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Abstract—We study the secrecy of a distributed-storage system
for passwords. The encoder, Alice, observes a length-n password
and describes it using δ s-bit hints, which she stores in different
locations. The legitimate receiver, Bob, observes ν of those hints.
In one scenario we require that the expected number of guesses it
takes Bob to guess the password approach 1 as n tends to infinity,
and in the other that the expected size of the shortest list that Bob
must form to guarantee that it contain the password approach
1. The eavesdropper, Eve, sees η < ν hints. Assuming that Alice
cannot control which hints Bob and Eve observe, we characterize
for each scenario the largest normalized (by n) exponent that we
can guarantee for the expected number of guesses it takes Eve
to guess the password.

I. INTRODUCTION

We generalize the model that was studied in [1] to allow for
Alice to produce δ hints (not necessarily 2), for Bob to observe
η (not necessarily 2) of those hints, and for Eve to observe
ν < η (not necessarily 1) of the hints. We thus consider
the following scenario: Some sensitive information X (e.g.
password) is drawn from its finite support X according to
some PMF PX . A (stochastic) encoder, Alice, maps (possibly
using randomization) X to a set of hints and stores them on
different discs in different locations. The hints are intended
for a legitimate receiver, Bob, who knows where they are
stored and thus sees more hints than an eavesdropper, Eve.
Given some notion of ambiguity, we would ideally like Bob’s
ambiguity about X to be small and Eve’s large.

We require that the network be robust against a limited
number of disc failures: unlike the model in [1] where Al-
ice produces two hints, Bob sees both hints, and Eve sees
one hint, here we assume that Alice produces δ s-bit hints
M1, M2, . . . , Mδ , Bob sees ν ≤ δ hints, and Eve sees η < ν
hints. Which hints Bob and Eve observe is a subtle question.
We adopt a conservative approach and assume that, after
observing X , an adversarial genie reveals to Bob the ν hints
that maximize his ambiguity and to Eve the η hints that
minimize her ambiguity. Not allowing the genie to observe
X would lead to a weaker form of secrecy (see Example 1).

The considered network is a distributed-storage system,
which is static in the sense that failed discs are not replaced.
The case where X is drawn uniformly, Bob must reconstruct
X , and Eve’s observation must satisfy some information-
theoretic security criterion (e.g., the mutual information be-
tween Eve’s observation and X must be null) corresponds
to the erasure-erasure wiretap channel studied in [2] and is
a special case of the wiretap networks in [3], [4]. In the
literature, the setting is also known as ”secret sharing”. In
traditional secret sharing, each set of hints either reveals X

or reveals no information about X [5], [6]. More general are
ramp schemes, where any ν hints reveal X and the amount
of information that fewer-than-ν hints reveal is controlled (see
e.g. [7]). Our setting is different in that we assume X ∼ PX
and in that, using some notion of ambiguity, we quantify how
difficult it is for Bob and Eve to reconstruct X .

There are several ways to define ambiguity. For example, we
could require that Bob be able to reconstruct X whenever X
is ”typical” and that the conditional entropy of X given Eve’s
observation be large. For some scenarios, such an approach
might be inadequate. Firstly, this approach may not properly
address Bob’s needs when X is not typical. For example, if
Bob must guess X , this approach does not guarantee that the
expected number of guesses be small: it only guarantees that
the probability of success after one guess be large. It does
not indicate the number of guesses that Bob might need when
X is atypical. Secondly, conditional entropy need not be an
adequate measure of Eve’s ambiguity: if Eve tries to guess X ,
then we may care more about the number of guesses that Eve
needs than about the conditional entropy [8].

In this paper, we assume that Eve wants to guess X with
the least number of guesses of the form ”Is X = x?”. We
quantify Eve’s ambiguity about X by the expected number of
guesses that she needs to uncover X . In this sense, Eve faces
an instance of the Massey-Arikan guessing problem [9]. For
each possible observation z in some finite set Z , Eve chooses
a guessing function G(· |z ) from X onto the set {1, . . . , |X |},
which determines the guessing order: if Eve observes z,
then ”Is X = x?” will be her G(x|z)-th question. Eve’s
expected number of guesses is E[G(X|Z)]. This expectation
is minimized if for each z ∈ Z the guessing function G(· |z )
orders the possible realizations of X in decreasing order of
their posterior probabilities given Z = z.

As to Bob, we consider two different criteria: In the
”guessing version” the criterion is the expected number of
guesses it takes Bob to guess X , and in the ”list version” the
criterion is the first moment of the size of the list that Bob
must form to guarantee that it contain X . The merits of the
two criteria are discussed in [1]. They lead to similar results
(see Section IV).

The list-size criterion can be viewed as a worst-case version
of the guessing criterion: If Bob tries to guess X without
knowing its PMF, then it is reasonable for him to first guess
the possible realizations of X that Alice could have mapped
to the observed hints. The number of guesses that he needs
is then at most the size of the smallest list that is guaranteed
to contain X . Section V elaborates on why we allow Eve to
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guess also in the list version.
With no extra effort we can generalize the model and replace

expectations with ρ-th moments. This we do to better bring out
the role of Rényi entropy. For an arbitrary ρ > 0, we thus study
the ρ-th (instead of the first) moment of the list-size and of the
number of guesses. Moreover, we allow some side-information
Y that is available to all parties. We thus assume that the pair
(X,Y ) takes value in the finite set X ×Y according to PX,Y .

II. PROBLEM STATEMENT

We consider two problems: the ”guessing version” and the
”list version”. They differ in the definition of Bob’s ambiguity.
In both versions a pair (X,Y ) is drawn from the finite set
X × Y according to the PMF PX,Y , and ρ > 0 is fixed.
Denote by Fq the Galois field with q elements. Upon observing
(X,Y ) = (x, y), Alice draws the δ-tuple M = (M1, . . . ,Mδ)
from the finite set Fδ2s according to some conditional PMF

P[M = m |X = x, Y = y ] , m ∈ Fδ2s . (1)

An adversary chooses a size-ν set B ⊆ {1, . . . , δ} and reveals
to Bob the set B and the components MB of M indexed by
B. Based on MB and the side-information Y , Bob guesses
X using an optimal guessing function GB, which minimizes
the ρ-th moment of the number of guesses that he needs. As
indicated by the subscript, GB depends on B. In the ”guessing
version” we define Bob’s min-max ambiguity about X as

A
(g)

B (PX,Y ) = min
GB

E
[
max
B

GB(X|Y,MB)
ρ
]
, (2)

and in the ”list version” as

A
(l)

B (PX,Y ) = E
[
max
B
|LYMB |

ρ
]
, (3)

where for all y ∈ Y and mB ∈ Fδ2s

LymB =
{
x : P[X = x |Y = y,MB = mB ] > 0

}
. (4)

Eve gets to see a size-η set E ⊆ {1, . . . , δ} and the components
ME of M indexed by E . The set is chosen by an accomplice
of hers. Based on ME and the side-information Y , Eve guesses
X . In both versions we define her ambiguity about X as

AE(PX,Y ) = min
GE

E
[
min
E
GE(X |Y,ME )

ρ
]
. (5)

Optimizing over Alice’s choice of the conditional PMF in
(1), we wish to characterize the largest ambiguity that we can
guarantee that Eve will have subject to a given upper bound
on the ambiguity that Bob may have.

Of special interest to us is the asymptotic regime where
(X,Y ) is an n-tuple (not necessarily drawn IID), and where
each hint stores

s = nRs

bits, where Rs is nonnegative and corresponds to the per-
hint storage-rate. (We assume that δ, ν, and η are fixed.) We
characterize the largest exponential growth for Eve’s ambiguity
that can be guaranteed subject to Bob’s ambiguity tending to
1. This asymptote turns out not to depend on the version, and
in the asymptotic analysisAB can stand for eitherA (g)

B orA (l)
B .

To phrase this mathematically, let us introduce the stochastic
process {(Xi, Yi)}i∈N with finite alphabet X ×Y . We denote
by PXn,Y n the PMF of (Xn, Y n). For a nonnegative rate
Rs, we call EE an achievable ambiguity-exponent if there is
a sequence of stochastic encoders such that Bob’s ambiguity
(which is always at least 1) satisfies

lim
n→∞

AB(PXn,Y n) = 1, (6)

and such that Eve’s ambiguity satisfies

lim inf
n→∞

log(AE(PXn,Y n))

n
≥ EE. (7)

We characterize the supremum EE of all achievable ambiguity-
exponents, which we call privacy-exponent. If (6) cannot
be satisfied, then the set of achievable ambiguity-exponents
is empty, and we say that the privacy-exponent is negative
infinity.

III. MAIN RESULTS

To describe our results, we shall need the conditional Rényi
entropy [9]–[11]

Hα(X|Y ) =
α

1− α
log
∑
y∈Y

(∑
x∈X

PX,Y (x, y)
α
)1/α

, (8)

where α ∈ [0,∞] is the order and where the cases where α
is 0, 1, or ∞ are treated by limiting arguments. In addition,
we shall need the notion of conditional Rényi entropy-rate:
Let {(Xi, Yi)}i∈N be a discrete-time stochastic process with
finite alphabet X × Y . Whenever the limit as n tends to
infinity of Hα(X

n|Y n) /n exists, we denote it by Hα(X|Y )
and call it conditional Rényi entropy-rate. In this paper,
α = 1/(1 + ρ) takes value in the set (0, 1). To simplify
notation, we henceforth write ρ̃ for 1/(1 + ρ). We denote by
α∨β the maximum of α and β and by α∧β their minimum.

A. Finite Blocklength Results

In the next two theorems (ν − η)r should be viewed as the
number of information-bits that can be gleaned about X from
ν but not from η hints and γp as the number of information-
bits that any γ ≤ ν hints reveal about X (see Section VI).

Theorem 1 (Finite Blocklength Guessing Version): For
p, r ∈ {0, 1, . . . , s} satisfying

p+ r = s (9a)

p, r ∈ {0} ∪
{
dlog δe, dlog δe+ 1, . . .

}
, (9b)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−νs+ηr+1), (10)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−η(s−r)−η log δ−log(1+ln|X |)). (11)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−νs−log(1+ln|X |)) ∨ 1, (12)
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and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA
(g)

B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (13)

Theorem 2 (Finite Blocklength List Version): Suppose that
2νs > log|X |+ 2. For p, r ∈ {0, 1, . . . , s} satisfying (9) and

2νs−ηr > log|X |+ 2, (14a)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(l)

B (PX,Y )<1+2ρ(Hρ̃(X|Y )−log(2νs−ηr−log|X |−2)+2), (15)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−η(s−r)−η log δ−log(1+ln|X |)). (16)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(l)

B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−νs) ∨ 1, (17)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA
(l)

B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (18)

Proof: The proof is outlined in Section VI.
The bounds in Theorems 1 and 2 are tight in the sense that

with a judicious choice of p and r the achievability results
(namely (10)–(11) in the ”guessing version” and (15)–(16) in
the ”list version”) match the corresponding converse results
(namely (12)–(13) in the ”guessing version” and (17)–(18) in
the ”list version”) up to polynomial factors of δη and of ln|X |.
This can be seen from the following corollary:

Corollary 3: In the guessing version, for any

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−νs+1), (19)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < UB, (20)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) /
[
δη(1 + ln|X |)

]−ρ
≥
([

(2δ)−ρη2ρ(ν−η)s(UB − 1)
]
∧ 2ρHρ̃(X|Y )

)
. (21)

In the list version, for any

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log(2νs−log|X |−2)+2), (22)

there is a choice of the conditional PMF in (1) for which Bob’s
ambiguity about X is upper-bounded by

A
(l)

B (PX,Y ) < UB, (23)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) /
[
δη(1 + ln|X |)

]−ρ
≥
([

2−3ρ(2δ)−ρη2ρ(ν−η)s(UB − 1)
]
∧ 2ρHρ̃(X|Y )

∧
[
{2(2δ)η(2+log|X |)}−ρ2ρ((ν−η)s+Hρ̃(X|Y ))

])
. (24)

We conclude the section with some remarks. First, we want
to understand why it is a good idea to store an equal number
of bits on each disc. This can be seen from the next result:

Theorem 4: Suppose that for ` ∈ {1, . . . , δ} Disc ` stores
s` bits, where s1 ≤ . . . ≤ sδ . Then, depending on the version
of the problem, Bob’s ambiguity is for every conditional PMF
lower-bounded by

A
(g)

B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−
∑ν
`=1 s`−log(1+ln|X |)) ∨ 1 (25)

A
(l)

B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−
∑ν
`=1 s`) ∨ 1, (26)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ
∑ν−η
`=1 s`A

(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ) (27)

AE(PX,Y ) ≤ 2ρ
∑ν−η
`=1 s`A

(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (28)

The theorem and Corollary 3 imply the following:
Note 5 (Why store s bits on each disc?): Compare a sce-

nario where for ` ∈ {1, . . . , δ} Disc ` stores s` bits with one
where each disc stores b(s1 + . . . + sδ)/δc bits. Neglecting
polynomial factors of δη and of ln|X |, each pair of ambiguities
for Bob and Eve that is achievable in the former scenario is
also achievable in the latter scenario.

Next, we explain why we did not define Eve’s ambiguity as

ÃE(PX,Y ) = min
E

min
GE

E
[
GE(X |Y,ME )

ρ]
. (29)

Note 6 (Which hints does Eve observe?): Quantifying
Eve’s ambiguity by (5), we assume that after observing
(X,Y,M) an adversarial ”genie” reveals to Eve the hints
that minimize her guessing efforts. Less conservative is (29),
which applies if Eve observes the hints that in expectation
minimize her guessing efforts. If Eve’s ambiguity were
quantified by (29), then Theorems 1 and 2 would still apply.1

However, (29) leads to a weaker form of secrecy than (5).
We illustrate this by means of an example:
Example 1: Suppose that Y is null and that X is drawn uni-

formly from X . Take δ = ν = 2 and η = 1. Let Alice describe
X using (M1 = X,M2 = ∗) or (M1 = ∗,M2 = X), where ∗
is not in X , each with probability 1/2. Since Bob can recover
X from (M1,M2), we have A

(g)
B (PX,Y ) = A

(l)
B (PX,Y ) = 1.

The probability that M1 = ∗ is 1/2 and likewise for M2.
Thus, regardless of whether E = 1 or E = 2, if Eve always
observes the same hint, then the ρ-th moment of the number
of guesses that she needs is at least minG E[G(X)

ρ
] /2 and

ÃE(PX,Y ) ≥ minG E[G(X)
ρ
] /2. However, one of the two

hints always reveals X , and therefore we have AE(PX,Y ) = 1.

B. Asymptotic Results

Consider now the asymptotic regime where (X,Y ) is an
n-tuple, and where n is large. In this case the results are the
same for both versions, and we thus refer to both A

(g)
B and

A
(l)

B by AB. Theorems 1 and 2 and Corollary 3 imply the
following asymptotic result:

1We could even tighten (11) and (16): under (29) the subtraction of ρη log δ
in the exponents of the lower bounds (11) and (16) is not needed since the
genie cannot use its choice of E to convey to Eve information about X .
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Corollary 7: Let {(Xi, Yi)}i∈N be a discrete-time stochas-
tic process with finite alphabet X × Y , and suppose its con-
ditional Rényi entropy-rate Hρ̃(X|Y ) is well-defined. Given
any positive rate Rs, the privacy-exponent is

EE =

{
ρ
(
Rs(ν − η) ∧Hρ̃(X|Y )

)
, νRs > Hρ̃(X|Y )

−∞, νRs < Hρ̃(X|Y ) .
(30)

To achieve the maximal privacy-exponent ρHρ̃(X|Y ), the
per-hint storage-rate must satisfy Rs ≥ Hρ̃(X|Y ) /(ν − η),
where Hρ̃(X|Y ) is the minimum rate that is necessary to
describe the source for Bob. This agrees with the well-known
result that the optimal share-size to share a k-bit secret so that
any ν shares reveal X and any η shares provide no information
about X is k/(ν − η) (see e.g. [2]).

IV. LISTS AND GUESSES

Suppose that a guessing decoder and a list-decoder try to
retrieve X from the side-information Y and some description
Z, which an encoder produces after observing (X,Y ). To
prove Theorems 1 and 2, we must understand how small the
decoders’ ambiguities about X can be and how they relate to
each other. This section resolves the above issues.

In the following, G∗(·|Y ) denotes a guessing function that
minimizes E[G(X|Y )

ρ
], and the lists {Ly} stand for the sets

Ly = {x : PX|Y (x|y) > 0}, y ∈ Y. (31)

Denote the finite support of Z by Z . For some conditional
PMF P[Z = z|X = x, Y = y] , z ∈ Z, (x, y) ∈ X × Y ,
denote by G∗(·|Y,Z) a guessing function that minimizes
E
[
G(X|Y, Z)ρ

]
, and define the lists

Lyz = {x : P[X = x|Y = y, Z = z] > 0}, y ∈ Y, z ∈ Z.

If |Z| > log |X | + 2, then an upper and a lower bound on
the smallest ambiguity E

[
|LYZ |ρ

]
of a list-decoder, which are

tight up to polylogarithmic factors of |X |, are given in [10,
Theorem VI.1]. If Z is null, then an upper and a lower bound
on the ambiguity minE[G(X|Y )

ρ
] of a guessing decoder

can be found in [9, Theorem 1 and Proposition 4]. The
following result quantifies how additional side-information Z
helps guessing: it shows that Z can reduce the ρ-th moment
of the number of guesses by at most a factor of |Z|−ρ.

Corollary 8: [1, Corollary 10] Let (X,Y ) be drawn from
the finite set X × Y according to the PMF PX,Y , and let Z
be a finite set. There exists a function f:X ×Y→Z such that
forZ=f(X,Y)

min
G

E[G(X|Y,Z)ρ] < 1+ 2ρ |Z|−ρmin
G

E[G(X|Y )
ρ
] . (32)

Conversely, for every chance variable Z with alphabet Z

min
G

E[G(X|Y,Z)ρ] ≥ |Z|−ρmin
G

E
[
G(X|Y )

ρ] ∨ 1. (33)

From Corollary 8 and [9, Theorem 1 and Proposition 4] we
obtain an upper and a lower bound on the smallest ambiguity
minG E[G(X|Y,Z)ρ] that is achievable for a given |Z|. The
bounds are tight up to polylogarithmic factors of |X |.

We next provide a link between guessing and list-decoding:

Theorem 9: [1, Special Case of Theorem 5] Let (X,Y ) be
drawn from the finite set X ×Y according to the PMF PX,Y ,
and let Z = blogG∗(X|Y )c. Then, Z = {0, . . . , blog |X |c}
and the following hold:

P
[
G∗(X|Y ) ≤ |LY |

]
= 1, |LYZ | ≤ G∗(X|Y ) . (34)

On account of Corollary 8, providing Z = blogG∗(X|Y )c
to a guessing decoder can improve its performance by at most
a polynomial factor of |Z| = blog |X |c+1. Hence, Theorem 9
explains why the results for the ”guessing version” and the
”list version” differ only by polylogarithmic factors of |X |.

Theorem 9 is especially interesting in asymptotic settings,
where polylogarithmic factors of |X | are negligible. For ex-
ample, one can combine Theorem 9 and Corollary 8 with [9,
Theorem 1 and Proposition 4] to provide upper and lower
bounds on the smallest E

[
|LYZ |ρ

]
that is achievable for a given

|Z|. These bounds are weaker (by at most polylogarithmic
factors of |X |) than [10, Theorems I.1 and VI.1] in the finite
blocklength regime but tight enough to prove the asymptotic
results [10, Theorems I.2 and VI.2].

Another example where Theorem 9 is useful is in deter-
mining the feedback listsize capacity of a DMC W (y|x) with
positive zero-error capacity: Theorem 9 can be used to give
an elegant proof of the direct part of [13, Theorem I.1], which
states that in the presence of perfect feedback the listsize
capacity of W (y|x) equals the cutoff rate Rcutoff(ρ) with
feedback (which is in fact equal to the cutoff rate without
feedback [13, Corollary I.4]). To see this, suppose that we
are given (feedback) codes of rate R for which the ρ-th
moment of the number of guesses G∗(M |Y n) a decoder needs
to guess the transmitted message M based on the channel-
outputs Y n approaches 1 as the blocklength n tends to infinity.
(Recall that Rcutoff(ρ) is the supremum of all rates for which
such codes exist.) Suppose now that the transmission does
not stop after n channel uses. Instead, the encoder computes
Z = blogG∗(M |Y n)c ∈ {0, . . . , bnRc} from the feedback
Y n and uses another n′ channel uses to transmit Z at a
positive rate while guaranteeing that the receiver can decode
it with probability 1. Since a positive zero-error (feedback)
capacity cannot be smaller than 1, it is enough to take
n′ ≤ dlog(nR)e. Hence, (n+n′)/n converges to 1 as n tends
to infinity, and the rate of the code thus converges to R. At
the same time, Theorem 9 implies that the size of the smallest
decoding-list LY n+n′

that is guaranteed to contain M satisfies
|LY n+n′ | = |LY nZ | ≤ G∗(M |Y n), and thus the ρ-th moment
of |LY n+n′ | converges to 1 as n tends to infinity. This proves
that in the presence of perfect feedback the listsize capacity
of W (y|x) is lower-bounded by Rcutoff(ρ).

V. A FAIR OPPONENT FOR A LIST-DECODER

This section elaborates on why in the list version Eve does
not form lists but guesses X . We first argue that a list-decoder
is not a fair opponent for a list-decoder:

Example 2: Suppose that Y is null and that X is an n-
tuple Xn, where {Xi}i∈N are IID Ber(1/2). Define {Zi}i∈N
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by Zi = Xi⊕Si, where {Si}i∈N are IID Ber(ε) for some ε ∈
(0, 1/2). Note that because P[Xn = x|Zn = z] > 0, ∀x, z ∈
{0, 1}n we have E[|LZn |ρ] = 2n, where for all z ∈ {0, 1}n

Lz = {x : P[Xn = x|Zn = z,Wn = wn] > 0}.

[10, Theorem VI.2] implies that for R > Hρ̃(X|Z) there exist
Wn ∈ {1, . . . , 2nR} s.t. limn→∞ E[|LZn,Wn

|ρ] = 1. Suppose
now that Bob can recover (Zn,Wn) and Eve Zn, but that
conditional on Zn Eve’s observation is independent of Wn.
If both Bob and Eve must form lists that are guaranteed to
contain Xn, then the ρ-th moment of the size of Bob’s list tends
to 1 as n increases, and the ρ-th moment of the size of Eve’s
list is 2ρn and hence as large as it can be. This can be used to
show that if Eve must form a list that is guaranteed to contain
X , then secrecy comes almost for free: Indeed, the minimum
required rate to describe Xn so that the ρ-th moment of the
size of Bob’s list tends to 1 is 1 (see [10, Theorem VI.2]).
Because limε↓0Hρ̃(X|Z) = 0 and because rate 1 suffices to
describe Zn perfectly, we can achieve rates arbitrarily close
to 1 by describing X by (Zn,Wn). Moreover, perfect secrecy
is attained if Eve sees only Zn but not Wn because in this
case the ρ-th moment of the size of Eve’s list is 2ρn and thus
as large as it can be. But encrypting Wn is cheap because Wn

takes value in a set of size 2nR, where R can be arbitrarily
close to 0 for ε sufficiently small. In contrast, the ρ-th moment
of the number of guesses that Eve needs to guess X is at most
2nρR because Hρ̃(X

n|Zn) < nR (see [9, Proposition 4]).
In the classical Shannon cipher system [14], a popular way

to measure imperfect security is in terms of equivocation, i.e.,
in terms of the conditional entropy H(X|Z) of the sensitive
information X given Eve’s observation Z. In the setting
where Bob is a list-decoder or a guessing decoder, Rényi
entropy plays the role of Shannon entropy in the sense that
the minimum required rate to encode an n-tuple X = Xn

is the Rényi entropy rate Hρ̃(X) rather than the Shannon
entropy rate H(X) = H1(X). Therefore, the conditional
Rényi entropy Hρ̃(X|Z) qualifies as a natural equivalent
for equivocation. Note that Hρ̃(X|Z) has a nice operational
characterization: 2ρHρ̃(X|Z) is (up to polylogarithmic factors of
the size of the support of X) the ρ-th moment of the number
of guesses that Eve needs to guess X [9].

VI. HOW TO PROVE THEOREMS 1 AND 2

The converse results ((12)–(13) in the ”guessing version”
and (17)–(18) in the ”list version”) readily follow from the
results in Section IV. To prove the achievability results ((10)–
(11) in the ”guessing version” and (15)–(16) in the ”list ver-
sion”), we use the following coding scheme. Upon observing
(X,Y ), Alice describes X deterministically by a tuple (V,W ),
where V takes value in the finite field Fν2p and W in Fν−η2r .
Depending on the version, she chooses the description so that
if Bob’s observation were (V,W ), then his ambiguity about X
would satisfy the upper bound (10) in the ”guessing version”
or (15) in the ”list version”. Then, she maps V to a length-δ
codeword of a (δ, ν, δ − ν + 1) maximum distance separable
(MDS) code over F2p and stores each codeword symbol on a

different disc. Since the code is MDS, any γ ≤ ν hints reveal
γp bits of V . Independently of (X,Y ), Alice draws a random
variable U uniformly from the field Fη2r , maps (W,U) to a
length-δ codeword of a (δ, ν, δ − ν + 1) MDS code over the
field F2r , and stores each codeword symbol on a different disc.
She chooses the mapping so that any η codeword symbols are
independent of W or, equivalently, that given W it is possible
to reconstruct U from any η codeword symbols. (As in [2], this
is accomplished using nested MDS codes.) As a consequence,
W can be recovered from any ν hints while any η hints reveal
no information about W .

Summing up, the outlined coding scheme guarantees that,
after observing ν hints, Bob can reconstruct the tuple (V,W ).
Hence, his ambiguity about X satisfies (10) in the ”guessing
version” and (15) in the ”list version”. Observing η hints
enables Eve to recover ηp bits of V , but it does not enable
her to recover any information about W . Using the results
of Section IV, we can thus show that observing η hints can
decrease Eve’s guessing efforts by at most a factor of 2−ρνp.2

Since we quantify Eve’s ambiguity by (5), we assume that
upon observing all the hints and (X,Y ) an adversarial genie
reveals to Eve the η hints that minimize her ambiguity (see
Note 6). In doing so, the genie can decrease Eve’s ambiguity
by an additional factor of at most δ−ρη (this is due to
Corollary 8 and the fact that there are

(
δ
η

)
≤ δη size-η subsets

of {1, . . . , δ}).
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