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Identification via the Broadcast Channel
Annina Bracher and Amos Lapidoth, Fellow, IEEE

Abstract— The identification (ID) capacity region of the
two-receiver broadcast channel (BC) is shown to be the set of
rate-pairs for which, for some distribution on the channel input,
each receiver’s ID rate does not exceed the mutual information
between the channel input and the channel output that it
observes. Moreover, the capacity region’s interior is achieved by
codes with deterministic encoders. The results are obtained under
the average-error criterion, which requires that each receiver
reliably identify its message whenever the message intended for
the other receiver is drawn at random. They hold also for
channels whose transmission capacity region is to-date unknown.
Key to the proof is a new ID code construction for the single-user
channel. An extension to the three-receiver BC is also discussed:
an inner bound on the ID capacity region is obtained, and that
is shown to be in some cases tight.

Index Terms— Channel capacity, identification via channels,
broadcast channel.

I. INTRODUCTION

IN SHANNON’S classical transmission problem the
encoder transmits a message from a message set M of

size |M| over a discrete memoryless channel (DMC) W (y|x),
and the receiver guesses the transmitted message based on the
channel’s outputs. The guess can be any of the |M| messages
in the set M, and the receiver thus faces a hypothesis-testing
problem with |M| hypotheses. Loosely speaking, we say
that a transmission scheme is reliable if, irrespective of the
transmitted message m, the receiver guesses correctly with
high probability. Ahlswede and Dueck’s identification-via-
channels problem [1] is different. Here the encoder sends an
identification (ID) message from a set M, and |M| receiving
parties observe the channel outputs. Each party is focused on
a different message m′ ∈ M. The m′-focused receiving party
must guess whether or not Message m′ was sent. It thus faces a
hypothesis-testing problem with only two hypotheses. Loosely
speaking, we say that an identification scheme is reliable if,
for every possible transmitted ID message m ∈ M and for
every m′ ∈ M (possibly equal to m), the m′-focused receiving
party guesses correctly with high probability. That is, if m′
equals the transmitted ID message m, then the m′-focused
receiving party guesses with high probability that m′ was sent,
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and otherwise it guesses with high probability that m′ was
not sent.1

In Shannon’s problem the number of messages that can be
transmitted reliably is exponential in the number of channel
uses, and the transmission rate is thus defined as the logarithm
of the number of transmission messages normalized by the
blocklength n. In Ahlswede and Dueck’s ID problem the num-
ber of identifiable messages is double-exponential, and the ID
rate is thus defined as the iterated logarithm of the number of
ID messages normalized by n. The suprema of achievable rates
for the two problems are identical: both the transmission and
the ID capacity equal C , where C = maxP I (P, W ) [1]–[3].

The two problems also differ in the role of randomization at
the encoder. Whether or not stochastic encoders are allowed
does not influence the transmission capacity. However, sto-
chastic encoders are essential for achieving the ID capacity.
Such encoders associate with each ID message a distribution
on the channel-input sequence and send ID Message m by
generating the channel-input sequence according to the dis-
tribution associated with m. If we only allow deterministic
encoders, then the number of identifiable messages grows only
exponentially in the blocklength.2 Throughout this paper we
allow stochastic encoders, but for our main achievability result
(Theorem 10) they are unnecessary.

The present paper studies identification via a two-receiver
broadcast channel (BC) W (y, z|x) whose transmitting terminal
is Terminal X and whose receiving terminals are Y and Z .
The sender wishes to send two ID messages, one to each
receiving terminal. The received sequence at Terminal Y is
observed by different parties, each of which is focused—
among all the possible ID messages intended for Terminal Y—
on a different ID message. Likewise for Terminal Z . We show
that the ID capacity region of the BC is the set of rate-pairs
for which, for some distribution on the channel input, each
receiver’s ID rate does not exceed the mutual information
between the channel input and the channel output that it
observes (Theorem 10). The converse we provide is a strong
converse.

1The corresponding error events are called missed identification and wrong
identification: a missed identification occurs if m′ = m and the m′-focused
receiving party guesses that m′ was not sent, and a wrong identification occurs
if m′ �= m and the m′-focused receiving party guesses that m′ was sent.
The identification scheme is reliable if the maximum probabilities of missed
and wrong identification are small, where the maximum is w.r.t. m for the
probability of missed identification and w.r.t. the distinct pair m, m′ for the
probability of wrong identification.

2For ID codes with deterministic encoders, the ID rate is defined as the
logarithm of the number of ID messages normalized by n, and the supremum
of all achievable ID rates is the logarithm of the number of distinct probability
mass functions (PMFs) W (·|x) on the channel output that are induced by the
different channel-input symbols x ∈ X [1].
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Our results are obtained under the average-error criterion.
Under this criterion, the ID messages MY and MZ to the
two receiving terminals are assumed to be independent with
each being uniform over its message set (MY or MZ ),
and each receiver must identify the message intended for it
reliably in expectation over the ID message intended for the
other receiving terminal. Loosely speaking, we thus say that
an identification scheme is reliable under the average-error
criterion if the following two requirements are met: 1) for
all (possibly equal) mY , m′

Y ∈ MY , if the ID message that
is sent to Terminal Y is mY and the ID message that is
sent to Terminal Z is drawn uniformly over MZ , then the
m′
Y -focused receiving party guesses correctly with high prob-

ability whether or not mY is equal to m′
Y ; and 2) likewise for

all mZ , m′
Z ∈ MZ .3

Identification via the BC was previously studied in [4]–[7]
under a different criterion, namely, the maximum-error cri-
terion. Under this criterion each receiver must identify its
message reliably irrespective of the realization of the ID
message intended for the other receiver. Loosely speaking,
we thus say that an identification scheme is reliable under
the maximum-error criterion if for all transmitted ID message-
pairs (mY , mZ) ∈ MY×MZ the following two requirements
are met: 1) for every m′

Y ∈ MY (possibly equal to mY ),
the m′

Y -focused receiving party guesses correctly with high
probability whether or not mY is equal to m′

Y ; and 2) likewise
for every m′

Z ∈ MZ .
The maximum-error ID capacity region of the BC is to-

date unknown.4 Clearly, the average-error ID capacity region
is an outer bound, but whether this bound is tight is unknown.
To-date, the best known inner bound on the maximum-error
ID capacity region of the BC is the “common-randomness
capacity region” of the BC [7]. This inner bound is achieved by
a common-randomness ID code, which—like that of [16] for
the DMC—uses a transmission code to establish common ran-
domness between the encoder and each decoder. The average-
error ID capacity region of the BC typically exceeds this inner
bound [8, Remark 2.4.3], but this, of course, does not imply
that it exceeds the maximum-error ID capacity region. We do
know that the capacity regions differ when only deterministic
encoders are allowed, because, unlike the maximum-error ID

3The average-error criterion for identification via the BC should not be
confused with the average-error criterion for identification via the DMC. On
the DMC the average-error criterion requires that for every m′ ∈ M the
probability of wrong identification associated with the pair m, m′ be small
on average over all possible realizations m �= m′ of the transmitted ID
message. Han and Verdú showed that under this criterion the ID capacity
is infinite whenever C > 0 [3]. This holds because the stochastic encoder can
associate the same distribution on the channel-input sequence with an infinite
number of ID messages while guaranteeing that the probability of missed
identification and the average (but not the maximum) probability of wrong
identification be small at each receiving party. The average-error criterion for
the BC, which we consider in this paper, is different: for Terminal Y it requires
that the probability of wrong identification associated with any distinct pair
mY , m′

Y ∈ MY be small; the term “average” refers to the fact that the
probabilities of missed and wrong identification at Terminal Y are defined on
average over all possible realizations mZ ∈ MZ of the ID message that is
sent to Terminal Z . Likewise for Terminal Z .

4But see [7] and [8, Sec. 2.4] for the case when an additional constraint
is imposed on the decay to zero as a function of the blocklength of the
probability of error.

capacity region (or, for that matter, the single-user channel),
all rate-pairs in the interior of the average-error ID capacity
region can be achieved by deterministic encoders (Remark 12).
This is perhaps not surprising, because to each receiver such
a deterministic encoder appears stochastic: the transmitted
sequence depends not only on the ID message addressed to it
but also on the random ID message (of positive rate) addressed
to the other terminal.

To derive our capacity region, we introduce a new capacity-
achieving ID code construction for the single-user channel.
Our coding scheme for the BC builds on this by making it
appear to each receiver as though we were using an instance
of the new single-user ID code on its marginal channel. We
next describe the new single-user coding scheme, which is
reminiscent of [1] but with an important twist that is key to
our results. We then describe our scheme for the BC.

For a DMC W (y|x) the new scheme can be described as
follows: Fix an input distribution P , an ID rate R < I (P, W ),
and some blocklength n. The scheme associates with each
ID message m a multiset we call “the m-th bin” and whose
elements are n-tuples (not necessarily distinct) of channel
inputs.5 To send the m-th ID message, the (stochastic) encoder
sends a random element of this bin. At the receiver’s side,
the m′-focused receiving party guesses that m′ was sent if at
least one element of the m′-th bin is jointly typical with the
received n-tuple of channel outputs. To construct the bins, we
use a random coding argument, with each bin having expected
size enR̃ , where R̃ exceeds the ID rate R, but is smaller than
I (P, W ),

R < R̃ < I (P, W ). (1)

The bins are constructed at random from a size enRP

multiset that we call “pool” and whose elements are n-length
input sequences. Here RP can be any number exceeding R̃,
possibly even exceeding I (P, W ), so, by (1),

R̃ < I (P, W ) and R < R̃ < RP . (2)

We construct every bin by randomly selecting its elements
from the pool, with the n-tuples in the pool being selected for
inclusion in the m-th bin independently each with probability
e−n(RP−R̃). Since the pool is of size enRP , each bin is a
multiset of expected size enR̃ . The elements of the pool are
drawn independently ∼ Pn . As we shall see, the generated ID
code is with high probability reliable (Section II).

Our above scheme is reminiscent of the one in [1]: every ID
message is associated with a bin, and in both schemes the bins
are chosen at random from a pool. The main difference is that
in our scheme the pool need not constitute a codebook that is
reliable in Shannon’s sense. Indeed, our pool is of size enRP ,
where RP can exceed I (P, W ) or even C . This flexibility in
choosing RP will be critical on the BC.

5A multiset is a generalized set that allows multiple instances of its elements,
e.g., {1, 2, 3, 4} and {1, 1, 2, 3, 4, 4, 4} are different multisets. The size of a
multiset is the number of elements that it contains. The size of the multiset
{1, 2, 3, 4} is thus four and that of {1, 1, 2, 3, 4, 4, 4} is seven. If X is chosen
uniformly at random from a multiset, then P[X = x] is proportional to the
number of instances of x in the set. For example, if X is chosen uniformly
at random from the multiset {1, 1, 2, 3, 4, 4, 4}, then P[X = 1] = 2/7.
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The scheme we propose for the BC W (y, z|x) is
motivated by the single-user scheme. Denote by WY (y|x) =∑

z W (y, z|x) and WZ (z|x) = ∑
y W (y, z|x) the marginal

channels. Fix an input distribution P , positive ID rates

0 < RY < I (P, WY ),

0 < RZ < I (P, WZ ),

and some blocklength n. We first consider the receivers’ side,
because in their decoding the receivers follow the single-user
scheme. Like the single-user scheme, the scheme for the BC
associates with each ID message mY ∈ MY a multiset we
call the mY -th bin and whose elements are n-tuples of channel
inputs, and likewise with each ID message mZ ∈ MZ . The
m′
Y -focused receiving party at Terminal Y guesses that

m′
Y was sent if at least one element of the m′

Y -th bin is

jointly typical with the sequence it observes, and likewise at
Terminal Z . The encoding, however, is different from the
single-user scheme. In fact, our encoder for the BC is
deterministic: it maps each ID message-pair (mY , mZ) to an
n-tuple of channel inputs we call the “(mY , mZ)-codeword.”
(The (mY , mZ )-codeword is in the intersection of the mY -th
and the mZ -th bin, whenever the intersection is not empty.)
We design the codewords and the bins using a random coding
argument.

Our goal in designing the codewords and the bins is that
to each receiver it would appear as though its intended ID
message were sent over its marginal channel using the single-
user scheme. More precisely, we want the following to hold:
1) if the ID message that is sent to Terminal Y is mY ∈
MY and the ID message that is sent to Terminal Z is
drawn uniformly over MZ , then the transmitted codeword
is nearly uniformly distributed over the mY -th bin (in terms
of Total-Variation distance); and 2) likewise for mZ ∈ MZ .
If 1) and 2) hold, then to each receiver it nearly appears as
though we were using an instance of the new single-user ID
code on its marginal channel: if we view the ID message that
is sent to Terminal Z as uniformly-drawn, then the encoder
communicates with Terminal Y “essentially” using our reliable
single-user scheme, and likewise with Terminal Z . To prove
that the design goal can be met, we shall use a random coding
argument.

The bins are constructed as in the single-user scheme: We
construct all the bins—those associated with an ID message
mY ∈ MY or mZ ∈ MZ—from a multiset we call pool.
The pool has size enRP , and each bin associated with an ID
message mY ∈ MY or mZ ∈ MZ has expected size enR̃Y

or enR̃Z , respectively. The pool and the bins are generated as
in the single-user construction, and RP , R̃Y , and R̃Z meet
similar constraints, so

R̃Y < I (P, WY ) and RY < R̃Y < RP ,

R̃Z < I (P, WZ ) and RZ < R̃Z < RP .

Additionally, we impose the constraint

RP < R̃Y + R̃Z . (3)

(The constraints can all be met, because RY and RZ , and thus
also I (P, WY ) and I (P, WZ ), are positive.) The additional

constraint (3) has no counterpart in the single-user setting.
It restricts the size of the pool in order to guarantee that with
high probability the mY -th and the mZ -th bin intersect and that
consequently the (mY , mZ)-codeword will be in both bins. If
the (mY , mZ)-codeword is not in this intersection, then, to at
least one of the two receivers, it won’t appear as though the
n-tuple of channel inputs were drawn uniformly over the bin
associated with its intended ID message. And if this happens
to too many pairs (mY , mZ), our scheme will fail.

As to the design of the codewords, if the mY -th and the
mZ -th bin intersect, then we draw the (mY , mZ)-codeword
uniformly at random from the intersection, and otherwise we
draw it uniformly at random from the pool. As we shall
see, the generated ID code meets our design goals with high
probability (see Section III-A; key to the proof is that the
size of each bin is exponential in n while the cardinalities of
MY and MZ are double-exponential).

The flexibility afforded by our single-user scheme to choose
a pool of size enRP , where RP can be larger than I (P, WY ) or
I (P, WZ ), is crucial to our BC scheme. To see why, consider
for now a BC W (y, z|x) and an input distribution P for which

I (P, WZ ) < I (P, WY ).

If the pool had been of size enRP for some RP ≤ I (P, WZ ),
then at most exp

(
exp

(
nI (P, WZ )

))
different bins could have

been constructed from the pool, and the BC scheme would
have thus failed for RY > I (P, WZ ), because in this case
the number of possible ID messages intended for Receiver Y
would have exceeded the number of different bins. The pool
rate RP must therefore exceed I (P, WZ ), and hence the pool
cannot consist of a codebook that is reliable in the Shannon
sense on the marginal channel WZ(z|x). It is the possibility
of choosing RP > I (P, WZ ) that allows our BC scheme to
achieve every rate-pair (RY , RZ ) satisfying

0 < RY < I (P, WY ) and 0 < RZ < I (P, WZ ), (4)

even when RY > I (P, WZ ).
The average-error criterion, which we consider in this paper,

is suitable whenever the receivers’ ID messages are indepen-
dent and uniform over their supports. As we shall see, we can
adapt our coding scheme to solve for the capacity region of a
more general scenario where the receivers’ ID messages are
not independent but have a common part. In this scenario the
ID message intended for Terminal Y is a tuple comprising a
private message of rate RY and a common message of rate R,
and likewise for Terminal Z .6 The common messages are
identical, and the private messages are independent, uniformly
distributed on their supports, and independent of the common
message. We assume that all rates are positive and require
that each receiver identify its message reliably in expectation
over the other receiver’s private message. For this scenario,
we show that the ID capacity region of the BC is the set of
rate-triples (R, RY , RZ ) satisfying

0 < R, RY < I (P, WY ) and 0 < R, RZ < I (P, WZ ) (5)

6One can view the common-message setting of the transmission problem
via the BC as a scenario where the encoder conveys one message to each
receiver, but each receiver’s message comprises a private and a common part.
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for some input distribution P (Theorem 28).7 Comparing (5)
and (4) we see that the common message appears to come for
free at all rates up to min

{
I (P, WY ), I (P, WZ )

}
. A reason

for this is that the ID rate of a pair of ID messages is not
equal to the sum of the messages’ ID rates.

We also have extensions to the BC with more than two
receivers and the two-receiver BC with one-sided feedback:
We inner-bound the ID capacity region of the three-receiver
BC (Theorem 24) and show that the bound is tight if
no receiver is “much more capable” than the other two
(see Corollary 26 for more details). In [8, Sec. 2.5.3] we
establish the ID capacity region of the two-receiver BC
with one-sided feedback for the case where the channel
outputs are independent conditional on the channel input
[8, Corollary 2.5.15].

The rest of this paper is structured as follows. We conclude
this section by introducing some notation and with the concen-
tration inequalities that we shall need. Section II is dedicated to
the new ID code for the DMC. Section III studies identification
via the BC. The extensions are presented in Section IV, and
the paper concludes with a brief summary.

A. Notation and Terminology

On the single-user channel we denote the channel-input
alphabet by X and the channel-output alphabet by Y . On the
two-receiver BC X is the channel-input alphabet, Y is the
channel-output alphabet at Terminal Y , and Z is the channel-
output alphabet at Terminal Z . All these alphabets are finite.
We write

(
X , W (y|x),Y

)
or W (y|x) for a DMC of transition

law W (y|x) and
(
X , W (y, z|x),Y×Z

)
or W (y, z|x) for a BC

of transition law W (y, z|x). We denote the marginal channel of
the BC W (y, z|x) to Terminal Y by WY (y|x), i.e., WY (y|x) =∑

z W (y, z|x); and likewise WZ (z|x) = ∑
y W (y, z|x).

Random variables are denoted by upper-case letters and
their realizations or the elements of their supports by lower-
case letters, e.g., Y denotes the random output of the DMC
and y ∈ Y a value it may take. The terms pool and bin are
used for indexed multisets of n-tuples from X n . Pools and
bins are denoted by calligraphic letters and in boldface if they
are random, e.g., P denotes a random pool and P a possible
realization. Sequences are in bold lower- or upper-case letters
depending on whether they are deterministic or random, e.g.,
P( j) denotes the j -th n-tuple in the random pool P , and x is
an n-tuple from X n . The positive integer n ∈ N stands for the
blocklength, and, unless otherwise specified, sequences are of
length n. We denote the positive real numbers by R

+ and the
nonnegative real numbers by R

+
0 , so R

+
0 = R

+ ∪ {0}.
Variables that occur at Time i have the subscript i , so Yi is

the Time-i channel-output. Sequences of variables that occur
in the time-range j to i bear a subscript j and a superscript i ,
where the subscript j = 1 may be dropped, e.g., Y 5

4 denotes
the fourth and fifth output, and Y n denotes all the outputs
through Time n.

7The assumption that R > 0 is not needed; it only ensures that there is a
common message. The assumption that RY , RZ > 0 is, however, needed:
if RY , say, is zero, then the imposed average-error criterion will turn into a
maximum-error criterion for Receiver Z .

The set of PMFs on X is denoted P(X ), and its generic
element P . If the input X to the channel W (y|x) is of PMF P ,
then P ×W denotes the joint distribution of X and the channel
output Y

(P × W )(x, y) = P(x) W (y|x), (x, y) ∈ X × Y,

and PW denotes the corresponding Y -marginal

(PW )(y) =
∑

x∈X
(P × W )(x, y)

=
∑

x∈X
P(x) W (y|x), y ∈ Y.

The set of ε-typical sequences of length n w.r.t. P is denoted
T (n)

ε (P), i.e.,

T (n)
ε (P) =

{

x ∈ X n :
∣
∣
∣
∣

N(x |x)

n
− P(x)

∣
∣
∣
∣ ≤ εP(x), ∀ x ∈ X

}

,

where N(x |x) is the number of components of the n-tuple x
that equal x . We often write T (n)

ε instead of T (n)
ε (P) when

P is clear from the context. The empirical type of an n-tuple
x ∈ X n is denoted Px, so Px(x) = N(x |x)/n, x ∈ X , and
T (n)

P is the set of all elements of X n whose empirical type
is P . We denote the set of n-types on X n by �(n), so

�(n) =
{

P ∈ P(X ) : T (n)
P �= ∅

}
.

For a given DMC W (y|x) and for every x ∈ X n and
P ∈ P(X ), we denote by T (n)

ε (P × W |x) the set of n-tuples
y ∈ Yn that are jointly ε-typical with x w.r.t. P × W ,
i.e.,

T (n)
ε (P × W |x) =

{
y ∈ Yn : (x, y) ∈ T (n)

ε (P × W )
}
.

Similarly, for a given BC W (y, z|x), T (n)
ε (P × WY |x) is the

set of n-tuples y ∈ Yn that are jointly ε-typical with x w.r.t.
P × WY , i.e.,

T (n)
ε (P × WY |x) =

{
y ∈ Yn : (x, y) ∈ T (n)

ε (P × WY )
}
;

and T (n)
ε (P × WZ |x) is the set of n-tuples z ∈ Zn that are

jointly ε-typical with x w.r.t. P × WZ .
A generic probability measure on a measurable space

(�,F) is denoted P. If P1 and P2 are two probability measures
on the same measurable space (�,F), then the Total-Variation
distance d(P1, P2) between P1 and P2 is

d(P1, P2) = sup
A∈F

P1[A] − P2[A].

We shall only encounter measurable spaces (�,F) for which
� is finite and F = 2�. On such spaces

d(P1, P2) = 1

2

∑

ω∈�

∣
∣P1(ω) − P2(ω)

∣
∣.
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B. Some Useful Bounds

We use the following multiplicative Chernoff bounds (see,
e.g., [9, Ths. 4.4 and 4.5])8:

Proposition 1: If S1, . . . , Sn are independent binary
random variables and

μ = E

[ n∑

i=1

Si

]

,

then for all 0 < δ < 1

P

[ n∑

i=1

Si ≤ (1 − δ)μ

]

≤ exp

{

−δ2μ

2

}

, (6a)

P

[ n∑

i=1

Si ≥ (1 + δ)μ

]

≤ exp

{

−δ2μ

3

}

, (6b)

and for all δ ≥ 1

P

[ n∑

i=1

Si ≥ (1 + δ)μ

]

≤ exp

{

−δμ

3

}

. (7)

We make frequent use of Hoeffding’s inequality:
Proposition 2: [10, Th. 2] If S1, . . . , Sn are independent

random variables satisfying Si ∈ [ai , bi ], i ∈ {1, . . . , n},
where ai , bi ∈ R, then for all t > 0

P

[
1

n

n∑

i=1

(
Si − E[Si ]

) ≥ t

]

≤ exp

{

− 2n2t2
∑n

i=1(bi − ai )2

}

. (8)

More general versions of this inequality can be found in
[11, Corollary 2.4.7] or [12, Th. 3.24].

II. A CAPACITY-ACHIEVING ID CODE FOR THE DMC

In this section we present our capacity-achieving ID code
for the DMC

(
X , W (y|x),Y

)
. We begin with the basic defi-

nitions of an ID code [1] and with the capacity theorem.
Definition 3: Fix a finite set M, a blocklength n ∈ N, and

positive constants λ1, λ2. Associate with every ID message
m ∈ M a PMF Qm on X n and an ID set Dm ⊂ Yn. The
collection of tuples {Qm ,Dm}m∈M is an (n,M, λ1, λ2) ID
code for the DMC W (y|x) if the maximum probability of
missed identification

pmissed-ID = max
m∈M

(Qm W n)(Y n /∈ Dm) (9)

and the maximum probability of wrong identification

pwrong-ID = max
m∈M

max
m′ �=m

(Qm W n)(Y n ∈ Dm′) (10)

satisfy

pmissed-ID ≤ λ1, (11)

pwrong-ID ≤ λ2. (12)

8The bound (7) is not stated in [9]. It is, however, a direct consequence of
[9, Th. 4.4] and the fact that

eδ/(1 + δ)1+δ < e−δ/3, δ ≥ 1.

A rate R is achievable if for every positive λ1 and λ2
and for every sufficiently-large blocklength n there exists an
(n,M, λ1, λ2) ID code for the DMC with

{
1
n log log |M| ≥ R if R > 0,

|M| = 1 if R = 0.

The ID capacity C of the DMC is the supremum of all
achievable rates.

The ID capacity was established in [1] and [3]: Ahlswede
and Dueck [1] proved the direct part and a soft converse,
which holds for error probabilities that decay exponentially
in the blocklength. The strong converse, which holds for all
probabilities of missed and wrong identification satisfying
λ1 + λ2 < 1, is due to Han and Verdú [3].

Theorem 4 [1, Th. 1] and [3, Th. 2] : The ID capacity C
of the DMC W (y|x) is

C = max
P

I (P, W ). (13)

Fix any positive ID rate R satisfying

0 < R < max
P

I (P, W ), (14)

and let M be a size-exp(exp(n R)) set of possible ID messages.
We assume that maxP I (P, W ) is positive, because rate R = 0
is always achievable (see Definition 3). We next describe our
random code construction and show that, for every positive
λ1 and λ2 and for every sufficiently-large blocklength n, it
produces with high probability an (n,M, λ1, λ2) ID code for
the DMC W (y|x).

Code Generation: Choose a PMF P on X for which

R < I (P, W ),

and fix an expected bin rate R̃ and a pool rate RP satisfying

R < R̃ < I (P, W ) and R̃ < RP . (15)

Draw enRP n-tuples ∼ Pn independently and place them in
a pool P . Index the n-tuples in the pool by the elements of
a size-enRP set V , e.g., {1, . . . , enRP }, and denote by P(v)
the n-tuple in P that is indexed by v ∈ V . Associate with
each ID message m ∈ M an index-set Vm and a bin Bm

as follows. Select each element of V for inclusion in Vm

independently with probability e−n(RP−R̃), and let Bin Bm

be the multiset that contains all the n-tuples in the pool that
are indexed by Vm ,

Bm = {
P(v), v ∈ Vm

}
.

(Bin Bm is thus of expected size enR̃ .)
Reveal the pool P , the index-sets {Vm}m∈M, and the

corresponding bins {Bm}m∈M to all parties. The encoding and
decoding are determined by

C = (P, {Vm}m∈M
)
. (16)

For the purpose of illustration, the pool and the bins are
depicted in Figure 1. As mentioned in Section I, our code is
similar to the one in [1]: every ID message is associated with a
bin, and in both schemes the bins are chosen at random from
a pool. The main difference is that in our scheme the pool
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Fig. 1. ID code construction for the DMC.

need not constitute a codebook that is reliable in Shannon’s
sense. Indeed, our pool is of size enRP , where RP can exceed
I (P, W ) or even C .

Encoding: To send ID Message m ∈ M, the encoder draws
some V uniformly at random from Vm and transmits the
sequence P(V ). ID Message m is thus associated with the
PMF

Qm(x) = 1

|Vm |
∑

v∈Vm

�x=P(v), x ∈ X n, Vm �= ∅. (17)

If Vm is empty, then the encoder chooses V = v� and
transmits P(v�), where v� is an arbitrary but fixed element
of V , so

Qm(x) = �x=P(v�), x ∈ X n, Vm = ∅. (18)

Decoding: In this section T (n)
ε is short for T (n)

ε (P × W ),
and the function δ(·) maps every nonnegative real number u to
u H (P × W ). The decoders choose ε > 0 sufficiently small so
that 2δ(ε) < I (P, W )− R̃. The m′-focused party guesses that
m′ was sent if, and only if, (iff) for some index v ∈ Vm′ the
n-tuple P(v) in Bin Bm′ is jointly ε-typical with the channel-
output sequence Y n , i.e., iff

(
P(v), Y n

) ∈ T (n)
ε for some

v ∈ Vm′ . The set Dm′ of output sequences that result in the
guess “m′ was sent” is thus

Dm′ =
{

y ∈ Yn : ∃ v ∈ Vm′ s.t.
(
P(v), y

) ∈ T (n)
ε

}
(19)

=
⋃

v∈Vm′
T (n)

ε

(
P × W

∣
∣P(v)

)
. (20)

Analysis of the Probabilities of Missed and Wrong Identifi-
cation: We first note that C (together with the fixed block-
length n, the fixed element v� of V , and the chosen ε)
fully specifies the encoding and guessing rules. That is,
the randomly constructed ID code { Qm,Dm}m∈M is fully
specified by C. Let P be the distribution of C, and let E denote
expectation w.r.t. P. Subscripts indicate conditioning on the
event that some of the chance variables assume the values
indicated by the subscripts, e.g., PVm denotes the distribution
conditional on Vm = Vm , and EVm denotes the expectation
w.r.t. PVm .

The maximum probabilities of missed and wrong identifi-
cation of the randomly constructed ID code { Qm ,Dm}m∈M
are the random variables

Pmissed-ID = max
m∈M

( Qm W n)(Y n /∈ Dm), (21a)

Pwrong-ID = max
m∈M

max
m′ �=m

( Qm W n)(Y n ∈ Dm′). (21b)

They are fully specified by C. How we upper-bound these
probabilities depends on the size of the index-sets and of their
pairwise intersections. For every distinct pair m, m′ ∈ M
denote the intersection of the index-sets Vm and Vm′ by
Vm,m′ , so

Vm,m′ = Vm ∩ Vm′ . (22)

The expected size of Vm,m′ is en(2R̃−RP ) (= enRP e−2n(RP−R̃))
and is thus, by (15), exponentially smaller than the expected
size of the index-sets Vm and Vm′ , which is enR̃ . The
following lemma upper-bounds the probability that the size of
the index-sets deviates from its mean enR̃ or that the pairwise
intersections are large compared to enR̃ . To state the lemma,
we first introduce the set Gμ comprising the realizations
{Vm}m∈M of the index-sets {Vm}m∈M satisfying that for every
distinct pair m, m′ ∈ M the following three inequalities hold:

|Vm | > (1 − δn)e
nR̃, (23a)

|Vm′ | < (1 + δn)e
nR̃, (23b)

|Vm,m′ | < en(R̃−μ/2)+log 2, (23c)

where μ is fixed and satisfies

0 < μ < min
{

RP − R̃, R̃ − R
}
, (24)

and

δn = e−nμ/2. (25)

Lemma 5: The probability that {Vm}m∈M is not in Gμ

converges to zero as the blocklength n tends to infinity:

lim
n→∞ P

[{Vm}m∈M /∈ Gμ

] = 0. (26)

Proof: See Appendix A. �
To prove that for every choice of λ1, λ2 > 0 and n

sufficiently large the collection of tuples { Qm ,Dm}m∈M is
with high probability an (n,M, λ1, λ2) ID code for the DMC
W (y|x), we prove the following stronger result:

Claim 6: The maximum probability of missed identifica-
tion, Pmissed-ID, and the maximum probability of wrong iden-
tification, Pwrong-ID, of the randomly constructed ID code
{ Qm ,Dm}m∈M converge in probability to zero exponentially
in the blocklength n, i.e.,

∃ τ > 0 s.t.

lim
n→∞ P

[
max{Pmissed-ID, Pwrong-ID} ≥ e−nτ

] = 0. (27)

Proof: Fix some μ satisfying (24), and choose δn as
in (25). We upper-bound Pmissed-ID and Pwrong-ID differently
depending on whether or not {Vν} is in Gμ, where {Vν} is
short for {Vν}ν∈M. If {Vν} /∈ Gμ, then we upper-bound them
by one to obtain for every τ > 0

P
[
max{Pmissed-ID, Pwrong-ID} ≥ e−nτ

]

≤ P
[{Vν} /∈ Gμ

]

+
∑

{Vν}∈Gμ

P
[{Vν} = {Vν}

]

× P{Vν }
[
max{Pmissed-ID, Pwrong-ID} ≥ e−nτ

]
. (28)
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By Lemma 5 the first term on the RHS converges to zero as
the blocklength n tends to infinity, and it thus suffices to show
that

∃ τ > 0 s.t.

lim
n→∞ max

{Vν }∈Gμ

P{Vν}
[
max{Pmissed-ID, Pwrong-ID} ≥ e−nτ

]

= 0. (29)

Remark 7: As we shall see, (29) does indeed hold, and we
could have therefore simplified our random code construction
considerably by drawing only the pool P at random while
fixing the index-sets {Vν} ∈ Gμ. This is correct, but the main
purpose of our random code construction for the DMC is to
pave the way for the one for the BC, and there we shall need
to draw the index-sets at random.

Henceforth we assume that n is large enough so that the
following two inequalities hold:

(1 − δn)e
nR̃ ≥ 1, (30a)

δn + e−nμ/2+log 2 ≤ 1/2, (30b)

where δn is defined in (25). (This is possible, because δn

converges to zero as n tends to infinity and R̃, μ > 0.)

To establish (29), we first show that

∃ τ > 0 s.t.

lim
n→∞ max

{Vν }∈Gμ

P{Vν}
[
Pmissed-ID ≥ e−nτ

] = 0, (31)

and we then show that

∃ τ > 0 s.t.

lim
n→∞ max

{Vν }∈Gμ

P{Vν}
[
Pwrong-ID ≥ e−nτ

] = 0. (32)

The Union-of-Events bound, (31), and (32) imply (29) and
hence (27).

To conclude the proof, it remains to establish (31) and (32).
We start by establishing (31). To this end fix any realiza-
tion {Vν} in Gμ. Rather than directly upper-bounding the
maximum over m ∈ M of ( Qm W n)(Y n /∈ Dm) under
P{Vν}, we first consider ( Qm W n)(Y n /∈ Dm) for a fixed
m ∈ M. (This σ(C)-measurable random variable with support
[0, 1] can be viewed as the probability—associated with the
randomly constructed ID code—that the m-focused party
erroneously guesses that m was not sent.) By (23a) (which
holds because {Vν} ∈ Gμ) and (30a), Vm is nonempty, and Qm
is hence given by (17). This implies that P{Vν}-almost-surely
the random variable ( Qm W n)(Y n /∈ Dm) is upper-bounded
by

( Qm W n)(Y n /∈ Dm)

(a)=
∑

x∈X n

1

|Vm |
∑

v∈Vm

�x=P(v) W n(Y n /∈ Dm |x) (33)

(b)≤ 1

|Vm |
∑

v∈Vm

W n
(

Y n /∈ T (n)
ε

(
P × W

∣
∣P(v)

)∣∣
∣P(v)

)
, (34)

where (a) follows from (17); and (b) follows from (20), which
implies that P{Vν}-almost-surely

T (n)
ε

(
P × W

∣
∣P(v)

) ⊆ Dm , v ∈ Vm .

There is an inequality in (b), because the m-focused party may
guess correctly even if y is not jointly typical with P(v): it
also guesses correctly when y is jointly typical with P(v ′) for
some v ′ in Vm other than v.

Let

βn = (P × W )n
(
(Xn , Y n) /∈ T (n)

ε

)
, (35a)

αn = max
{
2βn, e−nμ/2}, (35b)

and note that (35b) implies that

αn − βn ≥ e−nμ/2/2. (36)

Moreover, since βn decays exponentially and μ > 0, there
must exist a positive constant τ > 0 and some η0 ∈ N for
which

αn ≤ e−nτ , n ≥ η0. (37)

Under P{Vν } the [0, 1]-valued random variables
{

W n
(

Y n /∈ T (n)
ε

(
P × W

∣
∣P(v)

)∣∣
∣P(v)

)}

v∈V
are IID and have mean βn , because the pool was drawn
independently of the index-sets, so

{
P(v)

}
v∈V are IID ∼ Pn

also under P{Vν }. Consequently, Hoeffding’s inequality
(Proposition 2) implies that

P{Vν}
[

1

|Vm |
∑

v∈Vm

W n
(

Y n /∈ T (n)
ε

(
P × W

∣
∣P(v)

)∣∣
∣P(v)

)
≥ αn

]

≤ e−2 |Vm |(αn−βn)2
(38)

≤ exp
{
−(1 − δn)e

n(R̃−μ)−log 2
}
, {Vν} ∈ Gμ, (39)

where in the second inequality we used (23a) (which holds
because {Vν} ∈ Gμ) and (36). Having obtained (39) for every
fixed m, we are now ready to tackle the maximum over m
and prove (31): for every τ > 0 and η0 ∈ N satisfying (37)
and for all n exceeding η0

max
{Vν }∈Gμ

P{Vν}
[
Pmissed-ID ≥ e−nτ

]

(a)≤ max
{Vν }∈Gμ

P{Vν}
[
Pmissed-ID ≥ αn

]
(40)

(b)= max
{Vν }∈Gμ

P{Vν}
[∃ m ∈ M : ( Qm W n)(Y n /∈ Dm) ≥ αn

]

(41)
(c)≤ max

{Vν }∈Gμ

∑

m∈M
P{Vν}

[
( Qm W n)(Y n /∈ Dm) ≥ αn

]
(42)

(d)≤ max
{Vν }∈Gμ

∑

m∈M
P{Vν}

[
1

|Vm |
∑

v∈Vm

×W n
(

Y n /∈ T (n)
ε

(
P × W

∣
∣P(v)

)∣∣
∣P(v)

)
≥ αn

]

(43)

(e)≤
∑

m∈M
exp

{
−(1 − δn)e

n(R̃−μ)−log 2
}

(44)

( f )≤ |M| exp
{
−en(R̃−μ)−2 log 2

}
(45)

(g)→ 0 (n → ∞), (46)
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where (a) holds by (37), because n exceeds η0; (b) follows
from (21a); (c) follows from the Union-of-Events bound;
(d) follows from (34); (e) holds by (39); ( f ) follows
from (30b), which implies that δn ≤ 1/2; and (g) holds
because |M| = exp(exp(n R)) and μ < R̃ − R.

Having established (31), it remains to establish (32) in order
to conclude the proof. To this end fix any realization {Vν}
in Gμ. We begin by upper-bounding ( Qm W n)(Y n ∈ Dm′)
under P{Vν } for fixed distinct m, m′ ∈ M. Later we will maxi-
mize over such m, m′. (The σ(C)-measurable random variable
( Qm W n)(Y n ∈ Dm′) with support [0, 1] can be viewed as
the probability—associated with the randomly constructed ID
code—that the m′-focused party erroneously guesses that m′
was sent when in fact m was sent.) By (23a) (which holds
because {Vν} ∈ Gμ) and (30a), Vm is nonempty, and Qm is
hence given by (17). This implies that P{Vν}-almost-surely the
random variable ( Qm W n)(Y n ∈ Dm′) is upper-bounded by

( Qm W n)(Y n ∈ Dm′)
(a)=

∑

x∈X n

1

|Vm |
∑

v∈Vm

�x=P(v) W n(Y n ∈ Dm′ |x) (47)

= 1

|Vm |
∑

v∈Vm

W n(
Y n ∈ Dm′

∣
∣P(v)

)
(48)

(b)≤ |Vm,m′ |
|Vm |

+ 1

|Vm |
∑

v∈Vm\Vm,m′
W n(

Y n ∈ Dm′
∣
∣P(v)

)
, (49)

where (a) follows from (17); and (b) holds because

W n(
Y n ∈ Dm′

∣
∣P(v)

) ≤ 1, v ∈ V .

We consider the two terms on the RHS of (49) separately,
beginning with |Vm,m′ |/|Vm |. Because {Vν} ∈ Gμ,

|Vm,m′ |
|Vm |

(a)
<

en(R̃−μ/2)+log 2

(1 − δn)enR̃

(b)≤ e−nμ/2+2 log 2, (50)

where (a) follows from (23a) and (23c); and (b) follows
from (30b), which implies that δn ≤ 1/2. We next consider
the second term in (49), namely,

1

|Vm |
∑

v∈Vm\Vm,m′
W n(

Y n ∈ Dm′
∣
∣P(v)

)
.

The cardinality of Dm′ is P{Vν}-almost-surely upper-bounded
by

|Dm′ | (a)=
∣
∣
∣
∣

⋃

v∈Vm′
T (n)

ε

(
P × W

∣
∣P(v)

)
∣
∣
∣
∣

≤
∑

v∈Vm′

∣
∣
∣T (n)

ε

(
P × W

∣
∣P(v)

)∣∣
∣ (51)

(b)≤ (1 + δn)e
n(R̃+H(W |P)+δ(ε)), (52)

where (a) follows from (20); and (b) follows from
∣
∣
∣T (n)

ε (P × W |x)
∣
∣
∣ ≤ en(H(W |P)+δ(ε)), x ∈ X n,

and from (23b) (which holds because {Vν} ∈ Gμ).

Let

γn = (1 + δn)e−n(I (P,W )−R̃−2δ(ε)), (53a)

κn = max
{
2γn, e−nμ/2}, (53b)

and note that (53b) implies that

κn − γn ≥ e−nμ/2/2. (54)

Fix a realization Dm′ of Dm′ for which P{Vν}[Dm′ =
Dm′ ] > 0. From (20) it follows that all output sequences in
Dm′ are of approximate type PW , i.e., that

Dm′ ⊆ T (n)
ε (PW ). (55)

And from (52) it follows that

|Dm′ | ≤ (1 + δn)e
n(R̃+H(W |P)+δ(ε)). (56)

The next computation is under P{Vν},Dm′ , where we condition
not only on {Vν} = {Vν} but also on Dm′ = Dm′ . The
n-tuples in the pool

{
P(v)

}
v∈V\Vm′ that are not indexed by

Vm′ are IID ∼ Pn also under P{Vν },Dm′ , because the pool was
drawn independently of the index-sets, and because by (20)
Dm′ depends only on

{
P(v)

}
v∈Vm′ . Hence, under P{Vν},Dm′

the [0, 1]-valued random variables
{

W n(
Y n ∈ Dm′

∣
∣P(v)

)}

v∈V\Vm′

are IID of mean

E{Vν },Dm′
[
W n(

Y n ∈ Dm′
∣
∣P(v)

)]

(a)=
∑

y∈Dm′
(PW )n(y) (57)

(b)≤ |Dm′ | e−n(H(PW )−δ(ε)) (58)
(c)≤ (1 + δn)e

−n(I (P,W )−R̃−2δ(ε)) (59)
(d)= γn, (60)

where (a) holds because Dm′ = Dm′ and
{
P(v)

}
v∈V\Vm′ are

IID ∼ Pn under P{Vν },Dm′ ; (b) holds because

(PW )n(y) ≤ e−n(H(PW )−δ(ε)), y ∈ T (n)
ε (PW ),

and by (55); (c) follows from (56); and (d) holds by (53a).
Consequently, Hoeffding’s inequality (Proposition 2) implies
that

P{Vν },Dm′

[
1

|Vm \ Vm,m′ |
∑

v∈Vm\Vm,m′

× W n(
Y n ∈ Dm′

∣
∣P(v)

) ≥ κn

]

(a)≤ exp
{−2 |Vm \ Vm,m′ | (κn − γn)

2} (61)
(b)≤ exp

{−|Vm \ Vm,m′ | e−nμ−log 2} (62)
(c)≤ exp

{
−en(R̃−μ)−2 log 2

}
,

{Vν} ∈ Gμ, P{Vν}[Dm′ = Dm′ ] > 0, (63)



3488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 6, JUNE 2017

where (a) holds because Vm \ Vm,m′ is a subset of V \ Vm′ ;
(b) follows from (54); and (c) follows from

|Vm \ Vm,m′ | (d)
> (1 − δn)e

nR̃ − en(R̃−μ/2)+log 2 (64)
(e)≥ enR̃−log 2, (65)

where (d) is due to (23a) and (23c) (which hold because
{Vν} ∈ Gμ), and (e) is due to (30b). By (63) and because
|Vm \ Vm,m′ | ≤ |Vm |, the probability that the second term
in (49) exceeds κn is upper-bounded by

P{Vν}
[

1

|Vm |
∑

v∈Vm\Vm,m′
W n(

Y n ∈ Dm′
∣
∣P(v)

) ≥ κn

]

≤ P{Vν}
[

1

|Vm \ Vm,m′ |
∑

v∈Vm\Vm,m′

×W n(
Y n ∈ Dm′

∣
∣P(v)

) ≥ κn

]

(66)

=
∑

Dm′
P{Vν}[Dm′ = Dm′ ] P{Vν},Dm′

[
1

|Vm \ Vm,m′ |

×
∑

v∈Vm\Vm,m′
W n(

Y n ∈ Dm′
∣
∣P(v)

) ≥ κn

]

(67)

≤ exp
{
−en(R̃−μ)−2 log 2

}
, {Vν} ∈ Gμ. (68)

Having obtained (49), (50), and (68) for every fixed distinct
m, m′, we are now ready to tackle the maximum over m, m′
and prove (32): Let

ωn = e−nμ/2+2 log 2 + κn, (69)

and note that, by (53), because μ > 0, because δn converges to
zero as n tends to infinity, and because 2δ(ε) < I (P, W )− R̃,
there must exist a positive constant τ > 0 and some η0 ∈ N

for which

ωn ≤ e−nτ , n ≥ η0. (70)

For every τ > 0 and η0 ∈ N satisfying (70) and for all n
exceeding η0

max
{Vν }∈Gμ

P{Vν}
[
Pwrong-ID ≥ e−nτ

]

(a)≤ max
{Vν}∈Gμ

P{Vν}
[
Pwrong-ID ≥ ωn

]
(71)

(b)= max
{Vν}∈Gμ

P{Vν}
[∃ m, m′ ∈ M, m �= m′ :

( Qm W n)(Y n ∈ Dm′) ≥ ωn
]

(72)
(c)≤ max

{Vν}∈Gμ

∑

m∈M

∑

m′ �=m

P{Vν}
[
( Qm W n)(Y n ∈ Dm′)≥ ωn

]

(73)
(d)≤ max

{Vν}∈Gμ

∑

m∈M

∑

m′ �=m

P{Vν}
[ |Vm,m′ |

|Vm |

+ 1

|Vm|
∑

v∈Vm\Vm,m′
W n(

Y n ∈ Dm′
∣
∣P(v)

) ≥ ωn

]

(74)

(e)≤ max
{Vν }∈Gμ

∑

m∈M

∑

m′ �=m

P{Vν}
[ |Vm,m′ |

|Vm | ≥ e−nμ/2+2 log 2
]

+ max
{Vν}∈Gμ

∑

m∈M

∑

m′ �=m

P{Vν }
[

1

|Vm |
∑

v∈Vm\Vm,m′

×W n(
Y n ∈ Dm′

∣
∣P(v)

) ≥ κn

]

(75)

( f )≤ |M|2 exp
{
−en(R̃−μ)−2 log 2

}
(76)

(g)→ 0 (n → ∞), (77)

where (a) holds by (70), because n exceeds η0; (b) follows
from (21b); (c) follows from the Union-of-Events bound;
(d) follows from (49); (e) follows from (69) and the Union-
of-Events bound; ( f ) holds by (50) and (68); and (g) holds
because |M| = exp(exp(n R)) and μ < R̃ − R. �

III. IDENTIFICATION VIA THE BC

In this section we establish the ID capacity region of the
two-receiver BC

(
X , W (y, z|x),Y × Z

)
under the average-

error criterion, which requires that each receiver identify
the message intended for it reliably in expectation over the
uniform ID message intended for the other receiver. We begin
with the basic definitions of an average-error ID code for the
BC W (y, z|x):

Definition 8: Fix finite sets MY and MZ , a blocklength
n ∈ N, and positive constants λY1 , λY2 , λZ1 , λZ2 . Associate with
every ID message-pair (mY , mZ ) ∈ MY × MZ a PMF
QmY ,mZ on X n, with every mY ∈ MY an ID set DmY ⊂ Yn,
and with every mZ ∈ MZ an ID set DmZ ⊂ Zn. The
collection of tuples

{
QmY ,mZ ,DmY ,DmZ

}
(mY ,mZ )∈MY×MZ

is an
(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x) if the maximum probabilities of missed identifica-
tion at Terminals Y and Z

pYmissed-ID = max
mY∈MY

1

|MZ |
×

∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n /∈ DmY
)
, (78a)

pZmissed-ID = max
mZ∈MZ

1

|MY |
×

∑

mY∈MY

(
QmY ,mZ W n)(

Zn /∈ DmZ
)

(78b)

satisfy

pYmissed-ID ≤ λY1 , (79a)

pZmissed-ID ≤ λZ1 , (79b)

and the maximum probabilities of wrong identification at
Terminals Y and Z

pYwrong-ID = max
mY∈MY

max
m′
Y �=mY

1

|MZ |
×

∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n ∈ Dm′
Y

)
, (80a)
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pZwrong-ID = max
mZ∈MZ

max
m′
Z �=mZ

1

|MY |
×

∑

mY∈MY

(
QmY ,mZ W n)(

Zn ∈ Dm′
Z

)
(80b)

satisfy

pYwrong-ID ≤ λY2 , (81a)

pZwrong-ID ≤ λZ2 . (81b)

A rate-pair (RY , RZ) is achievable if for every positive λY1 ,
λY2 , λZ1 , and λZ2 and for every sufficiently-large blocklength n
there exists an

(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for

the BC with
{

1
n log log |MY | ≥ RY if RY > 0,

|MY | = 1 if RY = 0,
{

1
n log log |MZ | ≥ RZ if RZ > 0,

|MZ | = 1 if RZ = 0.

The ID capacity region C of the BC is the closure of the set
of all achievable rate-pairs.

Equivalently, we can define an ID code for the BC
W (y, z|x) as follows:

Remark 9: Given a collection of PMFs
{

QmY ,mZ
}
(mY ,mZ )∈MY×MZ

on X n, define the mixture PMFs on X n

QmY = 1

|MZ |
∑

mZ∈MZ

QmY ,mZ , mY ∈ MY , (82a)

QmZ = 1

|MY |
∑

mY∈MY

QmY ,mZ , mZ ∈ MZ . (82b)

The collection of tuples
{

QmY ,mZ ,DmY ,DmZ
}
(mY ,mZ )∈MY×MZ

is an
(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x) iff the following two requirements are met:
1)

{
QmY ,DmY

}
mY∈MY is an

(
n,MY , λY1 , λY2

)
ID code for

the marginal channel WY (y|x); and 2)
{

QmZ ,DmZ
}

mZ∈MZ
is an

(
n,MZ , λZ1 , λZ2

)
ID code for WZ (z|x).

Our main result is a single-letter characterization of the ID
capacity region of the BC:

Theorem 10: The ID capacity region C of the BC W (y, z|x)
is the set of all rate-pairs (RY , RZ ) ∈ (R+

0 )2 that for some
PMF P on X satisfy

RY ≤ I (P, WY ), (83a)

RZ ≤ I (P, WZ ). (83b)
We prove the direct part in Section III-A and the converse

part in Section III-B. In fact, we shall establish the following
stronger results:

Remark 11: The ID capacity region C of the BC W (y, z|x)
is achievable even if we require that the maximum probabilities
of missed and wrong identification decay exponentially in the
blocklength n. And for all sufficiently-large n, rate-pairs out-
side this region can be achieved only if λY1 +λY2 +λZ1 +λZ2 ≥ 1.

Proof: This follows from Claims 14 and 15 ahead. �
In contrast to transmission via the BC, Theorem 10 implies

that for identification via the BC there is no trade-off between
Receiver Y and Receiver Z’s rate. An intuitive explanation
for this is that in transmission via the BC the message to the
other receiver hurts because it is like noise, whereas here this
effect is offset by the benefits afforded by randomization.

Recall that to achieve the ID capacity of a DMC requires
stochastic encoders; deterministic encoders cannot achieve any
positive ID rate [1]. On the BC this is not true:

Remark 12: Every rate-pair in the interior of the ID capac-
ity region C of the BC W (y, z|x) can be achieved using
ID codes with deterministic encoders.

Proof: The encoder we construct in Section III-A ahead
to prove the direct part of Theorem 10 is deterministic: it maps
every ID message-pair to a channel-input sequence that is fully
determined by the random code construction. �

As a corollary to Theorem 10, we next observe that the
ID capacity region of the BC is convex. This requires proof,
because the ID rate is the iterated logarithm of the number of
ID messages normalized by the blocklength n, and we there-
fore cannot invoke a time-sharing argument [4, Remark 2].

Corollary 13: The ID capacity region of the BC W (y, z|x)
is convex.

Proof: This readily follows from the fact that the
rate region in Theorem 10 is convex. (That the rate
region in Theorem 10 is convex is proved in [8, Proof of
Corollary 2.3.6].) �

We next prove Theorem 10: Section III-A establishes the
direct part and Section III-B a strong converse.

A. The Direct Part of Theorem 10

In this section we prove the direct part of Theorem 10 by
fixing any input distribution P ∈ P(X ) and any positive ID
rate-pair (RY , RZ) satisfying

0 < RY < I (P, WY ), (84a)

0 < RZ < I (P, WZ ) (84b)

and showing that the rate-pair (RY , RZ ) is achievable. We
assume that both I (P, WY ) and I (P, WZ ) are positive; when
they are not, the result follows from Theorem 4. Let MY be
a size-exp(exp(n RY )) set of possible ID messages for Termi-
nal Y , and let MZ be a size-exp(exp(n RZ)) set of possible ID
messages for Terminal Z . We next describe our random code
construction and show that, for every positive λY1 , λY2 , λZ1 , and
λZ2 and for every sufficiently-large blocklength n, it produces
with high probability an

(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID

code for the BC W (y, z|x). The scheme that we propose
builds on our code construction for the single-user channel
in Section II by making it appear to each receiver as though
we were using an instance of the single-user ID code on its
marginal channel.

Code Generation: Fix an expected bin rate R̃Y for
Terminal Y , an expected bin rate R̃Z for Terminal Z , and a
pool rate RP satisfying

RY < R̃Y < I (P, WY ), (85a)
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RZ < R̃Z < I (P, WZ ), (85b)

R̃Y < RP , (85c)

R̃Z < RP , (85d)

RP < R̃Y + R̃Z . (85e)

This is possible by (84). Draw enRP n-tuples ∼ Pn

independently and place them in a pool P . Index the n-tuples
in the pool by the elements of a size-enRP set V , e.g.,
{1, . . . , enRP }, and denote by P(v) the n-tuple in P that is
indexed by v ∈ V . For each receiving terminal � ∈ {Y,Z}
associate with each ID message m� ∈ M� an index-set
Vm� and a bin Bm� as follows. Select each element of V for
inclusion in Vm� independently with probability e−n(RP−R̃�),
and let Bin Bm� be the multiset that contains all the n-tuples
in the pool that are indexed by Vm� ,

Bm� = {
P(v), v ∈ Vm�

}
.

(Bin Bm� is thus of expected size enR̃� .) Associate with each
ID message-pair (mY , mZ ) ∈ MY×MZ an index VmY ,mZ as
follows. If VmY ∩VmZ is not empty, then draw VmY ,mZ uni-
formly over VmY ∩VmZ . Otherwise draw VmY ,mZ uniformly
over V . Reveal the pool P , the index-sets

{VmY
}

mY∈MY and
{VmZ

}
mZ∈MZ , the corresponding bins

{BmY
}

mY∈MY and
{BmZ

}
mZ∈MZ , and the indices

{
VmY ,mZ

}
(mY ,mZ )∈MY×MZ

to all parties. The encoding and decoding are determined by

C =
(
P,

{VmY
}

mY∈MY ,
{VmZ

}
mZ∈MZ ,

{
VmY ,mZ

}
(mY ,mZ )∈MY×MZ

)
. (86)

Encoding: To send ID Message-Pair (mY , mZ ) ∈ MY ×
MZ , the encoder transmits the sequence P(VmY ,mZ ).
ID Message-Pair (mY , mZ) is thus associated with the
{0, 1}-valued PMF

QmY ,mZ (x) = �x=P(VmY ,mZ ), x ∈ X n . (87)

Note that once the code (86) has been constructed, the encoder
is deterministic: it maps ID Message-Pair (mY , mZ) to the
(mY , mZ )-codeword P(VmY ,mZ ).

Decoding: In this section the function δ(·) maps every non-
negative real number u to u H (P × W ). The decoders choose
ε > 0 sufficiently small so that 2δ(ε) < I (P, WY ) − R̃Y and
2δ(ε) < I (P, WZ )− R̃Z . The m′

Y -focused party at Terminal Y
guesses that m′

Y was sent iff for some index v ∈ Vm′
Y the n-

tuple P(v) in Bin Bm′
Y is jointly ε-typical with the Terminal-Y

output-sequence Y n , i.e., iff
(
P(v), Y n

) ∈ T (n)
ε (P × WY ) for

some v ∈ Vm′
Y . The set Dm′

Y of Terminal-Y output-sequences
y ∈ Yn that result in the guess “m′

Y was sent” is thus

Dm′
Y =

⋃

v∈Vm′Y

T (n)
ε

(
P × WY

∣
∣P(v)

)
. (88)

Likewise, the m′
Z -focused party at Terminal Z guesses that

m′
Z was sent iff

(
P(v), Zn

) ∈ T (n)
ε (P × WZ ) for some

v ∈ Vm′
Z . The set Dm′

Z of Terminal-Z output-sequences

z ∈ Zn that result in the guess “m′
Z was sent” is thus

Dm′
Z =

⋃

v∈Vm′Z

T (n)
ε

(
P × WZ

∣
∣P(v)

)
. (89)

Analysis of the Probabilities of Missed and Wrong Identi-
fication: We first note that C of (86) (together with the fixed
blocklength n and the chosen ε) fully specifies the encoding
and guessing rules. That is, the randomly constructed ID code

{
QmY ,mZ ,DmY ,DmZ

}
(mY ,mZ )∈MY×MZ

(90)

is fully specified by C. Let P be the distribution of C, and let
E denote expectation w.r.t. P. Subscripts indicate conditioning
on the event that some of the chance variables assume the
values indicated by the subscripts, e.g., PVmY denotes the
distribution conditional on VmY = VmY , and EVmY denotes
the expectation w.r.t. PVmY .

The maximum probabilities of missed and wrong identifi-
cation of the randomly constructed ID code are the random
variables

PY
missed-ID = max

mY∈MY

1

|MZ |
×

∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n /∈ DmY
)
, (91a)

PZ
missed-ID = max

mZ∈MZ

1

|MY |
×

∑

mY∈MY

(
QmY ,mZ W n)(

Zn /∈ DmZ
)
, (91b)

PY
wrong-ID = max

mY∈MY
max

m′
Y �=mY

1

|MZ |
×

∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n ∈ Dm′
Y

)
, (91c)

PZ
wrong-ID = max

mZ∈MZ
max

m′
Z �=mZ

1

|MY |
×

∑

mY∈MY

(
QmY ,mZ W n)(

Zn ∈ Dm′
Z

)
. (91d)

They are fully specified by C. To prove that for every
choice of λY1 , λY2 , λZ1 , λZ2 > 0 and n sufficiently large
the collection of tuples (90) is with high probability
an

(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x), we prove the following stronger result:
Claim 14: The maximum probabilities of missed and wrong

identification of the randomly constructed ID code (90),
PY

missed-ID, PZ
missed-ID, PY

wrong-ID, and PZ
wrong-ID, converge in

probability to zero exponentially in the blocklength n, i.e.,

∃ τ > 0 s.t. lim
n→∞ P

[
max

{
PY

missed-ID, PZ
missed-ID,

PY
wrong-ID, PZ

wrong-ID

} ≥ e−nτ
]

= 0. (92)
Proof: We will prove that

∃ τ > 0 s.t. lim
n→∞ P

[
max

{
PY

missed-ID, PY
wrong-ID

} ≥ e−nτ
]

= 0. (93)
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By swapping Z and Y throughout the proof it will then follow
that (93) also holds when we replace Y with Z , and (92) will
then follow using the Union-of-Events bound.

To prove (93), we consider for each mY ∈ MY two
distributions on the set V , which indexes the pool P . We fix
some v� ∈ V and define for every mY ∈ MY the PMFs on V

P(mY )
V (v) = 1

|MZ |
∑

mZ∈MZ

�v=VmY ,mZ , v ∈ V, (94a)

P̃
(mY )
V (v) =

{
1

|VmY |
∑

v ′∈VmY
�v=v ′ if VmY �= ∅,

�v=v� otherwise,

v ∈ V . (94b)

The latter PMF is reminiscent of the distribution we encoun-
tered in (17) and (18) in the single-user case. The former
is related to the BC setting when we view MZ as uniform
over MZ . As we argue next, to establish (93) it suffices to
show that the two are similar in the sense that

∃ τ > 0 s.t. lim
n→∞ P

[

max
mY∈MY

d
(

P (mY )
V , P̃

(mY )
V

)
≥ e−nτ

]

= 0. (95)

To see why, let us define for every mY ∈ MY the PMFs
on X n

QmY (x) = 1

|MZ |
∑

mZ∈MZ

QmY ,mZ (x), x ∈ X n, (96a)

Q̃mY (x) =
{

1
|VmY |

∑
v ′∈VmY

�x=P(v ′) if VmY �= ∅,

�x=P(v�) otherwise,

x ∈ X n . (96b)

The collection of tuples
{

QmY ,DmY
}

mY∈MY
can be viewed

as a randomly constructed ID code for the DMC WY (y|x)
with maximum probability of missed identification

max
mY∈MY

(
QmY W n)(

Y n /∈ DmY
)

= max
mY∈MY

1

|MZ |
∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n /∈ DmY
)

= PY
missed-ID (97)

and maximum probability of wrong identification

max
mY∈MY

max
m′
Y �=mY

(
QmY W n)(

Y n ∈ Dm′
Y

)

= max
mY∈MY

max
m′
Y �=mY

1

|MZ |
×

∑

mZ∈MZ

(
QmY ,mZ W n)(

Y n ∈ Dm′
Y

)
(98)

= PY
wrong-ID. (99)

And
{

Q̃mY ,DmY
}

mY∈MY has the same law as the randomly
constructed ID code { Qm,Dm}m∈M of Section II for the
DMC W = WY with blocklength n, fixed element v� of V ,
decoding parameter ε, size-exp(exp(n RY )) set MY of pos-
sible ID messages, expected bin rate R̃Y , and pool rate RP .

(Note that ε, RY , R̃Y , and RP are eligible for the random code
construction in Section II, because ε is positive and sufficiently
small so that 2εH (P × WY ) < I (P, WY ) − R̃Y , and because
of (84) and (85).) Let P̃Y

missed-ID and P̃Y
wrong-ID denote the

maximum probabilities of missed and wrong identification of
the randomly constructed ID code

{
Q̃mY ,DmY

}
mY∈MY

, i.e.,

P̃Y
missed-ID = max

mY∈MY

(
Q̃mY W n)(

Y n /∈ DmY
)
, (100a)

P̃Y
wrong-ID = max

mY∈MY
max

m′
Y �=mY

(
Q̃mY W n)(

Y n ∈ Dm′
Y

)
. (100b)

By Claim 6 on the single-user channel

∃ τ > 0 s.t. lim
n→∞ P

[
max

{
P̃Y

missed-ID, P̃Y
wrong-ID

} ≥ e−nτ
]

= 0. (101)

And by definition of the Total-Variation distance

PY
missed-ID ≤ P̃Y

missed-ID

+ max
mY∈MY

d
(

QmY W n
Y , Q̃mY W n

Y
)
, (102a)

PY
wrong-ID ≤ P̃Y

wrong-ID

+ max
mY∈MY

d
(

QmY W n
Y , Q̃mY W n

Y
)
. (102b)

For every τ1, τ2, and τ < min{τ1, τ2} we have for all
sufficiently-large n,

e−nτ1 + e−nτ2 ≤ e−nτ . (103)

This, combined with the Union-of-Events bound, (101), and
(102), implies that to establish (93) it suffices to show that

∃ τ > 0 s.t. lim
n→∞ P

[

max
mY∈MY

d
(

QmY W n
Y , Q̃mY W n

Y
) ≥ e−nτ

]

= 0. (104)

Consequently, to prove our claim that (95) implies (93), we
only have to show that (95) implies (104). To that end define
the conditional PMF

P Xn |V (x|v) = �x=P(v), (x, v) ∈ X n × V, (105)

and note that for every mY ∈ MY

QmY W n
Y = P (mY )

V P Xn |V W n
Y , (106a)

Q̃mY W n
Y = P̃

(mY )
V P Xn |V W n

Y , (106b)

where we used (94), (96), and (105), and in the first equality
also (87). We can now upper-bound d

(
QmY W n

Y , Q̃mY W n
Y

)
by

d
(

QmY W n
Y , Q̃mY W n

Y
)

= d
(

P (mY )
V P Xn |V W n

Y , P̃
(mY )
V P Xn |V W n

Y
)

(107)

≤ d
(

P (mY )
V , P̃

(mY )
V

)
, (108)

where the last inequality follows from the Data-Processing
inequality for the Total-Variation distance [13, Lemma 1].
From (108) we conclude that (95) implies (104) and hence
also (93).

Having established that (95) implies (93), it remains to
prove (95). Before we do that, we give an intuitive explanation
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why (95) holds. Fix mY ∈ MY and a realization VmY of the

corresponding index-set VmY , and assume that VmY ≈ enR̃Y .
For every mZ ∈ MZ , the probabilitiy that the intersection of
VmY and VmZ is empty is very small, and if the intersection
is nonempty, then, by our random construction of VmZ and
VmY ,mZ , the codeword-index VmY ,mZ is drawn uniformly
at random from VmY . Because VmY is exponential in n
and the cardinality of MZ is double-exponential in n, and
because, by our random construction of {VmZ }mZ∈MZ and
{VmY ,mZ }mZ∈MZ , the codeword-indices {VmY ,mZ }mZ∈MZ
are drawn independently of each other, (95) can be derived
using concentration inequalities.

To prove (95) rigorously, fix some μ satisfying

0 < μ < R̃Y − RY , (109)

and let

δn = e−nμ/2. (110)

Introduce the set HY
μ comprising the realizations {Vν}ν∈MY

of the index-sets {Vν}ν∈MY satisfying

|Vν | > (1 − δn)e
nR̃Y , ∀ ν ∈ MY . (111)

We upper-bound maxmY∈MY d
(

P (mY )
V , P̃

(mY )
V

)
differently

depending on whether or not {Vν} is in HY
μ , where {Vν}

is short for {Vν}ν∈MY . If {Vν} /∈ HY
μ , then we upper-bound

it by one (which is an upper bound on the Total-Variation
distance between any two probability measures) to obtain for
every τ > 0

P

[

max
mY∈MY

d
(

P (mY )
V , P̃

(mY )
V

)
≥ e−nτ

]

≤ P

[
{Vν} /∈ HY

μ

]
+

∑

{Vν }∈HY
μ

P
[{Vν} = {Vν}

]

× P{Vν}
[

max
mY∈MY

d
(

P (mY )
V , P̃

(mY )
V

)
≥ e−nτ

]

. (112)

We consider the two terms on the RHS of (112) separately,
beginning with P

[{Vν} /∈ HY
μ

]
. Following the proof of

Lemma 5 in Section II, we will show that P
[{Vν} /∈ HY

μ

]

converges to zero as n tends to infinity. This does not follow
from Lemma 5, because here we require μ to satisfy (109)
instead of the more restrictive condition (24) of Section II.
For every fixed ν ∈ MY the enRP binary random variables
{�v∈Vν }v∈V are IID, and

E

[∑

v∈V
�v∈Vν

]

=
∑

v∈V
P[v ∈ Vν] = enR̃Y . (113)

Consequently, by the multiplicative Chernoff bound (6a) in
Proposition 1,

P

[
|Vν | ≤ (1 − δn) enR̃Y

]
= P

[∑

v∈V
�v∈Vν ≤ (1 − δn) enR̃Y

]

(114)

≤ exp
{
−δ2

n enR̃Y−log 2
}

(115)

= exp
{
−en(R̃Y−μ)−log 2

}
. (116)

The Union-of-Events bound thus implies that

P

[
{Vν} /∈ HY

μ

]
≤ |MY | exp

{
−en(R̃Y−μ)−log 2

}
(117)

(a)→ 0 (n → ∞), (118)

where (a) holds because |MY | = exp(exp(n RY )) and
by (109).

Having established (118), we return to (112) and conclude
the proof of (95) by showing that

∃ τ > 0 s.t.

lim
n→∞ max

{Vν }∈HY
μ

P{Vν }
[

max
mY∈MY

d
(
P (mY )

V , P̃
(mY )
V

)
≥e−nτ

]

= 0. (119)

(The proof of (119) ahead exploits the fact that the index-
sets

{VmZ
}

mZ∈MZ are drawn at random. Likewise, when we
prove (93) with Y replaced by Z , we shall need the fact that
the index-sets

{VmY
}

mY∈MY are drawn at random. Hence
Remark 7.) To prove (119), let us henceforth assume that n is
large enough so that the following two inequalities hold:

(1 − δn)enR̃Y ≥ 1, (120a)

δn ≤ 1/2, (120b)

where δn is defined in (110). (This is possible, because δn

converges to zero as n tends to infinity and R̃Y > 0.)
Fix any realization {Vν} in HY

μ . Rather than directly upper-

bounding the maximum over mY ∈ MY of d
(

P (mY )
V , P̃

(mY )
V

)

under P{Vν}, we first consider d
(

P (mY )
V , P̃

(mY )
V

)
for a fixed

mY ∈ MY . By (111) (which holds because {Vν} ∈ HY
μ )

and (120a), VmY is nonempty. For every fixed v ∈ V \ VmY
we therefore have that under P{Vν } the exp(exp(n RZ)) binary
random variables

{
�v=VmY ,mZ

}
mZ∈MZ are IID of mean

E{Vν }
[
�v=VmY ,mZ

]

= P{Vν}
[
VmY ,mZ = v

]
(121)

(a)= 1

|V|P{Vν }
[
VmY ∩ VmZ = ∅]

(122)

(b)= 1

|V|P
[
VmY ∩ VmZ = ∅]

(123)

(c)= 1

|V|
(

1 − e−n(RP−R̃Z )
)|VmY |

(124)

(d)≤ exp
{
−e−n(RP−R̃Z ) |VmY | − n RP

}
(125)

(e)≤ (1 − δn)−1 exp
{
−(1 − δn)e

n(R̃Y+R̃Z−RP ) − n R̃Y
}
,

v ∈ V \ VmY (126)

with the following justification. Equality (a) holds because
v /∈ VmY and VmY = VmY P{Vν}-almost-surely, and therefore:
if VmY ∩ VmZ �= ∅, then VmY ,mZ �= v, and otherwise
VmY ,mZ is uniform over V . Equality (b) holds because VmZ
is independent of {Vν}ν∈MY , and its distribution w.r.t. P{Vν}
is thus the same as w.r.t. P; (c) holds because we have selected
each element of V for inclusion in VmZ independently with
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probability e−n(RP−R̃Z ); (d) holds because |V| = enRP and
because

1 − ξ ≤ e−ξ , ξ ∈ R; (127)

and (e) holds because 0 ≤ δn < 1, by (111) (which
holds because {Vν} ∈ HY

μ ), and because R̃Y < RP .
Similarly, for every fixed v ∈ VmY we have that
under P{Vν } the exp(exp(n RZ )) binary random variables{
�v=VmY ,mZ

}
mZ∈MZ are IID of mean

E{Vν}
[
�v=VmY ,mZ

]

= P{Vν}
[
VmY ,mZ = v

]
(128)

(a)= 1

|VmY |P{Vν}
[
VmY ,mZ ∈ VmY

]
(129)

= 1

|VmY |
(

1 − P{Vν}
[
VmY ,mZ /∈ VmY

])
(130)

(b)= 1

|VmY |
(

1 − |V| − |VmY |
|V|

(
1 − e−n(RP−R̃Z )

)|VmY |)

= 1

|VmY | −
(

1

|VmY | − 1

|V|
)(

1 − e−n(RP−R̃Z )
)|VmY |

(c)∈
[

1

|VmY |
(

1 − exp
{
−e−n(RP−R̃Z ) |VmY |

})

,
1

|VmY |
]

(d)⊆
[

1

|VmY | − (1 − δn)
−1 exp

{
−(1 − δn)en(R̃Y+R̃Z−RP )

−n R̃Y
}
,

1

|VmY |
]

, v ∈ VmY , (131)

where (a) holds by symmetry; (b) holds by (124) and because
|V \ VmY | = |V| − |VmY |; (c) holds by (127); and (d) holds
by (111) (which holds because {Vν} ∈ HY

μ ). Fix some κ
satisfying

0 < κ < min
{

RZ , R̃Y + R̃Z − RP
}
, (132)

and let

ξn = 4 exp
{−enκ−log 2}. (133)

By (120b)

ξn/2 > (1 − δn)
−1

× exp
{
−(1 − δn)en(R̃Y+R̃Z−RP ) − n R̃Y

}
. (134)

Consequently, Hoeffding’s inequality (Proposition 2) implies
that for every fixed v ∈ V \ VmY

P{Vν}
[∣
∣
∣P (mY )

V (v) − P̃
(mY )
V (v)

∣
∣
∣ ≥ ξn

]

(a)= P{Vν }
[

1

|MZ |
∑

mZ∈MZ

�v=VmY ,mZ ≥ ξn

]

(135)

(b)≤ exp

{

−2 |MZ |
(

ξn − (1 − δn)
−1

× exp
{
−(1 − δn)e

n(R̃Y+R̃Z−RP ) − n R̃Y
})2}

(136)

(c)≤ exp
{−|MZ | ξ2

n /2
}
, (137)

where (a) holds because VmY = VmY P{Vν }-almost-surely,
because VmY is nonempty (which holds because {Vν} ∈ HY

μ

implies (111) and by (120a)), by (94), and because v /∈ VmY ;
(b) follows from Hoeffding’s inequality (Proposition 2) and
(126); and (c) holds by (134). Similarly, for every fixed
v ∈ VmY

P{Vν}
[∣
∣
∣P (mY )

V (v) − P̃
(mY )
V (v)

∣
∣
∣ ≥ ξn

]

(a)= P{Vν }
[∣
∣
∣
∣

1

|MZ |
∑

mZ∈MZ

�v=VmY ,mZ − 1

|VmY |
∣
∣
∣
∣ ≥ ξn

]

(b)≤ 2 exp

{

−2 |MZ |
(

ξn − (1 − δn)
−1

× exp
{
−(1 − δn)e

n(R̃Y+R̃Z−RP ) − n R̃Y
})2}

(138)

(c)≤ 2 exp
{−|MZ | ξ2

n /2
}
, (139)

where (a) holds because VmY = VmY P{Vν}-almost-surely,
because VmY is nonempty, by (94), and because v ∈ VmY ;
(b) follows from Hoeffding’s inequality (Proposition 2), (131),
and the Union-of-Events bound; and (c) holds by (134). The
Union-of-Events bound, (137), and (139) imply that

P{Vν}
[

∃ v ∈ V :
∣
∣
∣P(mY )

V (v) − P̃
(mY )
V (v)

∣
∣
∣ ≥ ξn

]

≤ 2 |V| exp
{−|MZ | ξ2

n /2
}
. (140)

Therefore,

P{Vν}
[

d
(

P (mY )
V , P̃

(mY )
V

)
≥ |V| ξn/2

]

(a)= P{Vν}
[∑

v∈V

∣
∣
∣P (mY )

V (v) − P̃
(mY )
V (v)

∣
∣
∣ ≥ |V| ξn

]

≤ P{Vν}
[

∃ v ∈ V :
∣
∣
∣P(mY )

V (v) − P̃
(mY )
V (v)

∣
∣
∣ ≥ ξn

]

(b)≤ 2 |V| exp
{−|MZ | ξ2

n /2
}
, {Vν} ∈ HY

μ , (141)

where (a) holds by definition of the Total-Variation distance;
and (b) holds by (140).

Having obtained (141) for every fixed mY ∈ MY , we
are now ready to tackle the maximum over mY ∈ MY and
prove (119): By (84b), (85e), (132), and (133) there must exist
a positive constant τ > 0 and some η0 ∈ N for which

|V| ξn/2 ≤ e−nτ , n ≥ η0. (142)

For every τ > 0 and η0 ∈ N satisfying (142) and for all n
exceeding η0

max
{Vν }∈HY

μ

P{Vν}
[

∃ mY ∈ MY : d
(

P(mY )
V , U (mY )

V

)
≥ e−nτ

]

(a)≤ max
{Vν }∈HY

μ

P{Vν }
[

∃ mY ∈ MY : d
(

P (mY )
V , U(mY )

V

)

≥ |V| ξn/2

]

(143)

(b)≤ max
{Vν }∈HY

μ

∑

mY∈MY

P{Vν}
[

d
(

P (mY )
V , U (mY )

V

)

≥ |V| ξn/2

]

(144)
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(c)≤ 2 |V| |MY | exp
{
−|MZ | exp

{−enκ + 3 log 2
}}

(145)

(d)→ 0 (n → ∞), (146)

where (a) holds by (142), because n exceeds η0; (b) follows
from the Union-of-Events bound; (c) holds by (141) and (133);
and (d) holds because |V| = enRP , |MY | = exp(exp(n RY )),
|MZ | = exp(exp(n RZ)), and by (132). �

B. The Converse Part of Theorem 10

In this section we prove a strong converse to Theorem 10:
Claim 15: For every rate-pair (RY , RZ), every positive

constants λY1 , λY2 , λZ1 , λZ2 satisfying

λY1 + λY2 + λZ1 + λZ2 < 1, (147)

and every ε > 0 there exists some η0 ∈ N so that,
for every blocklength n ≥ η0, every size-exp(exp(n RY ))
set MY of possible ID messages for Receiver Y ,
and every size-exp(exp(n RZ )) set MZ of possible ID
messages for Receiver Z , a necessary condition for
an

(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x) to exist is that for some PMF P on X

RY < I (P, WY ) + ε, (148a)

RZ < I (P, WZ ) + ε. (148b)
To prove Claim 15, we recall from Remark 9 that the

following two conditions are necessary and sufficient for some
collection of tuples

{
QmY ,mZ ,DmY ,DmZ

}
(mY ,mZ )∈MY×MZ

to be an
(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x): 1)
{

QmY ,DmY
}

mY∈MY is an
(
n,MY , λY1 , λY2

)

ID code for the marginal channel WY (y|x); and 2){
QmZ ,DmZ

}
mZ∈MZ

is an
(
n,MZ , λZ1 , λZ2

)
ID code for

WZ (z|x), where
{

QmY
}

mY∈MY and
{

QmZ
}

mZ∈MZ are
defined in (82). We shall use these conditions to establish
Claim 15 following Han and Verdú’s proof of the strong
converse for identification via the DMC [3]. To that end we
shall need some terminology and results from [3]. We begin
with the following two definitions from [3]:

Definition 16: An (n,M, λ1, λ2) ID code {Qm ,Dm}m∈M
for the DMC W (y|x) is homogeneous if for every n-type P
on X n

Qm

(
T (n)

P

)
= 1

|M|
∑

ν∈M
Qν

(
T (n)

P

)
, m ∈ M. (149)

Definition 17: Given an (n,M, λ1, λ2) ID code
{Qm ,Dm}m∈M for the DMC W (y|x), define for every
n-type P on X n and m ∈ M the PMF

Q(n,P)
m (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qm(x)

Qm

(
T (n)

P

) if x ∈ T (n)
P and Qm

(
T (n)

P

)
> 0,

1∣
∣T (n)

P

∣
∣ if x ∈ T (n)

P and Qm

(
T (n)

P

)
= 0,

0 if x /∈ T (n)
P .

The ID code is L-regular if for every n-type P on X n and
m ∈ M satisfying Qm

(
T (n)

P

)
> 0 the PMF Q(n,P)

m on T (n)
P is

an L-type.

Following the line of argument in [3], we shall con-
struct from

{
QmY ,DmY

}
mY∈MY and

{
QmZ ,DmZ

}
mZ∈MZ

homogeneous L-regular ID codes. For the construction we
shall need Proposition 18 and Lemma 19 ahead. Proposi-
tion 18 is a variation on [3, Proposition 3], and Lemma 19
is a generalization of [3, Lemma 1] similar to that in
[14, Lemma 2].

Proposition 18: For every (n,M, λ1, λ2) ID code
{Qm,Dm}m∈M for the DMC W (y|x) and for every
δ ≥ log 2/n there exists a subset S of M with

|S| ≥ |M| exp
{

− elog(1+n)(1+|X |)+logδ
}

(150)

for which we can construct from {Qm ,Dm}m∈S a homo-
geneous (n,S, λ′

1, λ
′
2) ID code {Q′

m ,Dm}m∈S for W (y|x)
with

λ′
1 = λ1 + e−nδ+log(1+n) |X |, (151a)

λ′
2 = λ2 + e−nδ+log(1+n) |X |. (151b)

Moreover, if for some ε, κ > 0

Qm

(
Xn ∈ {

x ∈ X n : I (Px, W ) ≤ R − ε
}) ≥ κ,

m ∈ M, (152)

then

Q′
m

(
Xn ∈ {

x ∈ X n : I (Px, W ) ≤ R − ε
}) ≥ κ,

m ∈ S. (153)
Proof: The proof is essentially that of [3, Proposition 3].

Additionally, we observe the following: if the PMFs
{Qm}m∈M satisfy (152), then the PMFs {Q′

m}m∈S , which are
constructed in the proof of [3, Proposition 3], satisfy (153).
A proof can be found in [8, Appendix A.2] and in Section 1
of the supplementary material. �

Lemma 19: For every DMC W (y|x) there exists a positive
constant δ0 > 0, which depends only on |Y|, and a continuous,
strictly-increasing function ρ : [0, δ0] → R

+
0 with ρ(0) = 0

so that, for every δ ∈ (0, δ0], every ε ∈ (0, 1), and every
blocklength n ≥ η0 (where η0 ∈ N depends only on |X |, |Y|,
δ, and ε), it holds that for every n-type P on X n, every PMF
Q on T (n)

P ⊆ X n, every R ≥ I (P, W ) + ρ(δ), and every
L = �enR� there exists an L-type Q′ on T (n)

P that satisfies for
every subset D of Yn

(Q′W n)(Y n ∈ D)

≤ (1 + ε)(1 − e−nδ)−1(QW n)(Y n ∈ D) + e−nδ, (154a)

(Q′W n)(Y n ∈ D)

≥ (1 − ε)(1 − e−nδ)(QW n)(Y n ∈ D) − e−nδ. (154b)
Proof: The proof is essentially that of [3, Lemma 1]

with the differences being pointed out in the proof of [14,
Lemma 2]. A proof can be found in [8, Appendix A.3] and in
Section 2 of the supplementary material. �

Once we have constructed from
{

QmY ,DmY
}

mY∈MY
and

{
QmZ ,DmZ

}
mZ∈MZ homogeneous L-regular ID

codes, we shall use the following proposition to upper-
bound the number of possible ID messages |MY | and
|MZ |:



BRACHER AND LAPIDOTH: ID VIA THE BROADCAST CHANNEL 3495

Proposition 20: [3, Proposition 4] Let M be a finite set
and λ1, λ2 positive constants satisfying λ1 + λ2 < 1. Every
homogeneous L-regular (n,M, λ1, λ2) ID code for the DMC
W (y|x) satisfies

log |M| ≤ n(1 + n)|X |L log |X |. (155)
Once we have upper-bounded |MY | and |MZ |, we shall

infer from the upper bounds that for every ε > 0 and n
sufficiently large the mixture PMF on X n

Q = 1

|MY | |MZ |
∑

(mY ,mZ )∈MY×MZ

QmY ,mZ

must assign notable probability mass to some sequence x ∈ X n

that satisfies both I (Px, WY ) > RY − ε and I (Px, WZ ) >
RZ − ε. This implies Claim 15, because it implies that there
must exist some PMF P on X for which (148) holds.

We next establish Claim 15, proceeding as outlined above.
In a first step we shall combine Proposition 18, Lemma 19,
and Proposition 20 to obtain the following lemma:

Lemma 21: For every DMC W (y|x), every ID rate R, and
every positive constants λ1, λ2, ε, κ satisfying λ1 + λ2 <
κ < 1 there exists some η0 ∈ N so that, for every block-
length n ≥ η0 and every size-exp(exp(n R)) set M of possible
ID messages, a necessary condition for a collection of tuples
{Qm ,Dm}m∈M to be an (n,M, λ1, λ2) ID code for the DMC
W (y|x) is that

1

|M|
∑

m∈M
Qm

(
Xn ∈ {

x ∈ X n : I (Px, W ) > R − ε
})

> 1 − κ − exp
{

en(R−ε/2)
}
/ exp

{
enR}

. (156)
Proof: See Appendix B. �

With Lemma 21 at hand, we are now ready to conclude the
proof of Claim 15 by establishing that for every ε > 0 and n
sufficiently large the mixture PMF on X n

Q = 1

|MY | |MZ |
∑

(mY ,mZ )∈MY×MZ

QmY ,mZ

must assign notable probability mass to some sequence x ∈ X n

that satisfies both I (Px, WY ) > RY − ε and I (Px, WZ ) >
RZ − ε:

Proof of Claim 15: Fix κY , κZ > 0 that satisfy the
following three: 1) λY1 + λY2 < κY ; 2) λZ1 + λZ2 < κZ ; and
3) κY + κZ < 1. (This is possible because of (147).) By
Remark 9 and Lemma 21 there must exist some η′

0 ∈ N so
that, for every blocklength n ≥ η′

0, every size-exp(exp(n RY ))
set MY of possible ID messages for Receiver Y , and every
size-exp(exp(n RZ )) set MZ of possible ID messages for
Receiver Z , the following conditions are necessary for a
collection of tuples

{
QmY ,mZ ,DmY ,DmZ

}
(mY ,mZ )∈MY×MZ

to be an
(
n,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the BC

W (y, z|x): the mixture PMFs on X n

QmY = 1

|MZ |
∑

mZ∈MZ

QmY ,mZ , mY ∈ MY , (157a)

QmZ = 1

|MY |
∑

mY∈MY

QmY ,mZ , mZ ∈ MZ , (157b)

Q = 1

|MY | |MZ |
∑

(mY ,mZ )∈MY×MZ

QmY ,mZ (157c)

satisfy

Q
(

Xn ∈ {
x ∈ X n : I (Px, WY ) > RY − ε

})

= 1

|MY |
∑

mY∈MY

QmY

(
Xn ∈ {

x ∈ X n :

I (Px, WY ) > RY − ε
})

(158)

> 1 − κY − exp
{
en(RY−ε/2)

}
/ exp

{
enRY }

(159)

and

Q
(

Xn ∈ {
x ∈ X n : I (Px, WZ ) > RZ − ε

})

= 1

|MZ |
∑

mZ∈MZ

QmZ

(
Xn ∈ {

x ∈ X n :

I (Px, WZ ) > RZ − ε
})

(160)

> 1 − κZ − exp
{
en(RZ−ε/2)

}
/ exp

{
enRZ

}
. (161)

The Union-of-Events bound, (159), and (161) imply that

Q
(

Xn ∈ {
x ∈ X n : I (Px, WY ) > RY − ε,

I (Px, WZ ) > RZ − ε
})

> 1 − κY − κZ − exp
{
en(RY−ε/2)

}
/ exp

{
enRY

}

− exp
{
en(RZ−ε/2)

}
/ exp

{
enRZ }

. (162)

Now let η0 be the smallest integer n ≥ η′
0 for which the RHS

of (162) is positive (such an n must exist, because ε > 0
and κY + κZ < 1). Then, for every blocklength n ≥ η0 a
necessary condition for (162) to hold is that for some PMF P
on X (148) holds, and hence Claim 15 follows. �

IV. EXTENSIONS

This section discusses two extensions: identification via the
BC with more than two receivers (Section IV-A) and identi-
fication via the BC with a common message (Section IV-B).
Identification via the BC with one-sided feedback is discussed
in [8, Sec. 2.5.3].

A. More Than Two Receivers

In this section we study identification via the BC with more
than two receivers. As we shall see, it is easy to adapt the
converse of Theorem 10 to this more general scenario, but in
the direct part difficulties already arise when the number of
receivers increases from two to three. To keep the exposition
simple, we shall thus focus on the three-receiver BC. We inner-
bound its ID capacity region and show that the bound is in
some cases tight.

Consider a three-receiver BC of transition law
W (y1, y2, y3|x), and for every k ∈ {1, 2, 3} let Yk denote the
support of the channel output at Receiver k and Wk(yk |x)
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the marginal channel to Receiver k. We begin with the
basic definitions of an average-error ID code for the BC
W (y1, y2, y3|x):

Definition 22: Fix finite sets M1, M2, and M3, a block-
length n ∈ N, and positive constants

λ
(k)
1 , λ

(k)
2 , k ∈ {1, 2, 3}.

Associate with every ID message-triple (m1, m2, m3) ∈ M1 ×
M2×M3 a PMF Qm1,m2,m3 on X n, and for each k ∈ {1, 2, 3}
associate with every mk ∈ Mk an ID set Dmk ⊂ Yn

k . Define
the mixture PMFs on X n

Qm1 = 1

|M2| |M3|
∑

m2,m3

Qm1,m2,m3 , m1 ∈ M1, (163a)

Qm2 = 1

|M1| |M3|
∑

m1,m3

Qm1,m2,m3, m2 ∈ M2, (163b)

Qm3 = 1

|M1| |M2|
∑

m1,m2

Qm1,m2,m3 , m3 ∈ M3. (163c)

The collection of tuples
{

Qm1,m2,m3,Dm1 ,Dm2 ,Dm3

}
(m1,m2,m3)∈M1×M2×M3

is an
(
n, {Mk, λ

(k)
1 , λ

(k)
2 }k∈{1,2,3}

)
ID code for the BC

W (y1, y2, y3|x) if for each k ∈ {1, 2, 3} the collection of
tuples

{
Qmk ,Dmk

}
mk∈Mk

is an
(
n,Mk, λ

(k)
1 , λ

(k)
2

)
ID code

for the marginal channel Wk(yk |x). A rate-triple (R1, R2, R3)

is achievable if for every positive λ
(1)
1 , λ

(1)
2 , λ

(2)
1 , λ

(2)
2 , λ

(3)
1 ,

and λ
(3)
2 and for every sufficiently-large blocklength n there

exists an
(
n, {Mk, λ

(k)
1 , λ

(k)
2 }k∈{1,2,3}

)
ID code for the BC with

⎧
⎪⎨

⎪⎩

1
n log log |Mk| ≥ Rk if Rk > 0,

k ∈ {1, 2, 3}.
|Mk| = 1 if Rk = 0,

The ID capacity region C3 of the three-receiver BC is the
closure of the set of all achievable rate-triples.

Our next result is an outer bound on the ID capacity region
of the three-receiver BC:

Theorem 23: The ID capacity region C3 of the BC
W (y1, y2, y3|x) is contained in the set R3-ob of all rate-triples
(R1, R2, R3) ∈ (R+

0 )3 that for some PMF P on X satisfy

Rk ≤ I (P, Wk ), ∀ k ∈ {1, 2, 3}. (164)
Proof: The proof follows along the line of argument in

Section III-B. It can be found in [8, Appendix A.4] and in
Section 3 of the supplementary material. �

We can adapt the two-receiver broadcast ID code of
Section III-A to obtain the following inner bound on the ID
capacity region of the three-receiver BC:

Theorem 24: The ID capacity region C3 of the BC
W (y1, y2, y3|x) contains the set R3-ib of all rate-triples
(R1, R2, R3) ∈ (R+

0 )3 that for some PMF P on X satisfy

Rk ≤ min

{

I (P, Wk ),
∑

l∈{1,2,3}\{k}
I (P, Wl )

}

,

∀ k ∈ {1, 2, 3}. (165)

The interior of R3-ib is achieved by codes with deterministic
encoders.

Proof: A proof can be found in [8, Appendix A.5] and in
Section 4 of the supplementary material. �

By comparing Theorems 10 and 24, we see that to adapt
the broadcast ID code of Section III-A to the three-receiver
BC we additionally need the constraints

Rk <
∑

l∈{1,2,3}\{k}
I (P, Wl ), ∀ k ∈ {1, 2, 3}, (166)

which have no counterpart in the two-receiver case. We next
explain where we use (166). To this end we briefly describe
how to extend the random code construction of Section III-A
to the three-receiver BC. Fix a PMF P on X , a blocklength n,
ID rates Rk, k ∈ {1, 2, 3}, expected bin rates R̃k, k ∈ {1, 2, 3},
and a pool rate RP satisfying

Rk < R̃k < min
{

I (P, Wk ), RP
}
, ∀ k ∈ {1, 2, 3}. (167)

Draw enRP n-tuples ∼ Pn independently, index them,
and place them in a pool P . For each receiving terminal
k ∈ {1, 2, 3} associate with each ID message mk ∈ Mk

a Bin Bmk by randomly selecting each indexed element
of the pool for inclusion in Bmk independently with
probability e−n(RP−R̃k). Associate with every ID message-
triple (m1, m2, m3) an n-tuple we call the (m1, m2, m3)-
codeword as follows. If at least one indexed pool-element is
contained in all three bins Bm1 , Bm2 , and Bm3 , then draw
the (m1, m2, m3)-codeword uniformly over the indexed pool-
elements that are contained in all three bins. Otherwise draw
the (m1, m2, m3)-codeword uniformly over the pool. To send
ID message-triple (m1, m2, m3), the encoder transmits the
(m1, m2, m3)-codeword. For each k ∈ Mk the m′

k-focused
party at Terminal k guesses that m′

k was sent if at least one
element of the m′

k-th bin is jointly typical with the channel out-
puts that it observes. Therefore, if the (m1, m2, m3)-codeword
is not an element of Bin Bmk , then the probability that the
mk-focused party at Terminal k erroneously guesses that mk

was not sent is high.
Note that for every ID message-triple (m1, m2, m3) the

expected number of indexed pool-elements that are contained
in all three bins Bm1 , Bm2 , and Bm3 is en(

∑3
k=1 R̃k−2RP )

(= enRP ∏3
k=1 e−n(RP−R̃k )), which is smaller than one unless

2RP ≤
3∑

k=1

R̃k . (168)

Therefore, if (168) does not hold, then with high probability
the (m1, m2, m3)-codeword is not contained in all three bins
Bm1 , Bm2 , and Bm3 , and our scheme will thus fail. This,
combined with (167), implies that the code can be reliable
only if (166) holds. Note that in the two-receiver scenario the
counterpart to (168) is

RP ≤ R̃Y + R̃Z . (169)

Unlike (168) in the three-receiver scenario, (169) in the two-
receiver scenario can be satisfied by choosing RP sufficiently
small and hence without constraining the rate-pair (RY , RZ).
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As the following example shows, the inner bound of Theo-
rem 24 need not be tight:

Example 25: Consider a deterministic BC W (y1, y2, y3|x)
with input X = (X1, X2, X3), where for each k ∈ {1, 2, 3} Xk

is binary, and with output Y = (Y1, Y2, Y3), where

Yk = Xk, k ∈ {1, 2}, (170a)

Y3 = X. (170b)

For this channel the inner bound R3-ib of Theorem 24 eval-
uates to the set of all rate-triples (R1, R2, R3) ∈ (R+

0 )3 that
satisfy

Rk ≤ log 2, ∀ k ∈ {1, 2}, (171a)

R3 ≤ 2 log 2. (171b)

Since the BC is deterministic, the encoder can compute
all outputs from the inputs that it produces, and the ID
capacity region C3 does thus not increase if the encoder
if furnished with perfect feedback. Therefore, Theorem 23
and [18, Corollary 3], which holds under the maximum-
error criterion, imply that C3 is the set of all rate-triples
(R1, R2, R3) ∈ (R+

0 )3 that satisfy

Rk ≤ log 2, ∀ k ∈ {1, 2}, (172a)

R3 ≤ 3 log 2. (172b)

Consequently, R3-ib � C3.
The inner bound of Theorem 24 is in some cases tight, e.g.,

if no receiver is “much more capable” than the other two:
Corollary 26: If the BC W (y1, y2, y3|x) satisfies for every

PMF P on X

2 max
k∈{1,2,3} I (P, Wk ) ≤

∑

l∈{1,2,3}
I (P, Wl ), (173)

then its ID capacity region C3 is the set of all rate-
triples (R1, R2, R3) ∈ (R+

0 )3 that for some PMF P on X
satisfy (164), and every rate-pair in the interior of C3 can be
achieved using ID codes with deterministic encoders.

Proof: This follows from Theorems 23 and 24, because
for such a BC R3-ob = R3-ib. �

B. A Common Message

In this section we consider the two-receiver BC W (y, z|x)
and adapt the coding scheme in Section III-A to solve for
the capacity region of a more general scenario where the
receivers’ ID messages need not be independent but can have
a common part. We thus assume that the ID message intended
for Terminal Y is a tuple comprising a private message and
a common message, and likewise for Terminal Z . We begin
with the basic definitions of an average-error ID code for the
BC W (y, z|x) with a common message:

Definition 27: Fix finite sets M, MY , and MZ , a
blocklength n ∈ N, and positive constants λY1 , λY2 ,

λZ1 , λZ2 . Associate with every ID message-triple
(m, mY , mZ) ∈ M × MY × MZ a PMF Qm,mY ,mZ
on X n, with every (m, mY) ∈ M × MY an ID set

Dm,mY ⊂ Yn, and with every (m, mZ) ∈ M × MZ an ID
set Dm,mZ ⊂ Zn. Define the mixture PMFs on X n

Qm,mY = 1

|MZ |
∑

mZ∈MZ

Qm,mY ,mZ ,

(m, mY) ∈ M × MY , (174a)

Qm,mZ = 1

|MY |
∑

mY∈MY

Qm,mY ,mZ ,

(m, mZ) ∈ M × MZ . (174b)

The collection of tuples
{

Qm,mY ,mZ ,Dm,mY ,Dm,mZ
}
(m,mY ,mZ )∈M×MY×MZ

is an
(
n,M,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the

BC W (y, z|x) with a common message if the following two
requirements are met: 1)

{
Qm,mY ,Dm,mY

}
(m,mY )∈M×MY

is

an
(
n,M × MY , λY1 , λY2

)
ID code for the marginal channel

WY (y|x); and 2)
{

Qm,mZ ,Dm,mZ
}
(m,mZ )∈M×MZ

is an
(
n,M × MZ , λZ1 , λZ2

)
ID code for WZ (z|x). A rate-triple

(R, RY , RZ ) is achievable if for every positive λY1 , λY2 , λZ1 ,
and λZ2 and for every sufficiently-large blocklength n there
exists an

(
n,M,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for

the BC with
{

1
n log log |M| ≥ R if R > 0,

|M| = 1 if R = 0,
{

1
n log log |MY | ≥ RY if RY > 0,

|MY | = 1 if RY = 0,
{

1
n log log |MZ | ≥ RZ if RZ > 0,

|MZ | = 1 if RZ = 0.

The ID capacity region Ccm of the BC with a common
message is the closure of the set of all achievable rate-triples.

We restrict our analysis to positive ID rates RY , RZ ,
because if to some receiver we send only the common mes-
sage, then for the other receiver the imposed average-error
criterion will turn into a maximum-error criterion. Theorem 10
allows for the following generalization:

Theorem 28: The ID capacity region Ccm of the BC
W (y, z|x) with a common message and positive private rates
RY , RZ is the set of all rate-triples (R, RY , RZ ) ∈ (R+

0 )3

that for some PMF P on X satisfy

R, RY ≤ I (P, WY ), (175a)

R, RZ ≤ I (P, WZ ), (175b)

RY , RZ > 0. (175c)

It is achieved by codes with deterministic encoders.
Proof: The proof is similar to that of Theorem 10. It

can be found in [8, Appendix A.6] and in Section 5 of the
supplementary material. �

Comparing Theorems 28 and 10 we see that the common
message appears to come for free at all rates up to
min

{
I (P, WY ), I (P, WZ )

}
. This can be explained as follows.

The ID rate is the iterated logarithm of the number of ID mes-
sages normalized by the blocklength n, and for n sufficiently
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large and for all nonnegative real numbers R1 and R2

exp(exp(n R1)) exp(exp(n R2)) ≈ exp
(
exp

(
n max{R1, R2}

))
.

So far, we assumed that each receiver identifies the common
message and its private message jointly. Next, we assume
that each receiver identifies the common message and its
private message separately. We begin with the basic definitions
of an average-error ID code for the BC W (y, z|x) with
a common message and where each receiver identifies the
common message and its private message separately:

Definition 29: Fix finite sets M, MY , and MZ , a block-
length n ∈ N, and positive constants λY1 , λY2 , λZ1 , λZ2 . Asso-
ciate with every ID message-triple (m, mY , mZ) ∈ M ×
MY × MZ a PMF Qm,mY ,mZ on X n, with every m ∈ M
ID sets DY

m ⊂ Yn and DZ
m ⊂ Zn, with every mY ∈ MY

an ID set DmY ⊂ Yn, and with every mZ ∈ MZ an ID set
DmZ ⊂ Zn. Define the mixture PMFs on X n

Qm = 1

|MY | |MZ |
∑

mY ,mZ
Qm,mY ,mZ , m ∈ M,

QmY = 1

|M| |MZ |
∑

m,mZ
Qm,mY ,mZ , mY ∈ MY ,

QmZ = 1

|M| |MY |
∑

m,mY
Qm,mY ,mZ , mZ ∈ MZ .

The collection of tuples
{

Qm,mY ,mZ ,DY
m ,DmY ,DZ

m ,DmZ
}
(m,mY ,mZ )∈M×MY×MZ

is an
(
n,M,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)
ID code for the

BC W (y, z|x) with a common message and where each
receiver identifies the common message and its private mes-
sage separately if the following four requirements are met:
1)

{
Qm ,DY

m

}
m∈M is an

(
n,M, λY1 , λY2

)
ID code for the

marginal channel WY (y|x); 2)
{

QmY ,DmY
}

mY∈MY is an
(
n,MY , λY1 , λY2

)
ID code for WY (y|x); 3)

{
Qm ,DZ

m

}
m∈M

is an
(
n,M, λZ1 , λZ2

)
ID code for WZ(z|x); and 4){

QmZ ,DmZ
}

mZ∈MZ is an
(
n,MZ , λZ1 , λZ2

)
ID code for

WZ (z|x). A rate-triple (R, RY , RZ ) is achievable if for every
positive λY1 , λY2 , λZ1 , and λZ2 and for every sufficiently-large
blocklength n there exists an

(
n,M,MY ,MZ , λY1 , λY2 , λZ1 , λZ2

)

ID code for the BC with
{

1
n log log |M| ≥ R if R > 0,

|M| = 1 if R = 0,
{

1
n log log |MY | ≥ RY if RY > 0,

|MY | = 1 if RY = 0,
{

1
n log log |MZ | ≥ RZ if RZ > 0,

|MZ | = 1 if RZ = 0.

The ID capacity region Ccm-s of the BC with a common mes-
sage and where each receiver identifies the common message
and its private message separately is the closure of the set of
all achievable rate-triples.

When each receiver identifies the common message and its
private message separately, we can argue similarly as for the
three-receiver BC to obtain the following result:

Theorem 30: The ID capacity region Ccm-s of the BC
W (y, z|x) with a common message and where each receiver
identifies the common message and its private message sepa-
rately is contained in the set of all rate-triples (R, RY , RZ ) ∈
(R+

0 )3 that for some PMF P on X satisfy

R, RY ≤ I (P, WY ), (177a)

R, RZ ≤ I (P, WZ ), (177b)

and it contains the set of all rate-tiples (R, RY , RZ ) ∈ (R+
0 )3

that for some PMF P on X satisfy (177) and

RY ≤ 2I (P, WZ ), (178a)

RZ ≤ 2I (P, WY ). (178b)
Proof: Pretend that the common ID message were

intended for a third receiver whose marginal channel is time-
invariant but can be either WY (y|x) or WZ (z|x). To establish
the outer and inner bound, respectively, we can now argue as
in the proofs of Theorems 23 and 24, which can be found in
[8, Appendices A.4 and A.5] and in Sections 3 and 4 of the
supplementary material. �

V. SUMMARY

We have shown that the ID capacity region of the
two-receiver BC is the set of rate-pairs for which, for
some distribution on the channel input, each receiver’s ID
rate does not exceed the mutual information between the
channel input and the output that it observes (Theorem 10).
The capacity region’s interior is achieved by codes with
deterministic encoders (Remark 12). The results hold under
the average-error criterion, which requires that each receiver
identify the message intended for it reliably in expectation
over the uniform ID message intended for the other receiving
terminal. Previously, identification via the BC was studied
under the maximum-error criterion, which requires that
each receiver identify the message intended for it reliably
irrespective of the realization of the ID message intended
for the other receiving terminal. Both criteria—average- and
maximum-error—consistently extend Ahlswede and Dueck’s
identification-via-channels problem to the broadcast setting.

The average-error criterion is suitable whenever the
receivers’ ID messages are independent and uniform over their
supports. As we have seen, our coding scheme can be adapted
to solve for the capacity region of a more general scenario
where the receivers’ ID messages are not independent but have
a common part (Theorem 28). We also discussed an extension
to the BC with more than two receivers (Theorems 23). In
particular, we obtained the ID capacity region of the three-
receiver BC whenever no receiver is “much more capable”
than the other two (Corollary 26).

The question whether for some BCs the average-error
ID capacity region can be strictly larger than the maximum-
error ID capacity region remains open. We do know that the
ID capacity regions differ when only deterministic encoders
are allowed: under the average-error criterion deterministic
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encoders can achieve every rate-pair in the interior of the ID
capacity region (Remark 12), but under the maximum-error
criterion they cannot achieve any positive ID rates [1].

APPENDIX A
A PROOF OF LEMMA 5

We use the Union-of-Events bound to show that
P
[{Vm}m∈M /∈ Gμ

]
converges to zero. We begin with the

events |Vm | ≤ (1 − δn)enR̃ and |Vm′ | ≥ (1 + δn)enR̃ . For
every ν ∈ M the binary random variables

{
�v∈Vν

}
v∈V are

IID, and

E

[∑

v∈V
�v∈Vν

]

=
∑

v∈V
P[v ∈ Vν] = enR̃ . (179)

Consequently, by the multiplicative Chernoff bounds in
Proposition 1,

P

[
|Vm | ≤ (1 − δn) enR̃

]

= P

[∑

v∈V
�v∈Vm ≤ (1 − δn) enR̃

]

(180)

≤ exp
{−δ2

n enR̃−log 2} (181)

= exp
{−en(R̃−μ)−log 2}, (182)

and

P

[
|Vm′ | ≥ (1 + δn) enR̃

]
≤ exp

{−en(R̃−μ)−log 3}. (183)

As to |Vm,m′ | ≥ en(R̃−μ/2)+log 2, note that for every v ∈ V

�v∈Vm,m′ = �v∈Vm�v∈Vm′ ,

where �v∈Vm and �v∈Vm′ are independent because m �= m′.
Hence, the binary random variables

{
�v∈Vm,m′

}
v∈V are IID of

mean

E

[∑

v∈V
�v∈Vm,m′

]

=
∑

v∈V
P[v ∈ Vm] P[v ∈ Vm′ ] (184)

= en(2R̃−RP ). (185)

Fix some ξ satisfying

RP − R̃ − μ ≤ ξ ≤ RP − R̃ − μ/2, (186)

and let
κn = enξ . (187)

Observe that

P

[
|Vm,m′ | ≥ en(R̃−μ/2)+log 2

]

(a)≤ P

[
|Vm,m′ | ≥ en(2R̃−RP+ξ)+log 2

]
(188)

(b)≤ P

[
|Vm,m′ | ≥ (1 + κn) en(2R̃−RP )

]
(189)

= P

[∑

v∈V
�v∈Vm,m′ ≥ (1 + κn) en(2R̃−RP )

]

(190)

(c)≤ exp
{−κn en(2R̃−RP )−log 3} (191)

(d)≤ exp
{−en(R̃−μ)−log 3}, (192)

where (a) holds because (186) implies that R̃ − RP + ξ ≤
−μ/2; (b) holds by (187) and because (24) implies that
μ < RP − R̃, and hence it follows from (186) that ξ > 0;
(c) follows from the multiplicative Chernoff bound (7) in
Proposition 1; and (d) holds by (187) and because (186)
implies that −μ ≤ R̃ − RP + ξ . The Union-of-Events bound,
(182), (183), and (192) imply that

P
[{Vm}m∈M /∈ Gμ

]

≤ |M|
(

exp
{−en(R̃−μ)−log 2}

+ |M| exp
{−en(R̃−μ)−log 3}

)
(193)

(a)→ 0 (n → ∞), (194)

where (a) holds because |M| = exp(exp(n R)) and by (24).

APPENDIX B
A PROOF OF LEMMA 21

Choose

γ =
(

1 − λ1 + λ2

κ

)

/2, (195)

and note that γ > 0. Pick δ > 0 sufficiently small so that it
satisfies the requirement in Lemma 19 and so that ρ(δ) < ε/2,
where ρ(·) denotes the same function as in Lemma 19, and let
ε′ = ρ(δ). We henceforth assume that n is sufficiently large
so that the following four inequalities hold:

log 2/n ≤ δ, (196a)

(1 + γ /4)
(
1 − e−nδ

)−1 + e−nδ ≤ 1 + γ /2, (196b)
(
λ1 + λ2 + 2e−nδ+log(1+n) |X |)/κ + γ < 1, (196c)

and

exp
{

en(R−ε+ε′)+log(1+n)(1+|X |)+log log |X |

+elog(1+n)(1+|X |)+logδ
}

< exp
{

en(R−ε/2)
}
. (196d)

Let M be some size-exp(exp(n R)) set, and assume that the
collection of tuples {Qm,Dm}m∈M is an (n,M, λ1, λ2) ID
code for the DMC W (y|x). Pick

K =
{

m ∈ M : Qm

(
Xn ∈ {

x ∈ X n : I (Px, W )

≤ R − ε
}) ≥ κ

}

, (197)

and note that {Qm,Dm}m∈K is an (n,K, λ1, λ2) ID code for
the DMC W (y|x). By (196a), (197), and Proposition 18 there
exists a subset S of K with

|S| ≥ |K| exp
{
−elog(1+n)(1+|X |)+logδ

}
(198)

for which we can construct from {Qm,Dm}m∈S a
homogeneous (n,S, λ′

1, λ
′
2) ID code {Q′

m ,Dm}m∈S for
W (y|x) with

λ′
1 = λ1 + e−nδ+log(1+n) |X |, (199a)

λ′
2 = λ2 + e−nδ+log(1+n) |X |, (199b)
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and

Q′
m

(
Xn ∈ {

x ∈ X n : I (Px, W ) ≤ R − ε
}) ≥ κ, m ∈ S.

For every m ∈ S define the PMF on X n

Q′′
m(x) =

⎧
⎪⎨

⎪⎩

Q ′
m(x)

Q ′
m(Xn∈{x′∈X n : I (Px′ ,W )≤R−ε})

if I (Px, W ) ≤ R − ε,

0 otherwise,

x ∈ X n .

Let

λ′′
1 = λ′

1

κ
and λ′′

2 = λ′
2

κ
, (200)

and note that the collection of tuples {Q′′
m ,Dm}m∈S is a

homogeneous (n,S, λ′′
1 , λ′′

2) ID code for W (y|x), because for
every distinct pair m, m′ ∈ S

(Q′′
m W n)(Y n /∈ Dm) ≤ λ′

1

κ
= λ′′

1, (201a)

(Q′′
m W n)(Y n ∈ Dm′) ≤ λ′

2

κ
= λ′′

2 . (201b)

By Lemma 19 there exists some η′
0 ∈ N, which depends

only on |X |, |Y|, δ, and γ , so that for every n ≥ η′
0 we can,

for every n-type P on X n for which

I (P, W ) ≤ R − ε

and for every m ∈ M, approximate the PMF (Q′′
m)(n,P) on

T (n)
P by an en(R−ε+ε′)-type (Q′′′

m )(n,P) on T (n)
P that satisfies

for every subset D of Yn

(
(Q′′′

m )(n,P)W n)
(Y n ∈ D)

≤ (1 + γ /4)(1 − e−nδ)−1((Q′′
m)(n,P)W n)

(Y n ∈ D)

+ e−nδ (202)

≤ (
(Q′′

m)(n,P)W n)
(Y n ∈ D) + γ /2, (203)

where in the second inequality we used (196b). For every
m ∈ S define the PMF

Q′′′
m (x) = Q′′

m

(
T (n)

P

)
(Q′′′

m )(n,P)(x),

P ∈ �(n), x ∈ T (n)
P . (204)

By (203) it holds for every subset D of Yn that

(Q′′′
m W n)(Y n ∈ D)

=
∑

P∈�(n)

Q′′
m

(
T (n)

P

)(
(Q′′′

m )(n,P)W n)
(Y n ∈ D) (205)

≤
∑

P∈�(n)

Q′′
m

(
T (n)

P

)((
(Q′′

m)(n,P)W n)
(Y n ∈ D) + γ /2

)

(206)

= (Q′′
m W n)(Y n ∈ D) + γ /2. (207)

Let

λ′′′
1 = λ′′

1 + γ

2
and λ′′′

2 = λ′′
2 + γ

2
. (208)

By (207) and because {Q′′
m ,Dm}m∈S is a homogeneous

(n,S, λ′′
1 , λ′′

2) ID code for W (y|x), the collection of
tuples {Q′′′

m ,Dm}m∈S is a homogeneous en(R−ε+ε′)-regular

(n,S, λ′′′
1 , λ′′′

2 ) ID code for W (y|x), and by (196c), (199),
and (200)

λ′′′
1 + λ′′′

2 < 1. (209)

Consequently, Proposition 20 implies that

log |S| ≤ n(1 + n)|X |en(R−ε+ε′) log |X |, (210)

and by (198)

|K| ≤ exp
{
en(R−ε+ε′)+log(1+n)(1+|X |)+log log |X |

+ elog(1+n)(1+|X |)+log δ
}

(211)

< exp
{
en(R−ε/2)

}
, (212)

where in the second inequality we used (196d). We are now
ready to conclude the proof:

1

|M|
∑

m∈M
Qm

(
Xn ∈ {

x ∈ X n : I (Px, W ) > R − ε
})

(a)
> (1 − κ)

|M| − |K|
|M| (213)

(b)
> 1 − κ − exp

{
en(R−ε/2)

}
/ exp

{
enR}

, n ≥ η0, (214)

where (a) holds by (197); and (b) holds by (212) when we
choose η0 to be the smallest integer no smaller than η′

0 that
satisfies (196).
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