theorem 14

Proof: Since the proof is essentially that of the direct
part in Section A-E, we only highlight the differences. Fix
a sufficiently small ε > 0, functions g1 : T1 × S1 → X1,
g2 : T2 × S2 → X2, and a joint PMF

p(u, t1, t2) = p(u) p(t1|u) p(t2|u) . (128)

1) Codebook Generation: Proceed as in Section A-E.

2) Encoding: Let b be an element of [1 : B] and i an
element of [1 : n]. At Time (b − 1)n + i , Encoder 1 forms the
channel input x1,(b−1)n+i by evaluating the function g1(·, ·) for
the index [t1,b]i and the realization s1,(b−1)n+i of the channel
state S1,(b−1)n+i , and likewise Encoder 2 forms x2,(b−1)n+i by
evaluating g2(·, ·) for the realization s2,(b−1)n+i of S2,(b−1)n+i ,
i.e., x1,(b−1)n+i = g1

([t1,b]i , s1,(b−1)n+i
)
, x2,(b−1)n+i =

g2
([t2,b]i , s2,(b−1)n+i

)
.

3) Handling of Cribbed Information: To enable cooperation
after block b in [1 : B − 1], Encoder 1 chooses m̂2,b such
that

(
u(m̂0,b), t2(m̂0,b, m̂2,b), sbn

1,(b−1)n+1, sbn
(b−1)n+1, xbn

2,(b−1)n+1

)

∈ A(n)
ε (U, T2, S1, S, X2). (129)

Likewise, Encoder 2 choose m̃1,b such that
(
u(m̃0,b), t1(m̃0,b, m̃1,b), sbn

2,(b−1)n+1, sbn
(b−1)n+1, xbn

1,(b−1)n+1

)

∈ A(n)
ε (U, T1, S2, S, X1). (130)

4) Decoding: Proceed as in Section A-E.
5) Analysis of the Error Probability: Let E1

b,m1
and E2

b,m2
denote the events

E1
b,m1

=
{(

u(M0,b), t1(M0,b, m1), Sbn
2,(b−1)n+1, Sbn

(b−1)n+1,

Xbn
1,(b−1)n+1

) ∈ A(n)
ε (U, T1, S2, S, X1)

}
,

E2
b,m2

=
{(

u(M0,b), t2(M0,b, m2), Sbn
1,(b−1)n+1, Sbn

(b−1)n+1,

Xbn
2,(b−1)n+1

) ∈ A(n)
ε (U, T2, S1, S, X2)

}
.

The properties of weakly-typical sequences imply
∑

m1 	=1

P(E1
2,m1

)

≤ 2nR1
∑

A(n)
ε (U,T1,S2,S,X1)

p
(
un, sn

2,1, sn, xn
1,1

)
p
(
tn
1,1

∣∣un )

≤ 2nR1 2n(H(U,T1,S2,S,X1)+ε)

×2−n(H(U,S2,S,X1)−ε)2−n(H(T1|U )−2ε) (131)

≤ 2−n(I (T1;S,S2,X1|U )−4ε−R1) (132)
a)= 2−n(I (T1;X1|S,S2,U )−4ε−R1), (133)

∑

m2 	=1

P(E2
2,m2

)
b)≤ 2−n(I (T2;X2|S,S1,U )−4ε−R2), (134)

where a) holds since (U, T1) and (S, S2) are independent, and
b) is due to symmetry. With (133) and (134) at hand, the claim
follows as in Section A-E. �

H. Analysis of Example 2

To see that any rate pair
{
(R1, R2) ∈ (R+

0 )2 : R1 + R2 ≤ 1
}

(135)

is achievable, let X ∼ Ber(1/2) and X2 = X ⊕ S2. Then,
Y = X . Since Encoder 2 learns the input symbols of Encoder 1
through cribbing, X can carry one bit of information about
M1 or M2.



BRACHER AND LAPIDOTH: FEEDBACK, CRIBBING, AND CAUSAL STATE INFORMATION ON THE MAC 7645

In contrast, Theorem 14 allows rate pairs (R1, R2) ∈ (R+
0 )2

satisfying

R1 ≤ I (T1; X1|S2, U) = H (X1|S2, U) (136)

R2 ≤ I (T2; X2|U) (137)

R1 + R2 ≤ I (T1, T2; Y ) (138)

for some random variables U , T1, and T2; functions g1:
T1 → X1 and g2 : T2 × S2 → X2; and a joint PMF of the
form

p(u, t1, t2, x1, x2, s2, y)

= p(u) p(t1|u) p(t2|u) p(s2)

×�{x1=g1(t1)}�{x2=g2(t2,s2)}W (y|x1, x2, s2). (139)

The rate of Encoder 2 can only be one if I (T2; X2|U) = 1,
which in turn implies that X2 is deterministic given T2. But
in this case

R1 + R2 ≤ I (T1, T2; Y ) (140)

= H (X2 ⊕ S2) − H (S2|X1, X2, T1, T2) (141)

= 0, (142)

where the last equality holds since the tuple (X1, X2, T1, T2)
is independent of S2 if X2 = g2(T2). This proves that the
inner bound of Theorem 14 is strictly smaller than the capacity
region.

I. A Proof of Theorem 15

Proof: To prove the claim, we adapt the converse
of Section A-E to the new setting. In definition (102)
replace (102a) by

Ui �
(
Si−1, Si−1

1,1 , Si−1
2,1 , Xi−1

1,1 , Xi−1
2,1

)
. (143)

If we replace Si by (Si , S1,i , S2,i ) for every i in [1 : n], then
the converse of Section A-E implies

n(R1 − εn) ≤ nH (X1|S, S1, S2, U) (144)
a)= nH (X1|S1, U), (145)

n(R2 − εn) ≤ nH (X2|S, S1, S2, U) (146)
b)= nH (X2|S2, U), (147)

n(R1 + R2) ≤ nI (T1, T2; Y ), (148)

where a) holds since X1, (S1, U), and (S, S2) form a Markov
chain in that order, and b) follows similarly.

As we argue next, the joint PMF satisfies (24). Indeed,
(S1, S2, S) and (U, T1, T2) are independent, and (U, T1, T2)
and Y are (by Lemma 25) conditionally independent given
(X1, X2, S1, S2, S). Since the encoding mappings are of the
form (19), there exist functions g1 : T1 × S1 → X1 and
g2 : T2 × S2 → X2 such that

X1 = g1(T1, S1), X2 = g2(T2, S2). (149)

The joint PMF of (Ui , M1, M2) can be written as

p(ui , m1, m2) = p(m1)p(m2)p(si−1
1,1 , si−1

2,1 , si−1)

×
i−1∏

j=1

[
p(x1, j |m1, x j−1

2,1 , s j
1,1, s j−1)

× p(x2, j |m2, x j−1
1,1 , s j

2,1, s j−1)
]
, (150)

and is therefore of the form (62). Hence, Lemma 25 implies
that M1 and M2 and hence also the auxiliary random variables
T1,i and T2,i are conditionally independent given Ui . Because
Q is deterministic given U , we conclude that T1, U , and T2
form a Markov chain in that order. �

J. A Proof of Theorem 17

Proof: The proof has a converse and a direct part.
We establish the converse for the case where feedback is
available to both encoders and the direct part for the case
where feedback is only available to Encoder 1.

1) Converse: Let Q ∼ Unif[1 : n] and denote

Ui �
(
Si−1, Si−1

1,1 , Xi−1
1,1 , Xi−1

2,1 , Y i−1), (151a)

T1,i � (M1, Ui ), T2,i �
(
M2, Si−1

2,1 , Ui
)
, (151b)

U � (UQ , Q), T1 � (T1,Q, Q), T2 � (T2,Q, Q), (151c)

X1 � X1,Q, X2 � X2,Q, Y � YQ , (151d)

S1 � S1,Q , S2 � S2,Q . (151e)

As we argue next, the joint PMF satisfies (30). It is
clear that (S1, S2, S) and (U, T1, T2) are independent, and
that (U, T1, T2) and Y are conditionally independent given
(X1, X2, S1, S2, S). Moreover, the encoding functions

X1,i = f1,i (M1, Xi−1
2,1 , Si

1,1, Si−1, Y i−1), (152)

X2,i = f2,i (M2, Xi−1
1,1 , Si

2,1, Si−1, Y i−1) (153)

and definition (151) guarantee that there exist functions
g1 : T1 × S1 → X1 and g2 : T2 × S2 → X2 such that

X1 = g1(T1, S1), X2 = g2(T2, S2). (154)

The joint PMF of
(
Ui , M1, M2, Si−1

2,1

)
satisfies

p(ui , m1, m2, si−1
2,1 )

= p(m1)p(m2)p(si−1
1,1 , si−1

2,1 , si−1)

×
i−1∏

j=1

[
p(x1, j |m1, x j−1

2,1 , s j
1,1, s j−1, y j−1)

× p(x2, j |m2, x j−1
1,1 , s j

2,1, s j−1, y j−1)

× W (y j |x1, j , x2, j , (s1, j , s2, j , s j ))
]
. (155)

Since the PMF is of the form (62), Lemma 25 implies that
M1 and

(
M2, Si−1

2

)
and therefore also the auxiliary random

variables T1,i and T2,i are conditionally independent given Ui .
Because Q is deterministic given U , we conclude that T1, U ,
and T2 form a Markov chain in that order.

The rate of Encoder 1 satisfies

n(R1 − εn)
a)= I

(
M1; Y n, Xn

1,1, Xn
2,1, M2, Sn , Sn

1,1, Sn
2,1

)
(156)

b)= nI (T1; Y, X1, X2, S, S1, S2|U, T2) (157)
c)= nI (T1; Y, X1|X2, S, S1, S2, U, T2) (158)
d)= nH (X1|X2, S, S1, S2, U, T2) (159)
e)= nH (X1|S1, U), (160)
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where a) follows from Fano’s inequality, b) is true because
of the chain-rule, the independence of M1 and M2, and (151),
(c) holds since (U, T1, T2) and (S, S1, S2) are independent and
since X2 = g2(T2, S2), (d) is true because (U, T1, T2) and
Y are conditionally independent given (X1, X2, S, S1, S2)
and because X1 = g1(T1, S1), and (e) holds since X1 and
(X2, S, S2, T2) are conditionally independent given (S1, U).
The rate of Encoder 2 satisfies

n(R2 − εn)
a)= I (M2; Y n, Xn

1,1, Xn
2,1, M1, Sn , Sn

1,1) (161)

b)=
n∑

i=1

I (M2; Yi , X1,i , X2,i , Si , S1,i |Ui , T1,i ) (162)

c)≤
n∑

i=1

I (M2, Si−1
2,1 ; Yi , X1,i , X2,i , Si , S1,i |Ui , T1,i )

d)= nI (T2; Y, X1, X2, S, S1|U, T1) (163)
e)= nI (T2; Y, X2|X1, S, S1, U, T1) (164)
f )= nI (T2; Y, X2|X1, S, S1, U), (165)

where a) follows from Fano’s inequality, b) is true because
of the chain-rule, the independence of M1 and M2, and
(151a)–(151b), (c) holds since conditioning cannot increase
entropy, (d) is due to (151), (e) is true because (U, T1, T2) and
(S, S1) are independent and since X1 = g1(T1, S1), and ( f )
holds since T1 and (Y, X2, T2) are conditionally independent
given (X1, S, S1, U). The sum-rate satisfies

n(R1 + R2 − εn) ≤ nI (T1, T2; Y ), (166)

where we used (82), the fact that conditioning cannot increase
entropy, and (151).

2) Direct Part: Since the proof is essentially that of the
direct part in Section A-E, we only highlight the differences.
Fix a sufficiently small ε > 0, functions g1 : T1 × S1 → X1,
g2 : T2 × S2 → X2, and a joint PMF

p(u, t1, t2) = p(u) p(t1|u) p(t2|u) . (167)

a) Codebook generation: Proceed as in Section A-E.
Encoding: Let b be an element of [1 : B] and i an

element of [1 : n]. At Time (b − 1)n + i , Encoder 1
forms the channel input x1,(b−1)n+i by evaluating the
function g1(·, ·) for the index [t1,b]i and the realization
s1,(b−1)n+i of the channel state S1,(b−1)n+i , and likewise
Encoder 2 forms x2,(b−1)n+i by evaluating the function g2(·, ·)
for [t2,b]i and the realization s2,(b−1)n+i of S2,(b−1)n+i ,
i.e., x1,(b−1)n+i = g1

([t1,b]i , s1,(b−1)n+i
)
, x2,(b−1)n+i =

g2
([t2,b]i , s2,(b−1)n+i

)
.

b) Handling cribbed information: To enable cooperation
after block b in [1 : B − 1], Encoder 1 chooses m̂2,b such that

(
u(m̂0,b), t2(m̂0,b, m̂2,b), sbn

(b−1)n+1, sbn
1,(b−1)n+1, ybn

(b−1)n+1,

xbn
1,(b−1)n+1, xbn

2,(b−1)n+1

) ∈ A(n)
ε (U, T2, S, S1, Y, X1, X2).

By assumption, Encoder 2 can compute sbn
1,(b−1)n+1. It thus

chooses m̃1,b such that
(
u(m̃0,b), t1(m̃0,b, m̃1,b), sbn

1,(b−1)n+1, xbn
1,(b−1)n+1

)

∈ A(n)
ε (U, T1, S1, X1) . (168)

c) Decoding: Proceed as in Section A-E.
d) Analysis of the error probability: Let E1

b,m1
and E2

b,m2
denote the events

E1
b,m1

=
{(

u(M0,b), t1(M0,b, m1), Sbn
1,(b−1)n+1, Xbn

1,(b−1)n+1

)

∈ A(n)
ε (U, T1, S1, X1)

}
, (169)

E2
b,m2

=
{(

u(M0,b), t2(M0,b, m2), Sbn
(b−1)n+1, Sbn

1,(b−1)n+1,

Y bn
(b−1)n+1, Xbn

1,(b−1)n+1, Xbn
2,(b−1)n+1

)

∈ A(n)
ε (U, T2, S, S1, Y, X1, X2)

}
. (170)

The properties of weakly-typical sequences imply
∑

m1 	=1

P(E1
2,m1

)

≤ 2nR1
∑

A(n)
ε (U,T1,S1,X1)

p(un, sn
1,1, xn

1,1)p(tn
1,1|un) (171)

≤ 2nR1 2n(H(U,T1,S1,X1)+ε)

×2−n(H(U,S1,X1)−ε)2−n(H(T1|U )−2ε) (172)

≤ 2−n(I (T1;X1,S1|U )−4ε−R1) (173)
(a)≤ 2−n(H(X1|S1,U )−4ε−R1), (174)

where a) holds since S1 is independent of (U, T1) and
since X1 is deterministic given (T1, S1). Similarly, we find
that
∑

m2 	=1

P(E1
2,m2

)

≤ 2nR2
∑

A(n)
ε (U,T2,S,S1,Y,X1,X2)

[
p(un,sn, sn

1,1, yn, xn
1,1,x

n
2,1)p(tn

2,1|un)
]

≤ 2nR2 2n(H(U,T2,S,S1,Y,X1,X2)+ε)

× 2−n(H(U,S,S1,Y,X1,X2)−ε)2−n(H(T2|U )−2ε) (175)

≤ 2−n(I (T2;Y,X1,X2,S,S1|U )−4ε−R2) (176)
a)= 2−n(I (T2;Y,X2|X1,S,S1,U )−4ε−R2), (177)

where a) holds since T2 and (X1, S, S1) are conditionally
independent given U . With (174) and (177) at hand, we
conclude as in Section A-E. �

K. A Proof of Theorem 18

Proof: The proof has a converse and a direct part.
1) Converse: The converse is similar as the one in

Section A-D. Let Q ∼ Unif[1 : n] and denote

Ui �
(
Xi−1

1,1 , Y i−1), (178a)

Ti �
(
M2, Si−1, Ui

)
, (178b)

U � (UQ, Q), T � (TQ , Q), (178c)

X1 � X1,Q, X2 � X2,Q, Y � YQ , S � SQ . (178d)

The constraint on the rate of Encoder 1 is due to (95)
(note that b) and e) also hold if causal SI is available and
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Xi
2,1 = f i

2,1(M2, Xi−1
1,1 , Si )). The rate of Encoder 2 satisfies

n(R2 − εn)

a)≤
n∑

i=1

I (M2; Yi |X1,i , Xi−1
1,1 , Y i−1, M1) (179)

b)≤
n∑

i=1

I (M2, Si−1; Yi |X1,i , Xi−1
1,1 , Y i−1, M1) (180)

c)≤
n∑

i=1

I (M2, Si−1; Yi |X1,i , Xi−1
1,1 , Y i−1) (181)

d)= nI (T ; Y |X1, U), (182)

where a) follows from (98), b) holds since conditioning
cannot increase entropy, c) is true because M1,

(
X1,i , M2,

Xi−1
1,1 , Y i−1, Si−1

)
, and Yi form a Markov chain in that order

and since conditioning cannot increase entropy, and d) is due
to (178).

The sum-rate satisfies

n(R1 + R2 − εn)
a)≤ nI

(
X1, M1, M2, SQ−1, X Q−1

1,1 , Y Q−1, Q; Y
)

(183)
b)= nI

(
X1, M2, SQ−1, X Q−1

1,1 , Y Q−1, Q; Y
)

(184)
c)= nI (X1, T ; Y ), (185)

where a) follows from (82) and the fact that condition-
ing cannot increase entropy, b) holds since Y ,

(
X1, M2,

SQ−1, X Q−1
1,1 , Y Q−1

)
, and M1 form a Markov chain in that

order, and c) is due to (178).
As we argue next, the joint PMF is of the form (34).

It is clear that S and (U, X1, T ) are independent and that
U and Y are conditionally independent given (X1, T, S).
Moreover, the encoding function (31a) and the independence
of M1, M2, and Si−1 imply that Ti and X1,i are conditionally
independent given Ui . Since Q is deterministic given U , it
follows that X1, U , and T form a Markov chain in that
order. Because of (178) and (31b) there exists a function
g : T × S → X2 such that

X2 = g(T, S). (186)

2) Direct Part: To prove that the rate region is also
achievable, we use Shannon Strategies [14] to transform the
given channel with causal SI to the cribbing encoder into a
(stateless) MAC with a cribbing encoder. For the latter channel
we can invoke Theorem 7.

Define T = [
1 : |XS

2 |], index the elements of XS
2 by

t ∈ T , and let g(t, ·) denote the Shannon Strategy indexed
by t . If Encoder 2 computes its Time-i input as X2,i =
g(Ti , Si ), where Ti = f2,i

(
M2, Xi−1

1,1

)
, then we can view

the SD-MAC W (y|x1, x2, s) with causal SI to the cribbing
Encoder 2 as a (stateless) MAC with a cribbing Encoder 2,
input alphabets X1 and T , output alphabet Y , and transition
law

Ŵ (y|x1, t) =
∑

s∈S
pS(s) W (y|x1, g(t, s), s). (187)

For such a network Theorem 7 implies that a rate pair (R1, R2)
is achievable if

R1 ≤ H (X1|U) (188)

R2 ≤ I (T ; Y |X1, U) (189)

R1 + R2 ≤ I (X1, T ; Y ) (190)

hold for some joint PMF of the form

p(u, x1, t, y) = p(u) p(x1|u) p(t|u) Ŵ (y|x1, t). (191)

To conclude the proof, note that the relations X2 = g(T, S)
and (187) imply (34). �

APPENDIX B
PROOFS RELATED TO CONFERENCING

A. A Proof of Theorem 19

Proof: The proof has a converse and a direct part.
1) Converse: The claim can be established with

similar arguments as in Sections A-A and A-B
(see [2, Proof of Th. 4.1] that applies to the case where
only Encoder 2 cribs). Here, we give a proof based on the
proof of Theorem 22. To this end, we view the cribbed input
symbols and the SI as a Parallel Channel Extension and let
Zi = (

X1,i , X2,i , Si
)
. Then (272), (279), and (293) imply

R1 ≤ I (X1; Y, X1, X2, S|X2, U) + C1,2 (192)

= H (X1|X2, U) + C1,2, (193)

R2 ≤ I (X2; Y, X1, X2, S|X1, U) + C2,1 (194)

= H (X2|X1, U) + C2,1, (195)

R1 + R2 ≤ I (X1, X2; Y ). (196)

Moreover, the Dependence-Balance constraint (300) reads

0 ≤ I (X1; X2|Y, X1, X2, S, U) − I (X1; X2|U) (197)

= −I (X1; X2|U). (198)

It is satisfied iff X1, U , and X2 form a Markov-chain in that
order. But in this case (193) and (195) simplify to

R1 ≤ H (X1|U) + C1,2, (199)

R2 ≤ H (X2|U) + C2,1. (200)

To conclude the proof, note that U , (X1, X2), and Y form a
Markov chain in that order.

2) Direct Part: To see that the rate region is also achievable,
assume that the encoders conference prior to transmission.
If Encoder 1 sends the last nC1,2 bits of its message M1 during
the conference and likewise Encoder 2 the last nC2,1 bits of
M2, then all rate pairs in the capacity region of the MAC with
cribbing encoders that observe private messages of rates

R̃1 = max{R1 − C1,2, 0}, (201a)

R̃2 = max{R2 − C2,1, 0} (201b)

and a common message of rate R0 = min{R1, C1,2} +
min{R2, C2,1} are achievable. Suppose the capacity region of
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the MAC with a common message and cribbing encoders
contains the set of rate triples (R0, R̃1, R̃2) satisfying

R̃1 ≤ H (X1|U) (202a)

R̃2 ≤ H (X2|U) (202b)

R0 + R̃1 + R̃2 ≤ I (X1, X2; Y ) (202c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) p(y|x1, x2). (203)

Then, (201) implies that the set of rate pairs (R1, R2)
satisfying

R1 ≤ H (X1|U) + C1,2 (204)

R2 ≤ H (X2|U) + C2,1 (205)

R1 + R2 ≤ I (X1, X2; Y ) (206)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) p(y|x1, x2) (207)

is achievable. To conclude the proof, we show that the
capacity region of the MAC with a common message and
cribbing encoders contains any rate triple that satisfies (202)
for some joint PMF of the form (203). To this end, we use
a random coding argument that combines the ideas of [15]
and [21]: As in [21, Sec. V, Situation 2], the encoding is done
in B blocks during each of which both encoders superimpose
private message blocks over a common part. In contrast to
the scheme of [21], the common part not only comprises
resolution information on the previous transmission block but
also information on the common message (see [15]).

Fix a sufficiently small ε > 0 and a joint PMF

p(u, x1, x2) = p(u) p(x1|u) p(x2|u) . (208)

a) Codebook generation: For b in [1 : B], draw
2n(R0+R1+R2) length-n sequences u from the PMF

∏n
i=1 p(ui ).

Index them m−1 = (m(0)
−1, m(1)

−1, m(2)
−1), m(0)

−1 in [1 : 2nR0 ], m(1)
−1

in [1 : 2nR1 ], m(2)
−1 in [1 : 2nR2 ]. For k in {1, 2}, m−1 in{

(1, 1, 1), . . . , (2nR0 , 2nR1 , 2nR2)
}
, and mk in [1 : 2nRk ] draw

a length-n codeword xk from the PMF
∏n

i=1 p
(
xk,i |ui (m−1)

)

and label it xk(m−1, mk).
b) Encoding: Split the common message m0, the pri-

vate message m1 of Encoder 1, and the private message
m2 of Encoder 2 into B − 1 blocks of equal length:
m0 = m0,2, . . . , m0,B , m1 = m1,1, . . . , m1,B−1, and m2 =
m2,1, . . . , m2,B−1. In the first block, Encoder 1 chooses the
codeword x1,1 = x1

(
(1, 1, 1), m1,1

)
, and Encoder 2 chooses

x2,1 = x2
(
(1, 1, 1), m2,1

)
. For b in [2 : B], cribbing

allows Encoder 1 to form the estimate m̂2,b−1 of m2,b−1
and Encoder 2 to form the estimate m̃1,b−1 of m1,b−1. The
estimates are used to send resolution information, which each
encoder individually superimposes with its next private mes-
sage block. Denote m−1,b = (m0,b, m1,b−1, m2,b−1), m̂−1,b =
(m0,b, m1,b−1, m̂2,b−1), and m̃−1,b = (m0,b, m̃1,b−1, m2,b−1).
Let b be an element of [2 : B − 1]. In Block b,
Encoder 1 chooses the codeword x1,b = x1(m̂−1,b, m1,b), and
Encoder 2 chooses x2,b = x2(m̃−1,b, m2,b). In the last block
B , only resolution and common information are sent, i.e.,
x1,B = x1(m̂−1,B, 1), x2,B = x2(m̃−1,B, 1).

c) Handling cribbed information: To enable cooperation
after block b in [1 : B − 1], Encoder 1 chooses m̂2,b such that

(
u(m̂−1,b), x2(m̂−1,b, m̂2,b), xbn

2,(b−1)n+1)

∈ A(n)
ε (U, X2, X2). (209)

Likewise, Encoder 2 chooses m̃1,b such that

(
u(m̃−1,b), x1(m̃−1,b, m̃1,b), xbn

1,(b−1)n+1

)

∈ A(n)
ε (U, X1, X1). (210)

Note that the estimates m̂−1,b and m̃−1,b are formed after
Block b − 1 and that the previous channel inputs xbn

2,(b−1)n+1
and xbn

1,(b−1)n+1 are cribbed. Naturally, m̂−1,1 = m̃−1,1 =
m−1,1 = (1, 1, 1).

d) Decoding: The receiver retrieves the transmitted infor-
mation through backward decoding, i.e., it waits until the last
block B was transmitted and then looks for m̌−1,B such that

(
u(m̌−1,B), x1(m̌−1,B, 1), x2(m̌−1,B, 1), y Bn

(B−1)n+1

)

∈ A(n)
ε (U, X1, X2, Y ). (211)

Fix b in [2 : B −1] and assume the decoder has already found

m̌−1,B, (m̌−1,B−1, m̌1,B−1, m̌2,B−1), . . . ,

(m̌−1,b+1, m̌1,b+1, m̌2,b+1).

To decode Block b, the receiver first sets m̌1,b = m̌(1)
−1,b+1,

m̌2,b = m̌(2)
−1,b+1 and then looks for m̌−1,b such that

(
u(m̌−1,b), x1(m̌−1,b, m̌1,b), x2(m̌−1,b, m̌2,b), ybn

(b−1)n+1

)

∈ A(n)
ε (U, X1, X2, Y ). (212)

With the knowledge of m̌−1,b, the information in
Block b − 1 can be decoded next. The procedure stops
after Block 2 since m−1,1 = (1, 1, 1). For b in [2 : B] the
receiver sets m̌0,b = m̌(0)

−1,b.
e) Analysis of the error probability: The error event is

E =
B⋃

b=2

{M̌0,b 	= M0,b}

∪
B−1⋃

b=1

({M̌1,b 	= M1,b} ∪ {M̌2,b 	= M2,b}
)
. (213)

Define the critical events

E1
b,m1

=
{(

u(M−1,b), x1(M−1,b, m1), Xbn
1,(b−1)n+1

)

∈ A(n)
ε (U, X1, X1)

}
, (214)

E2
b,m2

=
{(

u(M−1,b), x2(M−1,b, m2), Xbn
2,(b−1)n+1

)

∈ A(n)
ε (U, X2, X2)

}
, (215)

E−1
b,m−1

=
{(

u(m−1), x1(m−1, M1,b), x2(m−1, M2,b),

Y bn
(b−1)n+1

) ∈ A(n)
ε (U, X1, X2, Y )

}
, (216)



BRACHER AND LAPIDOTH: FEEDBACK, CRIBBING, AND CAUSAL STATE INFORMATION ON THE MAC 7649

and note that

E ⊆
B−1⋃

b=1

(
E1c

b,M1,b
∪ E2c

b,M2,b
∪

⋃

m1 	=M1,b

E1
b,m1

∪
⋃

m2 	=M2,b

E2
b,m2

)
∪

B⋃

b=2

(
E−1c

b,M−1,b
∪

⋃

m−1 	=M−1,b

E−1
b,m−1

)
.

Because of the union bound, since on average over the
realization of the message triple (M0, M1, M2) the probability
of each critical event is independent of the transmission block,
and since the codebook generation is symmetrical in the index
sequences, the error probability averaged over the ensemble of
codes satisfies

Pe ≤ (B − 1)

(
P

(
E1c

2,1

) + P
(
E2c

2,1

) +
∑

m1 	=1

P(E1
2,m1

)

+
∑

m2 	=1

P(E2
2,m2

) + P
(
E−1c

2,(1,1,1)

)

+
∑

m−1 	=(1,1,1)

P(E−1
2,m−1

)

)
, (217)

where (M−1,2, M1,2, M2,2) = (
(1, 1, 1), 1, 1

)
. By the weak-

typicality Lemma

P(E1c
2,1), P(E2c

2,1), P(E−1c
2,(1,1,1)) → 0 (n → ∞). (218)

The properties of weakly-typical sequences also imply
∑

m1 	=1

P(E1
2,m1

)

≤ 2nR1
∑

(un,xn
1,1,x̃

n
1,1)∈A(n)

ε (U,X1,X1)

p
(
un, xn

1,1

)
p
(
x̃ n

1,1|un)

≤ 2nR12n(H(U,X1,X1)+ε)

×2−n(H(U,X1)−ε)2−n(H(X1|U )−2ε) (219)

≤ 2−n(H(X1|U )−4ε−R1), (220)
∑

m2 	=1

P(E2
2,m2

)
a)≤ 2−n(H(X2|U )−4ε−R2), (221)

∑

m−1 	=(1,1,1)

P(E−1
2,m0

)

≤ 2n(R0+R1+R2)

∑
(

un,xn
1,1,x

n
2,1,yn

)
∈A(n)

ε (U,X1,X2,Y )

p
(
un, xn

1,1, xn
2,1

)
p
(
yn)

≤ 2n(R0+R1+R2)2n(H(U,X1,X2,Y )+ε)

×2−n(H(U,X1,X2)−ε)2−n(H(Y )−ε) (222)

≤ 2−n(I (U,X1,X2;Y )−3ε−(R0+R1+R2)) (223)
b)= 2−n(I (X1,X2;Y )−3ε−(R0+R1+R2)), (224)

where a) is due to symmetry, and b) is true because U ,
(X1, X2), and Y form a Markov chain in that order.
Equations (217)–(224) imply that Pe → 0 (n → ∞) provided
that B grows sufficiently slowly with n and that the rate triple

satisfies

R1 < H (X1|U) − 4ε (225)

R2 < H (X2|U) − 4ε (226)

R0 + R1 + R2 < I (X1, X2; Y ) − 3ε. (227)

To conclude the proof, note that for k in {0, 1, 2}
1

nB
log2|Mk| = B − 1

B
Rk → Rk (B → ∞). (228)

�

B. A Proof of Theorem 20

Proof: The proof has a converse and a direct part.
1) Converse: The claim can be established with

similar arguments as in Section A-D (see the proof
of [2, Th. 4.1]). For the case where no SI is available to
Encoder 2, we give a proof based on the proof of Theorem 22.
To this end, we view the cribbed input symbols as a Parallel
Channel Extension and let Zi = X1,i . Then (272), (279),
and (293) imply

R1 ≤ I (X1; Y, X1|X2, U) + C1,2 (229)

= H (X1|X2, U) + C1,2, (230)

R2 ≤ I (X2; Y, X1|X1, U) + C2,1 (231)

= I (X2; Y |X1, U) + C2,1, (232)

R1 + R2 ≤ I (X1, X2; Y ). (233)

Moreover, the Dependence-Balance constraint (300) reads

0 ≤ I (X1; X2|Y, X1, U) − I (X1; X2|U)

= −I (X1; X2|U). (234)

It is satisfied iff X1, U , and X2 form a Markov chain in that
order. But in this case (230) simplifies to

R1 ≤ H (X1|U) + C1,2. (235)

To conclude the proof, note that U , (X1, X2), and Y form a
Markov chain in that order.

If strictly-causal SI is available to Encoder 2, then the
converse no longer is a direct consequence of the arguments in
Section B-C. If we let Zi = X1,i , replace Zi by Z̃i � (Zi , Si )
in the derivation of (272), and define Vi = Z̃ i−1 as well
as V = VQ , then (272), (279), and (293) imply

R1 ≤ I (X1; Y, X1, S|X2, U, V ) + C1,2 (236)

≤ H (X1|X2, U) + C1,2, (237)

R2 ≤ I (X2; Y, X1|X1, U) + C2,1 (238)

= I (X2; Y |X1, U) + C2,1, (239)

R1 + R2 ≤ I (X1, X2; Y ). (240)

As we argue next, the joint PMF satisfies (51). Indeed, U ,
(X1, X2), and Y form a Markov chain in that order. It thus
remains to verify that X1 and X2 are conditionally independent
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given U . Observe that

p(ui , si−1, m1, m2)

=
∑

xi−1
2,1

p(si−1)p(m1)p(m2)

i−1∏

j=1

[
p(g1, j |m1, g j−1

2,1 , y j−1)

×p(g2, j |m2, x j−1
1,1 , g j−1

1,1 , s j−1, y j−1)p(x1, j |m1, g j
2,1, y j−1)

×p(x2, j |m2, x j−1
1,1 , g j

1,1, s j−1, y j−1)p(y j |x1, j , x2, j , s j )
]

×p(g1,i |m1, gi−1
2,1 , yi−1)p(g2,i |m2, xi−1

1,1 , gi−1
1,1 , si−1, yi−1)

= p(si−1)p(m1)p(m2)

i−1∏

j=1

[
p(g1, j |m1, g j−1

2,1 , y j−1)

×p(g2, j |m2, x j−1
1,1 , g j−1

1,1 , s j−1, y j−1)p(x1, j |m1, g j
2,1, y j−1)

×
∑

x2, j

p(x2, j |m2, x j−1
1,1 , g j

1,1, s j−1, y j−1)p(y j |x1, j , x2, j , s j )
]

× p(g1,i |m1, gi−1
2,1 , yi−1)p(g2,i |m2, xi−1

1,1 , gi−1
1,1 , si−1, yi−1) .

Since the joint PMF is of the form (62), Lemma 25
implies that M1 and (M2, Si−1) are conditionally independent
given Ui . The encoding functions (48c) and (48d) and the
definition (266a) of the auxiliary random variable Ui imply
that X1,i is computable from (M1, Ui ) and similarly X2,i

from (M2, Ui , Si−1). Hence, X1,i and X2,i are conditionally
independent given Ui . Since the auxiliary random variable U
comprises Q, we conclude that X1, U , and X2 form a Markov
chain in that order.

2) Direct Part: Achievability is established similarly as in
Section B-A. Observe that all rate pairs in the capacity region
of the MAC with a cribbing Encoder 2 and where the senders
observe private messages of rates

R̃1 = max{R1 − C1,2, 0}, (241a)

R̃2 = max{R2 − C2,1, 0} (241b)

and a common message of rate R0 = min{R1, C1,2} +
min{R2, C2,1} are achievable. Hence, it is enough to show that
the capacity region of the MAC with a common message and a
cribbing Encoder 2 contains the set of rate triples (R0, R̃1, R̃2)
satisfying

R̃1 ≤ H (X1|U) (242a)

R̃2 ≤ I (X2; Y |X1, U) (242b)

R0 + R̃1 + R̃2 ≤ I (X1, X2; Y ) (242c)

for some joint PMF of the form

p(u, x1, x2, y) = p(u) p(x1|u) p(x2|u) p(y|x1, x2). (243)

To this end, we employ a random coding argument. The
encoding is done in B blocks during each of which both
encoders superimpose private message blocks over a common
part, which comprises resolution information for the previous
transmission block and information about the common
message.

Fix a sufficiently small ε > 0 and a joint PMF

p(u, x1, x2) = p(u) p(x1|u) p(x2|u) . (244)

a) Codebook generation: For b in [1 : B], draw 2n(R0+R1)

length-n sequences u from the PMF
∏n

i=1 p(ui ). Index them
m−1 = (m(0)

−1, m(1)
−1), m(0)

−1 in [1 : 2nR0 ], m(1)
−1 in [1 : 2nR1 ].

For k in {1, 2}, m−1 in
{
(1, 1), . . . , (2nR0 , 2nR1)

}
, and

mk ∈ [1 : 2nRk ] draw a length-n codeword xk from the PMF∏n
i=1 p

(
xk,i |ui (m−1)

)
and label it xk(m−1, mk).

b) Encoding: Split the common message m0, the private
message m1 of Encoder 1, and the private message m2 of
Encoder 2 into B − 1 blocks b in [1 : B − 1] of equal
length: m0 = m0,2, . . . , m0,B , m1 = m1,1, . . . , m1,B−1,
and m2 = m2,2, . . . , m2,B . In the first block, Encoder 1
chooses the codeword x1,1 = x1

(
(1, 1), m1,1

)
, and Encoder 2

chooses x2,1 = x2
(
(1, 1), 1

)
. For b in [2 : B], cribbing

allows Encoder 2 to form the estimate m̃1,b−1 of m1,b−1.
The estimate is used to send resolution information, which
each encoder individually superimposes with its next private
message block. Denote m−1,b = (m0,b, m1,b−1) and m̃−1,b =
(m0,b, m̃1,b−1). Let b be an element of [2 : B −1]. In Block b,
Encoder 1 chooses the codeword x1,b = x1(m−1,b, m1,b),
and Encoder 2 chooses x2,b = x2(m̃−1,b, m2,b). In the last
block B , Encoder 1 does not transmit any private information,
i.e., x1,B = x1(m−1,B, 1), x2,B = x2(m̃−1,B, m2,B).

c) Handling cribbed information: To enable cooperation
after block b in [1 : B − 1], Encoder 2 chooses m̃1,b such that
(
u(m̃−1,b), x1(m̃−1,b, m̃1,b), xbn

1,(b−1)n+1

)∈A(n)
ε (U, X1, X1).

Note that the estimate m̃−1,b is formed after Block b − 1
and that the previous channel inputs xbn

1,(b−1)n+1 are cribbed.
Naturally, m̃−1,1 = m−1,1 = (1, 1).

d) Decoding: The receiver retrieves the transmitted infor-
mation through backward decoding, i.e., it waits until the last
block B was transmitted and then looks for m̌−1,B , m̌2,B such
that

(
u(m̌−1,B), x1(m̌−1,B, 1), x2(m̌−1,B, m̌2,B), y Bn

(B−1)n+1

)

∈ A(n)
ε (U, X1, X2, Y ). (245)

Fix b in [2 : B −1] and assume the decoder has already found

(m̌−1,B, m̌2,B), (m̌−1,B−1, m̌1,B−1, m̌2,B−1), . . . ,

(m̌−1,b+1, m̌1,b+1, m̌2,b+1). (246)

To decode Block b, the receiver first sets m̌1,b = m̌(1)
−1,b+1 and

then looks for m̌−1,b, m̌2,b such that
(
u(m̌−1,b), x1(m̌−1,b, m̌1,b), x2(m̌−1,b, m̌2,b), ybn

(b−1)n+1)

∈ A(n)
ε (U, X1, X2, Y ). (247)

With the knowledge of m̌−1,b, the information in Block b − 1
can be decoded next. The procedure stops after Block 2 since
m−1,1 = (1, 1), m2,1 = 1. For b in [2 : B] the receiver sets
m̌0,b = m̌(0)

−1,b.
e) Analysis of the error probability: The error event is

E =
B⋃

b=2

({M̌0,b 	= M0,b} ∪ {M̌2,b 	= M2,b}
)

∪
B−1⋃

b=1

{M̌1,b 	= M1,b}. (248)
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Define the critical events

E1
b,m1

=
{(

u(M−1,b), x1(M−1,b, m1), Xbn
1,(b−1)n+1

)

∈ A(n)
ε (U, X1, X1)

}
, (249)

E2
b,m2

=
{(

u(M−1,b), x1(M−1,b, M1), x2(M−1,b, m2),

Y bn
(b−1)n+1

) ∈ A(n)
ε (U, X1, X2, Y )

}
, (250)

E−1
b,m−1,m2

=
{(

u(m−1), x1(m−1, M1,b), x2(m−1, m2),

Y bn
(b−1)n+1

) ∈ A(n)
ε (U, X1, X2, Y )

}
, (251)

and note that

E ⊆
B−1⋃

b=1

(
E1c

b,M1,b
∪

⋃

m1 	=M1,b

E1
b,m1

)
∪

B⋃

b=2

(
E−1c

b,M−1,b,M2,b

∪
⋃

m−1 	=M−1,b,m2

E−1
b,m−1,m2

∪
⋃

m2 	=M2,b

E2
b,m2

)
.

(252)

Because of the union bound, since on average over the
realization of the message triple (M0, M1, M2) the probability
of each critical event is independent of the transmission block,
and since the codebook generation is symmetrical in the index
sequences, the error probability averaged over the ensemble of
codes satisfies

Pe ≤ (B − 1)

(
P(E−1c

2,(1,1),1) +
∑

m−1 	=(1,1),m2

P(E−1
2,m−1,m2

)

+
∑

m2 	=1

P(E2
2,m2

) + P(E1c
2,1) +

∑

m1 	=1

P(E1
2,m1

)

)
,

(253)

where (M−1,2, M1,2, M2,2) = (
(1, 1), 1, 1

)
. By the weak-

typicality Lemma

P(E1c
2,1), P(E−1c

2,(1,1),1) → 0 (n → ∞). (254)

The properties of weakly-typical sequences also imply

∑

m1 	=1

P(E1
2,m1

)
a)≤ 2−n(H(X1|U )−4ε−R1), (255)

∑

m2 	=1

P(E2
2,m2

)

≤ 2nR2
∑

(un,xn
1,1,x

n
2,1,yn)∈A(n)

ε (U,X1,X2,Y )

×p
(
un, xn

1,1, yn) p
(
xn

2,1|un)

≤ 2nR2 2n(H(U,X1,X2,Y )+ε)

×2−n(H(U,X1,Y )−ε)2−n(H(X2|U )−2ε) (256)

≤ 2−n(I (X2;X1,Y |U )−4ε−R2) (257)
b)= 2−n(I (X2;Y |X1,U )−4ε−R2), (258)

∑

m−1 	=(1,1),m2

P(E−1
2,m0

)

≤ 2n(R0+R1+R2)
∑

(
un,xn

1,1,x
n
2,1,yn

)
∈A(n)

ε (U,X1,X2,Y )

p
(
un, xn

1,1, xn
2,1

)
p
(
yn)

≤ 2n(R0+R1+R2)2n(H(U,X1,X2,Y )+ε)

×2−n(H(U,X1,X2)−ε)2−n(H(Y )−ε) (259)

≤ 2−n(I (U,X1,X2;Y )−3ε−(R0+R1+R2)) (260)
c)= 2−n(I (X1,X2;Y )−3ε−(R0+R1+R2)), (261)

where a) is (220), b) holds since X1 and X2 are condi-
tionally independent given U , and c) is true because U ,
(X1, X2), and Y form a Markov chain in that order.
Equations (253)–(261) imply that Pe → 0 (n → ∞) provided
that B grows sufficiently slowly with n and that the rate triple
satisfies

R1 < H (X1|U) − 4ε (262)

R2 < I (X2; Y |X1, U) − 4ε (263)

R0 + R1 + R2 < I (X1, X2; Y ) − 3ε. (264)

To conclude the proof, note that for k in {0, 1, 2}
1

nB
log2|Mk| = B − 1

B
Rk → Rk (B → ∞). (265)

�

C. A Proof of Theorem 22

Proof: For i in [1 : n], let Zi denote the Time-i output
of the parallel channel. We assume that it only depends on(
X1,i , X2,i , Y i , Zi−1, Gi

1,1, Gi
2,1

)
. Let Q ∼ Unif[1 : n] and

denote

Ui �
(
Y i−1, Zi−1, Gi

1,1, Gi
2,1

)
, (266a)

U � (UQ , Q), X1 � X1,Q, X2 � X2,Q , (266b)

Y � YQ , Z � Z Q . (266c)

The rate of Encoder 1 satisfies

n(R1 − εn)
a)≤ I (M1; Y n, Zn, Gn

1,1, Gn
2,1, M2) (267)

b)=I (M1; Y n, Zn, Gn
1,1, Gn

2,1|M2) (268)

c)=
n∑

i=1

[
I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1

1,1 , Gi−1
2,1 , M2)

+I (M1; Yi , Zi |X2,i , Y i−1, Zi−1, Gi
1,1, Gi

2,1, M2)
]

d)≤
n∑

i=1

I (M1; Yi , Zi |X2,i , Y i−1, Zi−1, Gi
1,1, Gi

2,1, M2)

+ nC1,2 (269)

e)≤
n∑

i=1

I (X1,i , M1; Yi , Zi |X2,i , Y i−1, Zi−1, Gi
1,1, Gi

2,1, M2)

+ nC1,2 (270)

f )≤
n∑

i=1

I (X1,i ; Yi , Zi |X2,i , Y i−1, Zi−1, Gi
1,1, Gi

2,1)
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+ nC1,2 (271)
g)= nI (X1; Y, Z |X2, U) + nC1,2, (272)

where a) follows from Fano’s inequality, b) holds since
M1 and M2 are independent, c) is true because of the chain-
rule and since X2,i is deterministic given (M2, Gi

1,1, Y i−1),
d) is a consequence of (276) below, e) is true because con-
ditioning cannot increase entropy, f ) holds since (M1, M2),(
X1,i , X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1

)
, and (Yi , Zi ) form a

Markov chain in that order and since conditioning can-
not increase entropy (recall that Zi solely depends on(
X1,i , X2,i , Y i , Zi−1, Gi

1,1, Gi
2,1

)
), and g) is due to (266).

The following computation proves inequality d)

n∑

i=1

I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 , M2)

a)≤
n∑

i=1

H (G1,i, G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 , M2)

b)=
n∑

i=1

H (G1,i |Y i−1, Zi−1, Gi−1
1,1 , Gi

2,1, M2) (273)

c)≤
n∑

i=1

H (G1,i) (274)

d)≤
n∑

i=1

log2|G1,i | (275)

e)≤ nC1,2, (276)

where a) is due to the non-negativity of entropy, b) follows
from the chain-rule and the fact that G2,i is deterministic given(
M2, Gi−1

1,1 , Y i−1
)
, c) is true because conditioning cannot

increase entropy, d) holds since entropy is maximized by the
uniform distribution, and e) is due to (37).

The rate of Encoder 1 also satisfies

n(R1 − εn)

a)≤
n∑

i=1

I (X1,i , M1; Yi |X2,i , Y i−1, Gi
1,1, Gi

2,1, M2)+nC1,2

b)≤
n∑

i=1

I (X1,i ; Yi |X2,i ) + nC1,2 (277)

c)= nI (X1; Y |X2) + nC1,2, (278)

where a) is (270) evaluated for a deterministic Zi , b) holds
since conditioning cannot increase entropy and since Yi ,
(X1,i , X2,i ), and

(
M1, M2, Y i−1, Gi

1,1, Gi
2,1

)
form a Markov

chain in that order, and c) is due to (266).
By symmetry, the rate of Encoder 2 satisfies the constraints,

n(R2 − εn) ≤ nI (X2; Y, Z |X1, U) + nC2,1, (279)

n(R2 − εn) ≤ nI (X2; Y |X1) + nC2,1. (280)

The sum-rate satisfies

n(R1 + R2 − εn)
a)≤ I (M1, M2; Y n, Zn, Gn

1,1, Gn
2,1) (281)

b)=
n∑

i=1

[
I (M1, M2; G1,i , G2,i |Y i−1, Zi−1, Gi−1

1,1 , Gi−1
2,1 )

+I (M1, M2; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(282)

c)≤
n∑

i=1

I (M1, M2; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)

+n(C1,2 + C2,1) (283)

d)≤
n∑

i=1

I (X1,i , X2,i ; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)

+n(C1,2 + C2,1) (284)
e)= nI (X1, X2; Y, Z |U) + n

(
C1,2 + C2,1

)
, (285)

where a) follows from Fano’s inequality, b) is due to the
chain-rule, c) is a consequence of (288) below, d) is true
because conditioning cannot increase entropy and because
(M1, M2),

(
X1,i , X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1

)
, and (Yi , Zi )

form a Markov chain in that order (recall that Zi solely
depends on

(
X1,i , X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1

)
), and e) is due

to (266).
The following computation proves inequality c)

n∑

i=1

I (M1, M2; G1,i , G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 )

a)≤
n∑

i=1

H (G1,i, G2,i ) (286)

b)≤
n∑

i=1

log2
(|G1,i ||G2,i |

)
(287)

c)≤ n
(
C1,2 + C2,1

)
, (288)

where a) is due to the non-negativity of entropy and the
fact that conditioning cannot increase entropy, b) holds since
entropy is maximized by the uniform distribution, and c) is
due to (37).

The sum-rate also satisfies

n(R1 + R2 − εn)

a)≤
n∑

i=1

I (M1, M2; Y n) (289)

b)=
n∑

i=1

I (M1, M2; Yi |Y i−1) (290)

c)= nI (M1, M2; Y |Y Q−1, Q) (291)
d)≤ nI (X1, X2, M1, M2, Y Q−1, Q; Y ) (292)
e)= nI (X1, X2; Y ), (293)

where a) follows from Fano’s inequality, b) is obtained when
applying the chain-rule, c) is due to (266) and the uniform
distribution of Q, d) holds since conditioning cannot increase
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entropy, and e) is true because
(
M1, M2, Y Q−1, Q

)
and Y are

conditionally independent given (X1, X2).
The Dependence-Balance constraint is due to

0
a)≤ I (M1; M2|Y n, Zn, Gn

1,1, Gn
2,1) − I (M1; M2)

b)= I (M1; Y n, Zn, Gn
1,1, Gn

2,1|M2)

−I (M1; Y n, Zn, Gn
1,1, Gn

2,1) (294)

c)=
n∑

i=1

[
I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1

1,1 , Gi−1
2,1 , M2)

+I (M1; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1, M2)

−I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 )

−I (M1; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(295)

d)≤
n∑

i=1

[
I (M1; Yi , Zi |Y i−1, Zi−1, Gi

1,1, Gi
2,1, M2)

−I (M1; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(296)

e)=
n∑

i=1

[
I (X1,i , M1; Yi , Zi |X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1, M2)

−I (X1,i , M1; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(297)

f )≤
n∑

i=1

[
I (X1,i ; Yi , Zi |X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1)

−I (X1,i ; Yi , Zi |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(298)

g)=
n∑

i=1

[
I (X1,i ; X2,i |Yi , Zi , Y i−1, Zi−1, Gi

1,1, Gi
2,1)

−I (X1,i ; X2,i |Y i−1, Zi−1, Gi
1,1, Gi

2,1)
]

(299)
h)= n

[
I (X1; X2|Y, Z , U) − I (X1; X2|U)

]
, (300)

where a) holds since mutual information is non-negative
and since M1 and M2 are independent, b) is obtained
when we regroup the entropy terms, c) is a consequence
of the chain-rule, d) follows from (302) below, e) is
true because X1,i is deterministic given

(
M1, Gi

2,1, Y i−1
)

and likewise X2,i given
(
M2, Gi

1,1, Y i−1
)
, f ) holds since

(M1, M2) and (Yi , Zi ) are conditionally independent given(
X1,i , X2,i , Y i−1, Zi−1, Gi

1,1, Gi
2,1

)
and since conditioning

cannot increase entropy, g) is obtained when we regroup the
entropy terms, and h) is due to (266).

The following computation proves inequality d)

I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 )

−I (M1; G1,i , G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 , M2)

a)= I (M1; G2,i |Y i−1, Zi−1, Gi−1
1,1 , Gi−1

2,1 )

+H (G1,i|Y i−1, Zi−1, Gi−1
1,1 , Gi

2,1)

−H (G1,i|Y i−1, Zi−1, Gi−1
1,1 , Gi

2,1, M2) (301)
b)≥ 0, (302)

where a) holds because of the chain-rule and since G1,i is
deterministic given

(
M1, Gi−1

2,1 , Y i−1
)

and likewise G2,i given

(
M2, Gi−1

1,1 , Y i−1
)
, and b) is true because conditioning cannot

increase entropy. �

D. A Proof of Theorem 24

Proof: Let A = f1(Y, X1) be the random variable of
Definition 3 and recall that A = f2(Y, X2) almost surely.
As in [8, Sec. VI, e)], there exists a random variable C with
H (C|A, Y, U) = 0 such that

Z � (A, C) (303)

is an admissible Parallel Channel Extension (in the sense that
(M1, M2), (X1, X2, U), and (Y, Z) form a Markov chain in
that order) and such that I (X1; X2|Y, Z , U) = 0. Because
of (57), this implies that I (X1; X2|U) = 0, and thus

p(u, x1, x2, y, z)

= p(u) p(x1|u) p(x2|u)

×W (y|x1, x2)p(z|x1, x2, y, u) . (304)

For the above Parallel Channel Extension Z , the rate of
Encoder 1 satisfies

R1
a)≤ I (X1; Y, Z |X2, U) + C1,2 (305)
b)= I (X1; Y |X2, U) + I (X1; A|Y, X2, U)

+I (X1; C|A, Y, X2, U) + C1,2 (306)
c)= I (X1; Y |X2, U) + C1,2, (307)

where a) is (55a), b) is a consequence of (303) and the
chain-rule, and c) is true because A is deterministic given
(Y, X2) and H (C|A, Y, U) = 0.

Similarly, (55c) implies

R2 ≤ I (X2; Y |X1, U) + C2,1. (308)

Consequently, the capacity region is contained in the set of rate
pairs (R1, R2) satisfying (307), (308), and (55f) for some joint
PMF of the form (304). To conclude, observe that the derived
outer bound coincides with the Cover-Leung inner bound [4]
for the setting with a common message, which can comprise
nC1,2 bits of Message 1 and nC2,1 bits of Message 2.15 �
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15The Cover-Leung inner bound on the feedback capacity of the MAC
applies to the setting without common message [4]. We can readily
extend it to the setting with a common message by letting the common
information comprise not only resolution information but also a fresh
common message block. Put differently, one can establish the Cover-
Leung inner bound on the feedback capacity of the MAC with a com-
mon message by using the random coding argument of Section B-A
but by letting each encoder estimate the other encoder’s private message
based on feedback (instead of cribbing), i.e., Encoder 1 chooses m̂2,b
such that (instead of (209))

(
u(m̂−1,b), x2(m̂−1,b, m̂2,b), ybn

(b−1)n+1

) ∈
A(n)

ε (U, X2, Y ) holds, and Encoder 2 chooses m̃1,b such that (instead

of (210))
(
u(m̃−1,b), x1(m̃−1,b, m̃1,b), ybn

(b−1)n+1

) ∈ A(n)
ε (U, X1, Y ) holds.
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