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Abstract— The secrecy of a distributed-storage system for
passwords is studied. The encoder, Alice, observes a length-n
password and describes it using two hints, which she stores in
different locations. The legitimate receiver, Bob, observes both
hints and the eavesdropper, Eve, only one. In one scenario—
the “guessing version”—we require that the expected number
of guesses it takes Bob to guess the password approach one as
n tends to infinity, and in the second—the “listsize version”—
that the expected size of the shortest list that Bob must form to
guarantee that it contain the password approach one. Assuming
that Alice cannot control which hint Eve observes, the largest
normalized (by n) exponent that can be guaranteed for the
expected number of guesses it takes Eve to guess the password is
characterized for each scenario. Key to the proof are new results
on Massey–Arikan guessing, Bunte–Lapidoth task-encoding, and
the close relation between them. A generalization that allows for
Alice to produce δ (not necessarily two) hints, for Bob to observe
ν (not necessarily two) of the hints, and for Eve to observe η
(not necessarily one) of the hints is also discussed. This models
scenarios where hints are stored on fail-prone disks.

Index Terms— Secure storage, distributed storage, Rényi
entropy, guessing, task-encoding.

I. INTRODUCTION

SUPPOSE that some sensitive information X (e.g., a secret
task or a password)1 is drawn from a finite set X

according to some probability mass function (PMF) PX .
A (stochastic) encoder, Alice, maps (possibly using random-
ization) X to two hints M1 and M2 and stores them on different
storage systems (e.g., on two disks in two different locations).
The hints are intended for a legitimate receiver, Bob, who
knows where they are stored and sees both. An eavesdropper,
Eve, sees one of the hints but not both; we do not know
which. We adopt a conservative approach to the question
of which hint is revealed to Eve and assume that, after
observing X , an adversarial “genie” reveals to Eve the hint that
minimizes her ambiguity. Not allowing the genie to observe X
would lead to a weaker form of secrecy (Example 18).
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1Though password is just an example of a sensitive information, secure

management of passwords as some publications suggest, may be far from
trivial, see e.g. [1], [2].

Given some notion of ambiguity, we would ideally like Bob’s
ambiguity about X to be small and Eve’s large. Here we
study the security gain from the distribution of the sensitive
information to two hints in terms of this ambiguity.

There are several ways to define ambiguity. One approach
is to require that Bob be able to reconstruct X whenever X
is “typical” and that the conditional entropy of X given Eve’s
observation be large. Such an approach might be unsuitable in
some scenarios. First, it may not properly address Bob’s needs
when X is “atypical.” For example, if Bob must guess X ,
this approach does not guarantee that the expected number
of guesses be small: It only guarantees that the probability
of success after one guess be large. It does not indicate the
number of guesses that Bob might need when X is atypical.
Second, conditional entropy need not be an adequate measure
of Eve’s ambiguity. For example, if X is some password that
Eve wishes to uncover, then we may care more about the
number of guesses that Eve needs to uncover X than about its
conditional entropy [3].

In this paper, we assume that Eve wants to guess X with
the minimal number of guesses of the form “Is X = x?”.
We quantify Eve’s ambiguity about X by the expected number
of guesses she needs to uncover X . In this sense, Eve faces
an instance of the Massey–Arikan guessing problem [4], [5]:
When faced with the problem of guessing X after observing
that Z = z, where Z denotes her observation, Eve must come
up with a guessing order for the elements of X . Such an
order can be specified using a “guessing function”—a bijective
function G(·|z) from X onto the set

�
1, . . . , |X |�—with

the understanding that if Eve observes z, then the question
“Is X = x?” will be her G(x |z)-th question. Eve’s expected
number of guesses is then E

�
G(X |Z)

�
. This expectation is

minimized if for each z ∈ Z the guessing function G(·|z)
orders the elements of X in decreasing order of their posterior
probabilities given Z = z.

As to Bob, we will consider two different criteria: In the
“guessing version” the criterion is the expected number of
guesses it takes Bob to guess X , and in the “list version” the
criterion is the expected size of the list that Bob must form to
guarantee that it contain X .

The former criterion is natural when Bob can check whether
a guess is correct: If X is some password, then Bob can stop
guessing as soon as he has gained access to the account that
is secured by X . The latter criterion is appropriate if Bob does
not know whether a guess is correct. For example, if X is a
task that Bob must perform, then the only way for Bob to
make sure that he performs X is to perform all the tasks in
the list LM1,M2 comprising the tasks having positive posterior
probability given his observation. In this scenario, a good
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measure for Bob’s ambiguity about X is the expected number
of tasks that he must perform, i.e., E

�|LM1,M2 |
�
, and this will

be small whenever Alice is a good task-encoder for Bob [6].2

Alternatively, the list-size criterion can also be viewed as a
worst-case version of the guessing criterion: Even if Bob is
incognizant of the PMF of X , the number of guesses he needs
to guess X cannot exceed the size of the smallest list that is
guaranteed to contain X .

The guessing and the list-size criterion for Bob lead to
similar results in the following sense: Every guessing function
G(·|M1, M2) for X that guesses the elements of X of zero
posterior probability only after those of positive posterior
probabilities satisfies E

�
G(X |M1, M2)

� ≤ E
�|LM1,M2 |

�
. Con-

versely, one can prove that every pair of ambiguities for Bob
and Eve that is achievable in the guessing version is—up to
polylogarithmic factors of |X |—also achievable in the list
version (Remark 17). These polylogarithmic factors wash out
in the asymptotic regime where the sensitive information is an
n-tuple and n tends to infinity.

Things are different for Eve: Applying the list-size criterion
for Eve would lead to results that differ markedly from those
that apply under the guessing criterion; see Theorem 19 and
the subsequent discussion.

To derive our results, we establish new results on guess-
ing and task-encoding: We relate task-encoders to guessing
functions (Theorem 8), and we quantify how additional side
information can help guessing (Lemma 5). These results may
be of interest in their own right. For example, the former
result leads to alternative proofs of Bunte and Lapidoth’s
asymptotic task-encoding results [6, Theorems I.2 and VI.2] as
well as the direct part of [10, Theorem I.1], which states that,
in the presence of feedback, the listsize capacity of a discrete-
memoryless channel (DMC) with positive zero-error capacity
equals the cutoff rate with feedback (which is in fact equal to
that without feedback [10, Corollary I.4]). The latter result on
how additional side information can help guessing is related
to [11]: To quantify how additional side information can help
guessing, we establish how an encoder must describe X to
minimize the expected number of guesses that a decoder needs
to guess X . The list-size analog is Lapidoth and Pfister’s
optimal task-encoder [11], which describes X to minimize the
expected size of the decoder’s list. Despite the close relation
between task-encoding and guessing, an optimal encoder for a
guessing decoder is typically quite different from an optimal
task-encoder.

We also generalize our problem in two different directions.
The first, along the lines of [6], [12], is a rate-distortion
version of the model in which Bob and Eve are content with
reconstructing the sensitive information to within some given
allowed distortion. This generalization is presented in [13],
where we also extend the results on guessing and task-
encoding of Section III accordingly. The second considers the
case in which Alice produces δ s-bit hints, Bob sees ν ≤ δ
hints, and Eve sees η < ν hints (not necessarily a subset of

2The connection between the Massey–Arikan guessing problem and the
task-encoding problem is studied in [7]. There it is clarified why the answers
are so similar. However, as noted in [8] and [9], the problems have completely
different answers in the distributed setting.

those that Bob sees). This may model a scenario in which the
hints are stored on different disks and we want to guarantee
robustness against the failure of δ − ν disks and the compro-
mise of η disks. We adopt again a conservative approach and
assume that, after observing X , an adversarial genie reveals
to Bob the ν hints that maximize his ambiguity and to Eve
the η hints that minimize her ambiguity. This guarantees
that—no matter which disks fail—the model be robust against
the failure of δ − ν disks and the compromise of η disks.
The generalized problem models a distributed-storage system,
which is static in that failed disks are not replaced.

The case where X is drawn uniformly, Bob must recon-
struct X , and Eve’s observation must satisfy some information-
theoretic security criterion (e.g., that the mutual information
between Eve’s observation and X must be null) corresponds
to the erasure-erasure wiretap channel studied in [14] and
is a special case of the wiretap networks in [15], [16].
In the literature, this setting is also known as “secret shar-
ing.” In traditional secret sharing, each set of hints either
reveals X or reveals no information about X [17], [18]. More
general are ramp schemes, in which any ν hints reveal X
and the amount of information that fewer-than-ν hints reveal
is controlled (see e.g. [19]). Our setting is different in that
we assume X ∼ PX and in that, using some notion of
ambiguity, we quantify how difficult it is for Bob and Eve
to reconstruct X .

To better bring out the role of Rényi entropy, we generalize
the models and replace expectations with ρ-th moments. (The
generalization comes with no extra effort.) For an arbitrary
ρ > 0, we thus study the ρ-th (instead of the first) moment of
the list-size and of the number of guesses. Moreover, we shall
allow some side information Y that is available to all parties.

The connection between Rényi entropy and the asymptotics
of the ρ-th moment of the minimal number of guesses has
been studied extensively in the literature [5], [12], [20]–[25].
These moments are related to the moment-generating function
of the logarithm of the minimal number of required guesses,
and one would therefore expect that they be related to the
large-deviations behavior of this logarithm. Since the Rényi
entropy is only related to the asymptotics of these moments,
establishing the large-deviations behavior requires some work.
This program was carried out in [23], where, subject to some
technical assumptions, the large-deviations principle for the
guessing problem was established. This large-deviation result
suggests asymptotic approximations for the tail behavior of
the logarithm of the number of guesses.

Carrying out this program for our problem is tricky. The
large-deviations result of [23] hinges on the guessing being
performed in decreasing order of probabilities. It is not clear
what is the “canonical” scheme one would wish to analyze
for our setting. (For task-encoding the optimal scheme was
described in [11], and for guessing with side information it
is described in Figure 1 ahead.) Moreover, the conservative
ambiguity measure that we adopt for Eve (54) allows the
hint that is revealed to Eve to depend on the realization
of X . This ambiguity measure is therefore not a simple
ρ-th moment. As such it does not translate to the moment-
generating function of a quantity that is natural to the problem.
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The idea to quantify Eve’s ambiguity by the ρ-th moment
of the number of guesses she needs to uncover X is due to
Merhav and Arikan, who studied the Shannon cipher system
with a guessing wiretapper [3]. Their approach was later
adopted in [26], [27]. The current setting differs from the ones
in [3], [26], [27] in the following sense: Instead of mapping X
to a public message using a secret key, which is available to
Bob but not to Eve, here Alice produces two hints and stores
them so that Bob sees both but Eve sees only one. Moreover,
unlike [3], [26], [27] we do not measure Bob’s ambiguity in
terms of the probability that X is not his first guess.

The rest of this paper is structured as follows. Section II
briefly describes our notation and summarizes some notions
and results pertaining to the guessing problem and the problem
of encoding tasks. In Section III, we quantify how additional
side information can help guessing and relate task-encoders to
guessing functions, thereby establishing the prerequisites for
the proofs of our main results. Section IV contains the problem
statement and the main results (both finite-blocklength and
asymptotic). The results are discussed in Section V and proved
in Section VI. Section VII generalizes the model to allow for
a limited number of disk failures. Section VIII concludes the
paper.

II. NOTATION AND PRELIMINARIES

In this paper (X, Y ) is a pair of chance variables that is
drawn from the finite set X × Y according to the PMF PX,Y ,
and ρ > 0 is fixed. We denote by PX the marginal PMF of X
and by PY the marginal PMF of Y , e.g.,

PX (x) =
�
y∈Y

PX,Y (x, y), ∀ x ∈ X . (1)

For every positive integer n ∈ N we denote by Pn
X,Y the n-fold

product of PX,Y , i.e.,

Pn
X,Y (x, y) =

n�
i=1

PX,Y (xi , yi ), ∀ (x, y) ∈ X n × Yn . (2)

A generic probability measure on a measurable space (�,F)
is denoted P, i.e., whenever we introduce a set of chance
variables (e.g., X and Y ), we denote by P the probability
measure associated with the probability space (�,F , P) on
which the chance variables live.

We denote the set of positive integers N, the integers Z, and
the reals R. The nonnegative reals are denoted R

+
0 . Addition

modulo k (for k ∈ N) is denoted ⊕k : If α and β are integers,
then α⊕k β is the unique element γ ∈ {0, . . . , k−1} satisfying

γ ≡ α + β mod k. (3)

We denote the Galois field with q elements by Fq . By default
log(·) denotes base-2 logarithm, and ln(·) denotes natural
logarithm. We denote by α ∨ β the maximum of two real
numbers α and β and by α∧β their minimum. For any α ∈ R,
we use [α]+ for the maximum of α and zero,

[α]+ = α ∨ 0 (4)


α� for the smallest integer that is at least as large as α,
and �α
 for the largest integer that is at most as large as α.
We sometimes use the identity


ξ�ρ < 1 + 2ρξρ, ξ ∈ R
+
0 (5)

which can be verified by considering the cases 0 ≤ ξ ≤ 1 and
ξ > 1 separately [6].

A. The Conditional Rényi Entropy
To describe our results, we shall need the conditional

version of Rényi entropy (originally proposed by Arimoto [28]
and also studied in [6], [29])

Hα(X |Y ) = α

1 − α
log
�
y∈Y

��
x∈X

PX,Y (x, y)α
	1/α

(6)

where α ∈ [0,∞] is the order and where the cases where
α is 0, 1, or ∞ are treated by a limiting argument. Let
{(Xi , Yi )}i∈N be a discrete-time stochastic process with finite
alphabet X × Y . Whenever the limit as n tends to infinity
of Hα(Xn |Y n)/n exists, we denote it by Hα(X|Y) and call
it conditional Rényi entropy-rate. In this paper α will equal
1/(1 + ρ), and thus, since ρ > 0, will take values in the
set (0, 1). To simplify notation, we henceforth write ρ̃ for
1/(1 + ρ)

ρ̃ � 1

1 + ρ
. (7)

The conditional Rényi entropy satisfies the following prop-
erties (see, e.g. [29, Theorem 2]).

Lemma 1: Let (X, Y, Z) be a triple of chance variables
taking values in the finite set X × Y × Z according to the
joint PMF PX,Y,Z . For every α ∈ [0,∞]

Hα(X |Y ) ≤ Hα(X, Z |Y ). (8)

Lemma 2 ( [29, Theorem 3]): Let (X, Y, Z) be a triple of
chance variables taking values in the finite set X × Y × Z
according to the joint PMF PX,Y,Z . For every α ∈ [0,∞]

Hα(X |Y, Z) ≥ Hα(X, Z |Y ) − log |Z|. (9)

B. Optimal Guessing Functions and Task-Encoders
Suppose we want to guess X with guesses of the form

“Is X = x?”. Following the notation of [5], we call a
bijection G : X → �

1, . . . , |X |� a guessing function for X .
The guessing function determines the guessing order: If we
use G(·) to guess X , then the question “Is X = x?” will
be our G(x)-th question. With a slight abuse of the term
“function,” we call G(·|Y ) a guessing function for X given
Y if the mapping G(·|y) : X → �

1, . . . , |X |� is for every
y ∈ Y a guessing function for X . If we use G(·|Y ) to guess
X from the observation Y and observe that Y = y, then the
question “Is X = x?” will be our G(x |y)-th question.

In the following we shall consider guessing functions for X
given Y . Since every guessing function for X can be viewed
as a guessing function for X given Y for the case where Y is
null, the results also apply to guessing functions for X .
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The performance of a guessing function is studied in terms
of the ρ-th moment of the number of guesses that we need to
guess X when we use that function. That is, the expectation
E
�
G(X |Y )ρ

�
is the performance of G(·|Y ). We can use

Arikan’s results on guessing [5] (see also subsequent work
in [23], [24]) to bound the performance of optimal guessing
functions.

Theorem 3 (On the Performance of Optimal Guessing
Functions [5, Theorem 1 and Proposition 4]): There exists
some guessing function G(·|Y ) for which

E
�
G(X |Y )ρ

� ≤ 2ρHρ̃ (X |Y ). (10)

Conversely, for every guessing function G(·|Y )

E
�
G(X |Y )ρ

� ≥ 
1 + ln |X |�−ρ2ρHρ̃ (X |Y ) ∨ 1. (11)

For task-encoders we adopt the terminology of [6]. Given
some finite set of descriptions Z , we call a mapping f : X →
Z a task-encoder for X . We associate every task-encoder with
a decoder of the form

f −1 : Z → 2X

z �→ �
x ∈ X : PX (x) > 0 and f (x) = z

�
. (12)

If the encoder describes X by Z � f (X), then the list
LZ � f −1(Z) produced by the decoder is the list containing
all the realizations of X of positive a priori probability that
the encoder could have described by Z . (This is the shortest
list that is almost-surely guaranteed to contain X given its
description Z .)

Consider now the scenario where some side information
Y is revealed to the encoder and decoder [6, Section VI].
In this scenario we call f (·|Y ) a task-encoder for X given Y
if the mapping f (·|y) : X → Z is for every y ∈ Y a task-
encoder for X . We associate every task-encoder with a decoder
f −1(·|Y ) satisfying for every y ∈ Y that f −1(·|y) is of the
form (12), i.e., that

f −1(·|y) : Z → 2X

z �→ �
x ∈ X : PX |Y (x |y) > 0 and f (x |y) = z

�
.

(13)

If, upon observing Y , the encoder describes X by Z �
f (X |Y ), then the list LY

Z � f −1(Z |Y ) produced by the
decoder is the list containing all the realizations of X that—
given the side information Y —have a positive posterior prob-
ability under PX |Y and that the encoder could have described
by Z .

In the following we shall consider task-encoders for X
given Y . Since every task-encoder for X can be viewed as
a task-encoder for X given Y for the case where Y is null,
the results also apply to task-encoders for X .

We shall also need the notion of a stochastic task-encoder.
Such an encoder associates with every possible realization
(x, y) ∈ X × Y of the pair (X, Y ) a PMF on Z and, upon
observing the side information y, describes x by drawing Z
from Z according to the PMF associated with (x, y). The
conditional probability that Z = z given (X, Y ) = (x, y) is
thus determined by the stochastic encoder, and we denote it by

P[Z = z|X = x, Y = y], (x, y, z) ∈ X × Y × Z. (14)

Based on (Y, Z) the decoder associated with the encoder (14)
produces the smallest list LY

Z that is guaranteed to contain X ,
i.e., if (Y, Z) = (y, z), then the decoder produces the list

Ly
z = �x ∈ X : P[X = x |Y = y, Z = z] > 0

�
,

(y, z) ∈ Y × Z (15)

of all the possible realizations x ∈ X of X of positive posterior
probability

P[X = x |Y = y, Z = z]
= PX,Y (x, y) P[Z = z|X = x, Y = y]�

x̃∈X PX,Y (x̃, y) P[Z = z|X = x̃, Y = y] . (16)

We assess the performance of a task-encoder in terms of the
ρ-th moment E

�|LY
Z |ρ� of the size of the list that the associated

decoder must form. As we argue shortly, deterministic task-
encoders are optimal in the sense that for every stochastic
task-encoder there exists a deterministic task-encoder that
performs at least as well. Therefore, we can use Bunte and
Lapidoth’s results on deterministic task-encoders [6] to bound
the performance of optimal stochastic task-encoders.

Theorem 4 (On the Performance of the Optimal Task-
Encoders [6, Theorem VI.1]): Let Z be a finite set. If |Z| >
log |X | + 2, then there exists a deterministic task-encoder
f (·|Y ) for which

E


��LY
Z

��ρ� = E


�� f −1
 f (X |Y )
��Y ���ρ� (17)

< 1 + 2ρ(Hρ̃ (X |Y )−log(|Z|−log |X |−2)+2). (18)

Conversely, given any stochastic task-encoder (14), the asso-
ciated decoding lists {Ly

z } (15) satisfy

E


��LY
Z

��ρ� ≥ 2ρ(Hρ̃ (X |Y )−log |Z|) ∨ 1. (19)

We conclude this section by showing that for every sto-
chastic task-encoder there exists a deterministic task-encoder
that performs at least as well. Given a stochastic task-encoder
(14) with associated decoding lists (15), we can construct a
deterministic task-encoder f (·|Y ) as follows. If (x, y) ∈ X×Y
satisfies PX |Y (x |y) > 0, then we choose f (x |y) as one that—
among all elements of {z ∈ Z : x ∈ Ly

z }—minimizes |Ly
z |, so

f (x |y) ∈ argmin
z∈Z : x∈Ly

z

|Ly
z |. (20)

Otherwise, we choose f (x |y) to be an arbitrary element of Z .
It then follows from (13) that the deterministic task-encoder
performs at least as well as the stochastic task-encoder:

E


��LY
Z

��ρ�
=

�
(x,y)∈X×Y

�
z∈Z

PX,Y (x, y) P[Z = z|X = x, Y = y]|Ly
z |ρ

(21)

≥
�

(x,y)∈X×Y :
PX,Y (x,y)>0

�
z∈Z

PX,Y (x, y) P[Z = z|X = x, Y = y]

· min
z�∈Z : x∈Ly

z�
|Ly

z� |ρ (22)

=
�

(x,y)∈X×Y :
PX,Y (x,y)>0

PX,Y (x, y) min
z�∈Z : x∈Ly

z�
|Ly

z� |ρ (23)
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=
�

(x,y)∈X×Y
PX,Y (x, y)

��Ly
f (x |y)

��ρ (24)

(a)≥
�

(x,y)∈X×Y
PX,Y (x, y)

�� f −1
 f (x |y)
��y���ρ (25)

= E


�� f −1
 f (X |Y )
��Y ���ρ� (26)

where (a) holds because (13) and (20) imply that
f −1



f (x |y)|y� ⊆ Ly
f (x |y).

III. LISTS AND GUESSES

In this section we relate task-encoders to guessing func-
tions and explain why the performance guarantees for
optimal guessing functions (Theorem 3) and task-encoders
(Theorem 4) are remarkably similar. Moreover, we quantify
how additional side information can help guessing. We shall
need these results to characterize the secrecy of the distributed-
storage systems we study in the present paper, but they may
also be of independent interest.

We start by quantifying how some additional information
Z (e.g., some description produced by an encoder) can help
guessing. As the following lemma shows, Z can reduce the
ρ-th moment of the number of guesses by at most a factor
of
��Z−ρ

��.
Lemma 5 [7]: Given a finite set Z , draw Z from Z

according to some conditional PMF PZ |X,Y , so (X, Y, Z) ∼
PX,Y · PZ |X,Y . For optimal guessing functions G�(·|Y, Z) and
G�(·|Y ) (which minimize E

�
G(X |Y, Z)ρ

�
and E

�
G(X |Y )ρ

�
,

respectively)

E
�
G�(X |Y, Z)ρ

� ≥ E


�
G�(X |Y )/ |Z|�ρ�. (27)

Equality holds whenever Z = f (X, Y ) for some mapping
f : X × Y → Z for which f (x, y) = f (x̃, y) for x �=
x̃ implies that

�
G�(x |y)/|Z|� �= �

G�(x̃ |y)/|Z|�. Such a
mapping always exists, because for all � ∈ N at most |Z|
different x ∈ X satisfy

�
G�(x |y)/|Z|� = �.

One can infer from Lemma 5 how to construct an
optimal encoder f : X × Y → Z for a guessing
decoder, i.e., an encoder Z = f (X, Y ) that achieves
minG (·|Y,Z) E

�
G(X |Y, Z)ρ

�
among all the possible descrip-

tions Z that are drawn from Z according to some conditional
PMF PZ |X,Y . To that end recall that a guessing function
G(·|Y ) is optimal, i.e., minimizes E

�
G(X |Y )ρ

�
, if, and only if,

for every y ∈ Y G(·|y) orders the possible realizations of
X in decreasing order of their posterior probabilities given
Y = y. An optimal encoder f : X × Y → Z for a guessing
decoder can be constructed as follows: For every y ∈ Y we
first order the possible realizations of X in decreasing order
of PX,Y (x, y) or, equivalently, in decreasing order of their
posterior probabilities given Y = y, and we let x y

j denote the
j -th element. (Ties are resolved at will.) We then choose some
mapping f : X × Y → Z for which f (x y

j , y) = f (x y
j �, y)

implies either
�

j/|Z|� �= � j �/|Z|� or j = j �, e.g., by indexing
the elements of Z by the elements of

�
0, . . . , |Z| − 1

�
and choosing f (x y

j , y) as the element of Z indexed by the
remainder of the Euclidean division of j − 1 by |Z| (see
Figure 1).

Fig. 1. How to construct an optimal encoder f : X ×Y → Z for a guessing
decoder when Z = {�, •,�}. Light background tones indicate small values of
P(·|y) or G�(·|y).

Lemma 5 and (5) imply the following corollary.
Corollary 6: Given a finite set Z , there exists some map-

ping f : X × Y → Z such that

min
G (·|Y,Z)

E
�
G(X |Y, Z)ρ

�
< 1 + 2ρ |Z|−ρ min

G (·|Y )
E
�
G(X |Y )ρ

�
(28)

where Z denotes f (X, Y ). Conversely, for every chance vari-
able Z that takes values in Z

min
G (·|Y,Z)

E
�
G(X |Y, Z)ρ

� ≥ |Z|−ρ min
G (·|Y )

E
�
G(X |Y )ρ

� ∨ 1.

(29)

From Corollary 6 and Theorem 3, which characterizes the
performance of optimal guessing functions G(·|Y ), we obtain
the following upper and lower bounds on the smallest ambi-
guity minG (·|Y,Z) E

�
G(X |Y, Z)ρ

�
that is achievable for a

given |Z|. The bounds are tight up to polylogarithmic factors
of |X |.

Corollary 7: Given a finite set Z , there exists some map-
ping f : X × Y → Z for which

min
G (·|Y,Z)

E
�
G(X |Y, Z)ρ

�
< 1 + 2ρ(Hρ̃ (X |Y )−log |Z|+1) (30)

where Z denotes f (X, Y ). Conversely, for every chance vari-
able Z that takes values in Z

min
G (·|Y,Z)

E
�
G(X |Y, Z)ρ

�
≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log|Z|) ∨ 1. (31)

Note that (31) also follows from (11) in Theorem 3 and the
properties of conditional Rényi entropy in Lemmas 1 and 2.

The performance guarantees for optimal guessing functions
(Theorem 3 and Corollary 7) and task-encoders (Theorem 4)
are remarkably similar. Some intuition for this is provided
in [7] where it is shown that a “good” guessing function
“induces” a “good” task-encoder and vice versa.3 This result
is stated formally in the following theorem.

Theorem 8 [7]: Let Z be a finite set.

3We call a guessing function or task-encoder “good” if its performance is
nearly optimal, and “induce” means here that—without knowing the PMF
PX,Y —we can construct from a guessing function a task-encoder and vice
versa.
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1) Given any stochastic task-encoder (14), the associated
decoding lists {Ly

z } (15) induce a guessing function
G(·|Y ) that satisfies

E
�
G(X |Y )ρ

� ≤ |Z|ρ E


��LY
Z

��ρ�. (32)

2) Every guessing function G(·|Y ) and every positive inte-
ger ω satisfying

ω ≤ |X | and |Z| ≥ ω

�
1 +

�
log
�|X | /ω��	 (33)

induce a deterministic task-encoder4 whose associated
decoding lists {Ly

z } (15) satisfy

E


��LY
Z

��ρ� ≤ E


�
G(X |Y )/ω

�ρ�
. (34)

It is noted that the first part of Theorem 8 implies that if one
is provided with an optimal task encoder (which is character-
ized by the decoding lists LY

Z ), then the proof in [7] derives a
guessing function from the task encoder that is asymptotically
optimal (“good”). Similarly, due to the second part, if one is
provided with an optimal guessing function, one can construct
a task-encoder that is asymptotically optimal. To better under-
stand the second part of Theorem 8, we briefly discuss the
construction of a deterministic task-encoder from an optimal
guessing function G�(·|Y ) (which minimizes E

�
G(X |Y )ρ

�
).

If G�(·|Y ) is an optimal guessing function, then the two-
step construction in the proof of Theorem 8 can be alterna-
tively described as follows: We construct a task-encoder that
describes X by

Z = (O, S) (35)

where O takes values in some set O of size ω, where

1 ≤ ω ≤ |X |, (36)

and S takes values in some set S of size

1 +
�

log
�|X |/ω�� ≤ 1 + log |X |. (37)

(Note that the description Z assumes at most |O| |S| different
values, and by (33) |O| |S| ≤ |Z|.) In the first step of the
construction, we choose the first part of the description, O.
We choose O as one that—among all O’s that are drawn from
O according to some conditional PMF PO|X,Y —minimizes
minG (·|Y,O) E

�
G(X |Y, O)ρ

�
. From Lemma 5 (and the subse-

quent paragraph) we already know how to construct O. Indeed,
from Lemma 5 it follows that

min
G (·|Y,O)

E
�
G(X |Y, O)ρ

� ≥ E


�
G�(X |Y )/ |O|�ρ� (38)

where equality is achieved by choosing O = f1(X, Y ) for
some mapping f1 : X×Y → O for which f1(x, y) = f1(x̃, y)
implies either

�
G�(x |y)/|O|� �= �G�(x̃ |y)/|O|� or x = x̃ . For

example, in the case where O = {0, . . . , ω−1} we can choose
O as the remainder of the Euclidean division of G(X |Y ) − 1
by |O|. Based on the optimal guessing function G�(·|Y )
and the first part of the description, O, we can construct

4A deterministic task-encoder can be viewed as a stochastic task-encoder
whose conditional PMF (14) is {0, 1}-valued.

an optimal guessing function G�(·|Y, O) (which minimizes
E
�
G(X |Y, O)ρ

�
) by choosing some G�(·|Y, O) for which

G�


x |y, f1(x, y)

� = �G�(x |y)/|O|�, ∀ (x, y) ∈ X × Y.

(39)

In the second step of the construction we choose the second
part of the description, S. We choose S = f2(x, y), where

f2(x, y)=
�

log G�


x |y, f1(x, y)

��
, ∀ (x, y) ∈ X × Y. (40)

This will guarantee that the decoding lists satisfy

E


��LY
Z

��ρ� ≤ E
�
G�(X |Y, O)ρ

� = E


�
G�(X |Y )/|O|�ρ� (41)

where

Z = (O, S) = 
 f1(X, Y ), f2(X, Y )
�
. (42)

Note that the size of the support S of S is only loga-
rithmic in |X | and thus negligible in asymptotic settings,
i.e., in asymptotic settings |Z| ≈ |O|.

The following corollary results from Theorem 8 and (5) by
setting

ω =
�

|Z|
1 + �log |X |�

�
(43)

in Theorem 8.
Corollary 9: Given a set Z of cardinality |Z| ≥ 1 +�

log |X |�, any guessing function G(·|Y ) induces a determin-
istic task-encoder, whose associated decoding lists {Ly

z } (15)
satisfy

E


��LY
Z

��ρ� ≤ 1 + 2ρ
E
�
G(X |Y )ρ

�� |Z|
1 + log |X | − 1

	−ρ

. (44)

Combined with Theorem 3, which bounds the performance
of an optimal guessing function, Equations (32) and (44)
provide an upper and a lower bound on the smallest E

�|LY
Z |ρ�

that is achievable for a given |Z|. These bounds are weaker
than [6, Theorem I.1 and Theorem VI.1] (see Theorem 4) in
the finite blocklength regime but tight enough to prove the
asymptotic results [6, Theorem I.2 and Theorem VI.2].

Another interesting corollary to Theorem 8 results from the
choice ω = 1 in Theorem 8.

Corollary 10: Given a set Z of cardinality |Z| = 1 +�
log |X |�, any guessing function G(·|Y ) induces a determin-

istic task-encoder, i.e., a stochastic task-encoder whose condi-
tional PMF (14) is {0, 1}-valued, whose associated decoding
lists {Ly

z } (15) satisfy

E


��LY
Z

��ρ� ≤ E
�
G(X |Y )ρ

�
. (45)

E.g., if

Z = �0, . . . ,
�

log |X |�� (46)

then the task-encoder f (·|Y ) defined by

f (·|y) = �log G(·|y)
�
, ∀ y ∈ Y (47a)

satisfies (45) or, equivalently,

E


�� f −1
 f (X |Y )
��Y ���ρ� ≤ E

�
G(X |Y )ρ

�
. (47b)
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An implication of Corollary 10 for the problems studied
in this paper is discussed in Remark 17. Another example
where Corollary 10 is useful is in determining the feedback
listsize capacity of a DMC W (y|x) with positive zero-error
capacity. Corollary 10 can be used to give an elegant proof of
the direct part of [10, Theorem I.1], which states that in the
presence of perfect feedback the listsize capacity of W (y|x)
equals the cutoff rate Rcutoff(ρ) with feedback (which is in fact
equal to the cutoff rate without feedback [10, Corollary I.4]).
To see this, suppose that we are given a sequence of (feedback)
codes of rate R for which the ρ-th moment of the number of
guesses G�(M|Y n) a decoder needs to guess the transmitted
message M based on the channel-outputs Y n approaches one
as the blocklength n tends to infinity. (Recall that Rcutoff(ρ) is
the supremum of all rates for which such a sequence exists.)
Suppose now that the transmission does not stop after n
channel uses. Instead, the encoder computes

Z �
�
log G�(M|Y n)

� ∈ �0, . . . , �n R
� (48)

from the feedback Y n and uses another n� channel uses to
transmit Z at a positive rate while guaranteeing that the
receiver can decode it with probability one. Since a positive
zero-error (feedback) capacity cannot be smaller than one [30],
it is enough to take n� ≤ 
log(n R)�. Hence, (n + n�)/n
converges to one as n tends to infinity, and the rate of the code
thus converges to R. At the same time, when we substitute
(M, Y n, Z) for (X, Y, Z) in Corollary 10, Corollary 10 implies

that the size of the smallest decoding-list LY n+n�
that is guar-

anteed to contain M satisfies
��LY n+n� �� = ��LY n

Z

�� ≤ G�(M|Y n),

and consequently that the ρ-th moment of
��LY n+n� �� converges

to one as n tends to infinity. This proves that in the presence
of perfect feedback the listsize capacity of W (y|x) is lower-
bounded by Rcutoff(ρ).

IV. PROBLEM STATEMENT AND MAIN RESULTS

We consider two problems: the “guessing version” and
the “list version.” The two differ in the definition of Bob’s
ambiguity. In both versions a pair (X, Y ) is drawn from the
finite set X × Y according to the PMF PX,Y , and ρ > 0 is
fixed. Upon observing (X, Y ) = (x, y), Alice draws the hints
M1 and M2 from some finite set M1 ×M2 according to some
conditional PMF

P[M1 = m1, M2 = m2|X = x, Y = y]. (49)

Bob sees both hints and the side information Y . In the guessing
version Bob’s ambiguity about X is

A
(g)

B (PX,Y ) = min
G (·|M1,M2)

E
�
G(X |Y, M1, M2)

ρ
�
. (50)

In the list version Bob’s ambiguity about X is

A (l)
B (PX,Y ) = E


��LY
M1,M2

��ρ� (51)

where for all y ∈ Y and (m1, m2) ∈ M1 × M2

Ly
m1,m2 = �x : P[X = x |Y = y, M1 = m1, M2 = m2] > 0

�
(52)

is the list of all the realizations of X of positive posterior
probability

P[X = x |Y = y, M1 = m1, M2 = m2]
= PX,Y (x, y) P[M1 = m1, M2 = m2|X = x, Y = y]�

x̃ PX,Y (x̃, y) P[M1 = m1, M2 = m2|X = x̃, Y = y] .
(53)

Eve sees one of the hints and guesses X based on this hint
and the side information Y . Which of the hints is revealed to
her is determined by an accomplice of hers to minimize her
guessing efforts. In both versions Eve’s ambiguity about X is

AE(PX,Y )

= min
G1(·|Y,M1), G2(·|Y,M2)

E
�
G1(X |Y, M1)

ρ ∧ G2(X |Y, M2)ρ
�
.

(54)

Optimizing over Alice’s mapping, i.e., the choice of the
conditional PMF in (49), we wish to characterize the largest
ambiguity that we can guarantee that Eve will have subject to
a given upper bound on the ambiguity that Bob may have.

Note that by quantifying Eve’s ambiguity using (54), we are
implicitly assuming that Eve’s accomplice observes X and Y
before determining the hint that minimizes Eve’s guessing
efforts. Less conservative is the ambiguity

˜AE(PX,Y ) = min
k∈{1,2} min

Gk (·|Y,Mk)
E
�
Gk(X |Y, Mk )ρ

�
(55)

which applies if the accomplice does not observe (X, Y ) and
reveals to Eve the hint that in expectation over (X, Y ) mini-
mizes her guessing efforts. Definition (55) is less conservative
than (54) in the sense that

AE(PX,Y ) ≤ ˜AE(PX,Y ). (56)

Why we prefer (54) over (55) is explained in Section V.
Of special interest to us is the asymptotic regime where

(X, Y ) is an n-tuple (not necessarily drawn IID), and where

M1 = �1, . . . , 2nR1
�
, M2 = �1, . . . , 2nR2

�
(57)

where (R1, R2) is a nonnegative pair corresponding to the
rate.5 For both versions of the problem, we shall characterize
the largest exponential growth that we can guarantee for Eve’s
ambiguity subject to the constraint that Bob’s ambiguity tend
to one.6 This asymptote turns out not to depend on the version
of the problem, and in the asymptotic analysis AB can stand
for either A

(g)
B or A (l)

B .
The following definition phrases mathematically what we

mean by the “largest exponential growth that we can guarantee
for Eve’s ambiguity.”

Definition 11 (Privacy-Exponent): Let
�
(Xi , Yi )

�
i∈N

be a
stochastic process over the finite alphabet X × Y , and denote
by PXn,Y n the PMF of (Xn, Y n). Given a nonnegative rate-
pair (R1, R2), we call EE an achievable ambiguity-exponent if

5When we say that a positive integer k ∈ N assumes the value 2n R , where
R > 0 corresponds to a rate, we mean that k = �2n R
.

6Note that in the guessing version G (X |Y, M1, M2)ρ is one if, and only
if, Bob’s first guess is Xn , and in the list version

��LY
M1,M2

��ρ is one if, and
only if, Bob forms the “perfect” list comprising only Xn .
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there exists a sequence of stochastic encoders such that Bob’s
ambiguity (which is always at least one) satisfies

lim
n→∞ AB(PXn,Y n ) = 1, (58)

and such that Eve’s ambiguity satisfies

lim inf
n→∞

log


AE(PXn,Y n )

�
n

≥ EE. (59)

The privacy-exponent EE is the supremum of all achievable
ambiguity-exponents. If (58) cannot be satisfied, then the set
of achievable ambiguity-exponents is empty, and we define the
privacy-exponent as negative infinity.

A modest requirement can be imposed on Bob’s ambiguity
in which it is allowed to grow exponentially with a given
normalized (by n) exponent EB as follows:

lim sup
n→∞

log


AB(PXn,Y n )

�
n

≤ EB. (60)

This case is thoroughly studied in [13].
We next present our results to the stated problems in the

finite-blocklength regime (Section IV-A) and in the asymptotic
regime (Section IV-B).

A. Finite-Blocklength Results
In the following theorem cs is related to how much infor-

mation can be gleaned about the secret X from the pair of
hints (M1, M2) but not from one hint alone; c1 is related to
how much can be gleaned from M1; and c2 is related to how
much can be gleaned from M2.

Theorem 12 (Finite-Blocklength Guessing-Version): For
every triple (cs, c1, c2) ∈ N

3 satisfying

cs ≤ |M1| ∧ |M2| , c1 ≤ �|M1| /cs
�
, c2 ≤ �|M2| /cs

�
(61)

there is a choice of the conditional PMF in (49) for which
Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(csc1 c2)+1) (62)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log(c1+c2)). (63)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y ) ≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)) ∨ 1

(64)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ) (65)

where (65) holds even if we replace (54) by (55), i.e.,

˜AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (66)

Proof: See Section VI-A.
Note that the choice of cs as 1 in Theorem 12 results in the

upper bound (62) being quite close to the lower bound (64).
Other consequences of choosing cs , c1, and c2 judiciously

are presented in the corollary, where the finite-blocklength
results in Theorem 12 are presented in a simplified and
more accessible form. In particular, the corollary shows how
much Bob’s ambiguity can be decreased while assuring a
guarantee on Eve’s. The fact that the bounds are tight up to
polylogarithmic factor of |X | provides the justification for the
converse terminology in Theorems 12. In particular, the sim-
plified achievability results (67)–(69) match the corresponding
converse results (70)–(71) up to polylogarithmic factors of |X |.

Corollary 13 (Simplified Finite-Blocklength Guessing-
Version): For any constant UB satisfying

UB ≥ 1 + 2ρ

|M1| |M2|

�−ρ2ρHρ̃ (X |Y ) (67)

there is a choice of the conditional PMF in (49) for which
Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < UB (68)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y )

≥ 2−ρ


1 + ln |X |�−ρ



2−4ρ


|M1| ∧ |M2|
�ρ

(UB − 1)

∧ 2ρHρ̃ (X |Y )
�
. (69)

Conversely, (68) cannot hold for

UB <


1 + ln |X |�−ρ
|M1| |M2|

�−ρ2ρHρ̃ (X |Y ) ∨ 1 (70)

and if Bob’s ambiguity satisfies (68) for some UB, then Eve’s
ambiguity about X is upper-bounded by

AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

UB ∧ 2ρHρ̃ (X |Y ). (71)

Proof: The result is a corollary to Theorem 12 (see
Appendix A for a proof).

The following theorem and corollary are the list version of
the results in Theorem 12 and Corollary 13. As in the case of
the guessing version in Theorem 12 and Corollary 13, the sim-
plified achievability results (78)–(80) match the corresponding
converse results (81)–(82) up to polylogarithmic factors of |X |.

Theorem 14 (Finite-Blocklength List-Version): If |M1|
|M2| > log |X | + 2, then for every triple (cs, c1, c2) ∈ N

3

satisfying

cs ≤|M1| ∧ |M2| , c1 ≤�|M1| /cs
�
, c2 ≤�|M2| /cs

�
(72a)

csc1 c2 > log |X | + 2 (72b)

there is a choice of the conditional PMF in (49) for which
Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(csc1 c2−log|X |−2)+2) (73)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log(c1+c2)). (74)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)) ∨ 1 (75)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ) (76)
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where (76) holds even if we replace (54) by (55), i.e.,

˜AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (77)

Proof: See Section VI-A.
Corollary 15 (Simplified Finite-Blocklength List-Version):

For |M1| |M2| > log |X | + 2 and any constant UB satisfying

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|−log |X |−2)+2) (78)

there is a choice of the conditional PMF in (49) for which
Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < UB (79)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y )

≥ 2−ρ


1 + ln |X |�−ρ



2−6ρ


|M1| ∧ |M2|
�ρ

(UB − 1)

∧ 2−4ρ


2 + log |X |�−ρ
|M1| ∧ |M2|

�ρ2ρHρ̃ (X |Y )

∧ 2ρHρ̃ (X |Y )
�
. (80)

Conversely, (79) cannot hold for

UB <

|M1| |M2|

�−ρ2ρHρ̃ (X |Y ) ∨ 1 (81)

and if Bob’s ambiguity satisfies (79) for some UB, then Eve’s
ambiguity about X is upper-bounded by

AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

UB ∧ 2ρHρ̃ (X |Y ). (82)

Proof: The result is a corollary to Theorem 14 (see
Appendix B for a proof).

B. Asymptotic Results
Suppose now that (X, Y ) is an n-tuple. We study the

asymptotic regime in which n tends to infinity. Recall that
in this regime we refer to both A

(g)
B and A (l)

B by AB, because
the results are the same for both versions of the problem.
Theorems 12 and 14 imply the following asymptotic result.

Theorem 16 (Privacy-Exponent): Let
�
(Xi , Yi )

�
i∈N

be a
discrete-time stochastic process with finite alphabet X×Y , and
suppose its conditional Rényi entropy-rate Hρ̃(X|Y) is well-
defined. Given any positive rate-pair (R1, R2), the privacy-
exponent is

EE =
�

ρ


R1 ∧ R2 ∧ Hρ̃(X|Y)

�
R1 + R2 > Hρ̃(X|Y),

−∞ R1 + R2 < Hρ̃(X|Y).

(83)

Proof: See Section VI-B.

V. DISCUSSION

The following remark explains why the results for the guess-
ing and the list version differ only by polylogarithmic factors
of |X | (and are consequently the same in the asymptotic
regime).

Remark 17 (Why Do the Two Criteria for Bob Lead to
Similar Results?): Consider any choice of the conditional
PMF in (49). In the guessing version Bob uses an opti-
mal guessing function G�(·|Y, M1, M2) (which minimizes

E
�
G(X |Y, M1, M2)

ρ
�
) to guess X based on the side infor-

mation Y and the hints M1 and M2, and his ambiguity is
E
�
G�(X |Y, M1, M2)

ρ
�
. By Corollary 10 we can construct

from G�(·|Y, M1, M2) an additional hint M that takes values
in a set of size at most 1 + �log |X |� such that

E


��LY
M1,M2,M

��ρ� ≤ E
�
G�(X |Y, M1, M2)

ρ
�

(84)

where LY
M1,M2,M is the smallest list that is guaranteed to

contain X given (Y, M1, M2, M). Suppose now that Alice
maps X to the hints M �

1 � (M1, M) and M �
2 � M2. This

implies that Bob’s ambiguity in the list version is

E


��LY
M �

1,M �
2

��ρ� = E


��LY
M1,M2,M

��ρ� (85)

and consequently no larger than E
�
G�(X |Y, M1, M2)

ρ
�
. More-

over, because M takes values in a set of size at most 1 +�
log |X |�, we can use Lemma 5 to show that—compared to

the case where the hints are M1 and M2—Eve’s ambiguity
decreases by at most a polylogarithmic factor of |X |.

We next explain why we choose to quantify Eve’s ambi-
guity by (54) and not by (55). As we have seen, (54) is
more conservative than (55) in the sense that (56) holds.
Consequently, it follows from (66) and (77) that the results of
Theorems 12 and 14 hold irrespective of whether we quantify
Eve’s ambiguity by (54) or by (55). We prefer to quantify
Eve’s ambiguity by (54), because—as the following example
shows—(55) leads to a weaker notion of secrecy than (54).

Example 18: Suppose that Y is null, X is uniform over X ,
and Alice produces the hints at random: They are equally
likely to be (M1 = X, M2 = ∗) or (M1 = ∗, M2 = X),
where the symbol ∗ is not in X . Since Bob can recover X
from (M1, M2) (by producing the hint that is not ∗),

min
G (·|M1,M2)

E
�
G(X |M1, M2)

ρ
� = E

���LM1,M2

��ρ� = 1. (86)

The system is insecure, because one of the hints always
reveals X , and AE(PX,Y ) = 1. However, as we next argue, this
weakness is not captured by ˜AE(PX,Y ). The probability of M1
being ∗ is 1/2, so the ρ-th moment of G1(X |M1) is at least
minG (·) E

�
G(X)ρ

�
/2. Likewise, by symmetry, for G2(X |M2).

Thus ˜AE(PX,Y ) differs from minG (·) E
�
G(X)ρ

�
by a factor of

at most 1/2. ♦
So far, we have explained why we prefer (54) over (55).

But why do we allow Eve to guess even in the list version of
our problem? That is, why do we prefer (54) over

A (l)
E = E


��LY
M1

��ρ ∧ ��LY
M2

��ρ� (87)

even when Bob must form a list?
We prefer (54) over (87) because, as Theorem 19 ahead will

show, forcing Eve to produce a short list—i.e., insisting that
the set of realizations of X that she cannot rule out be small—
would severely handicap her and make it trivial to defeat her:
When Eve must form a list, perfect secrecy is almost free.

Theorem 19 (Eve Must Form a List): If

|M1| ∧ |M2| ≥ 1 + �log |X |� (88)
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then there exists a conditional PMF as in (49) for which Bob’s
ambiguity about X is upper-bounded by

A (l)
B (PX,Y )

≤ 1 + 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)+2 log(1+�log |X 
)+3) (89)

and Eve’s ambiguity about X is

A (l)
E (PX,Y ) = E

�|LY |ρ� (90)

where

E
�|LY |ρ� =

�
y

PY (y)
���x ∈ X : PX |Y (x |y) > 0

���ρ. (91)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)) ∨ 1 (92)

and Eve’s ambiguity is upper-bounded by

A (l)
E (PX,Y ) ≤ E

�|LY |ρ�. (93)

Proof: See Appendix C.
To see why perfect secrecy is almost free when Eve is

required to form a list, note that the RHS of (90) would also
be Eve’s list size if she only saw Y and did not get to see any
hint, so in this sense achieving (90) is tantamount to achieving
perfect secrecy. And the cost is very small: Condition (88) is
satisfied in the large-blocklength regime whenever the rates of
the two hints are positive; and the RHS of (89) will tend to
one in this regime whenever the sum of the rates exceeds the
conditional Rényi entropy rate—a condition that is necessary
even in the absence of an adversary (Theorem 4).

That perfect secrecy is (almost) free when we quantify Eve’s
ambiguity by (87) is highly intuitive: By forcing Eve to form a
list that is guaranteed to contain X , we force her to include in
her list all the realizations of X that have a positive posterior
probability, no matter how small. This implies that, if Eve were
to form a list, then perfect secrecy could be attained by hiding
very little information from Eve. The situation is different
in case Eve guesses X , because allowing Eve to guess X ,
i.e., quantifying Eve’s ambiguity by (54), is tantamount to first
indexing the elements of the list in (87)—which she would
otherwise have to form—in decreasing order of their posterior
probability, and to then downweigh the large indices of the
realizations at the bottom of the list by their small posterior
probabilities.

To conclude the discussion of how to quantify Eve’s
ambiguity, we relate Eve’s ambiguity (54) to the concept of
equivocation. In the classical Shannon cipher system [31],
a popular way to measure imperfect secrecy is in terms of
equivocation, i.e., in terms of the conditional entropy H (X |Z),
where X denotes some sensitive information and Z Eve’s
observation. In the settings where Bob is a list-decoder or a
guessing decoder, Rényi entropy plays the role of Shannon
entropy in the sense that the minimum required rate to encode
an n-tuple X = Xn is the Rényi entropy rate Hρ̃(X) rather
than the Shannon entropy rate H (X) = H1(X) (this follows
from Theorems 4 and Corollary 7). Consequently, in these
settings the conditional Rényi entropy Hρ̃(X |Z) qualifies as

a “natural” equivalent for equivocation. But Hρ̃(X |Z) has a
nice operational characterization: 2ρHρ̃ (X |Z) is (up to polylog-
arithmic factors of |X |) the ρ-th moment of the number of
guesses that Eve needs to guess X from her observation Z
(see Theorem 3). This is another reason why it makes sense
to quantify Eve’s ambiguity in terms of the ρ-th moment of
the number of guesses that she needs to guess X .

In the remainder of this section we briefly discuss how
the results of Theorems 12 and 14 change in the following
two scenarios: 1) Alice knows which hint Eve observes;
or 2) Alice describes X using only one hint, but Alice and
Bob share a secret key, which is unknown to Eve. We begin
with Scenario 1. In this scenario Alice draws the public hint
Mp and the secret hint Ms from some finite set Mp × Ms
according to some conditional PMF

P[Mp = mp, Ms = ms|X = x, Y = y]. (94)

Bob sees both hints. In the guessing version his ambiguity
about X is

A
(g)

B (PX,Y ) = min
G (·|Y,Mp,Ms)

E
�
G(X |Y, Mp, Ms)

ρ
�

(95)

and in the list version

A (l)
B (PX,Y ) = E


��LY
Mp,Ms

��ρ�. (96)

Eve sees only the public hint. In both versions her ambiguity
about X is

AE(PX,Y ) = min
G (·|Y,Mp)

E
�
G(X |Y, Mp)

ρ
�
. (97)

The next two theorems characterize the largest ambiguity
that we can guarantee that Eve will have subject to a given
upper bound on the ambiguity that Bob may have (see Appen-
dix D for a proof). As in the case where the hints are not secret
and public, the guessing and the list version lead to similar
results (cf. Remark 17). In the next two theorems c is related
to how much can be gleaned about X from Mp.

Theorem 20 (Secret Hint Guessing-Version): For every c ∈
N satisfying

c ≤ |Mp| (98)

there is a {0, 1}-valued choice of the conditional PMF in (94)
for which Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(c |Ms|)+1) (99)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log c). (100)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y ) ≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log(|Mp| |Ms|)) ∨ 1

(101)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |Ms|ρA
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (102)
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Theorem 21 (Secret Hint List-Version): If |Mp| |Ms| >
log |X | + 2, then for every c ∈ N satisfying

c ≤ |Mp|, c |Ms| > log |X | + 2 (103)

there is a {0, 1}-valued choice of the conditional PMF in (94)
for which Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(c |Ms|−log |X |−2)+2) (104)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log c). (105)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−log(|Mp| |Ms|) ∨ 1 (106)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |Ms|ρA (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (107)

We next contrast Theorems 20 and 21 to their counter-
parts in the previous scenario, i.e., to Theorems 12 and 14.
By comparing the respective upper and lower bounds on Eve’s
ambiguity, we see that c and |Ms| in the current scenario,
which relate to how much information can be gleaned about
X from Mp and Ms, play the roles of c1 + c2 ≈ c1 ∨ c2 and
|M1| ∧ |M2| in the previous scenario, which relate to how
much information can be gleaned about X from the hint that—
among M1 and M2—reveals more information about X and
the one that—among M1 and M2—reveals less information
about X . This reflects the fact that in the current scenario
Eve always sees Mp, whereas in the previous scenario she
sees the hint that reveals more information about X and hence
minimizes her ambiguity.

Unlike Theorem 12, Theorem 20 implies that in the current
scenario Alice can describe X deterministically. To see why,
recall that in the current scenario Eve sees only the public
hint Mp, and hence there is no need to encrypt information
that can be gleaned from the secret hint Ms. Consequently,
as is further explained in the proof of Theorem 20, Alice need
not draw a one-time-pad-like random variable to ensure that
some information can be gleaned about X from (Mp, Ms) but
not from one hint alone. Instead, she can store that information
on Ms without prior encryption. It is noted that the same
observation carries over to Theorems 14 and 21.

We now proceed to Scenario 2, where Alice describes
X using only one hint, but Alice and Bob share a secret
key, which is unknown to Eve. The secret key K is drawn
independently of the pair (X, Y ) and uniformly over some
finite set K. Upon observing (X, Y ) = (x, y) and K = k,
Alice draws the hint M from some finite set M according to
some conditional PMF

P[M = m|X = x, Y = y, K = k]. (108)

Throughout, we assume that |K| ≤ |M|. Bob sees the secret
key and the hint. In the guessing version his ambiguity about
X is

A
(g)

B (PX,Y ) = min
G (·|Y,K ,M)

E
�
G(X |Y, K , M)ρ

�
(109)

and in the list version

A (l)
B (PX,Y ) = E


��LY,K
M

��ρ�. (110)

Eve sees sees only the hint. In both versions her ambiguity
about X is

AE(PX,Y ) = min
G (·|Y,M)

E
�
G(X |Y, M)ρ

�
. (111)

The next two theorems characterize the largest ambiguity
that we can guarantee that Eve will have subject to a given
upper bound on the ambiguity that Bob may have (see
Appendix E for a proof). Again, the guessing and the list
version lead to similar results. Here |K| is related to how much
information can be gleaned about X from (K , M) but not from
M alone, i.e., to the “encrypted” information stored on M , and
c is related to how much information can be gleaned about X
from M , i.e., to the “unencrypted” information stored on M .

Theorem 22 (Secret Key Guessing-Version): For every c ∈
N satisfying

c |K| ≤ |M| (112)

there is a {0, 1}-valued choice of the conditional PMF in (108)
for which Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(c |K|)+1) (113)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X |Y )−log c). (114)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y ) ≥ 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log |M|) ∨ 1 (115)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |K|ρA
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (116)

Theorem 23 (Secret Key List-Version): If
�|M|/|K|�|K| >

log |X | + 2, then for every c ∈ N satisfying

c |K| ≤ |M|, c |K| > log |X | + 2 (117)

there is a {0, 1}-valued choice of the conditional PMF in (108)
for which Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(c |K|−log |X |−2)+2) (118)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log c). (119)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−log |M|) ∨ 1 (120)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |K|ρA (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (121)

Theorems 22 and 23 are reminiscent of their counterparts
for the scenario with a public and a secret hint, i.e., of The-
orems 20 and 21. The main difference is that in the current
scenario c and |K|, which relate to the “unencrypted” and the
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“encrypted” information stored on M , respectively, play the
roles of c and |Ms|, which in the previous scenario relate
to the information stored on the public and the secret hint,
respectively. Like Theorems 20 and 21, Theorems 22 and 23
imply that in the current scenario Alice can describe X
deterministically; there is no need for Alice to draw a one-
time-pad like random variable, because she can use the secret
key K as a one-time-pad.

VI. PROOFS OF MAIN RESULTS

A. Proof of Theorems 12 and 14
We first establish the achievability results, i.e., (62)–(63) in

the guessing version and (73)–(74) in the list version. To this
end, fix (cs, c1, c2) ∈ N

3 satisfying (61) in the guessing version
and (72) in the list version.

Both (61) and (72) imply that

|M1| ≥ csc1 and |M2| ≥ csc2 (122)

i.e., that the number of different hints from which M1 can be
chosen is at least csc1, and similarly for M2. Our achievability
scheme will, in fact, assign M1 at most csc1 different values,
so—of the |M1| possible hints that M1 can take on—only csc1
will be used. Similarly for M2. Since the labels we assign the
different hints do not matter, there is no loss of generality in
assuming, as we shall, that the hint alphabets are

M1 = Vs × V1 and M2 = Vs × V2 (123)

where
Vν = {0, . . . , cν − 1}, ν ∈ {s, 1, 2}. (124)

For every ν ∈ {s, 1, 2} let Vν be a chance variable taking
values in Vν . For the proof of the guessing version, we note
that Corollary 7 implies that there exists some {0, 1}-valued
conditional PMF P

�
(Vs, V1, V2) = (vs, v1, v2)

��X = x, Y = y
�

for which

min
G (·|Y,Vs,V1,V2)

E
�
G(X |Y, Vs, V1, V2)

ρ
�

< 1 + 2ρ(Hρ̃ (X |Y )−log(csc1 c2)+1). (125)

For the proof of the list version, we note that Theorem 4
implies that there exists some deterministic task-encoder
f (·|Y ) : X → Vs × V1 × V2 for which

E


��LY
Vs ,V1,V2

��ρ� < 1 + 2ρ(Hρ̃ (X |Y )−log(cs c1 c2−log|X |−2)+2)

(126)

where (Vs, V1, V2) = f (X |Y ). For both versions we choose
M1 = (Vs ⊕cs U, V1) and M2 = (U, V2), where (Vs, V1, V2)
is drawn according to one of the above conditional PMFs
depending on the version, and where U is independent of
(X, Y, Vs, V1, V2) and uniform over Vs. Bob observes both
hints and can thus recover (Vs, V1, V2). Hence, in the guessing
version (62) follows from (125) and in the list version (73)
follows from (126).

The proof of (63) and (74) is more involved. It builds on
the following two intermediate claims, which we prove next:

1) We can assume w.l.g. that Eve must guess not only X
but the pair (X, U).

2) Given any pair of guessing functions G1(·, ·|Y, M1) and
G2(·, ·|Y, M2) for (X, U), there exist a chance variable
Z that takes values in a set of size at most cs(c1+c2) and
a guessing function G(·, ·|Y, Z) for (X, U) for which

G(X, U |Y, Z) = G1(X, U |Y, M1) ∧ G2(X, U |Y, M2).

(127)

We first prove the first intermediate claim. In both versions
(guessing and list), once X has been guessed one can com-
pute U , so there exist mappings g1 : X × Y ×M1 → Vs and
g2 : X × Y × M2 → Vs for which

U = g1(X, Y, M1) = g2(X, Y, M2). (128)

Given any guessing functions G1(·|Y, M1) and G2(·|Y, M2)
for X , introduce some guessing functions G1(·, ·|Y, M1) and
G2(·, ·|Y, M2) for (X, U) satisfying, for every (x, y) ∈ X ×Y ,
m1 ∈ M1, and m2 ∈ M2, that

Gk


x, gk(x, y, mk)

��y, mk
� = Gk(x |y, mk), ∀ k ∈ {1, 2}.

(129)

From (128) it follows that

Gk(X, U |Y, Mk ) = Gk(X |Y, Mk ), ∀ k ∈ {1, 2}. (130)

Consequently, Eve can guess X and the pair (X, U) with the
same number of guesses. This proves the first intermediate
claim.

We next prove the second intermediate claim. Given any
pair of guessing functions G1(·, ·|Y, M1) and G2(·, ·|Y, M2)
for (X, U), define the triple of chance variables

(I, Û, V̂ ) �

⎧⎪⎨
⎪⎩

(1, Vs ⊕cs U, V1) if G1(X, U |Y, M1)

≤ G2(X, U |Y, M2),

(2, U, V2) otherwise

(131)

over the alphabet I × Vs × V̂ , where I = {1, 2} and V̂ =
{0, 1, . . . , c1 ∨ c2 − 1}. Observing (Y, I, Û, V̂ ), Eve can guess
(X, U) using either G1 or G2 depending on the value of I .
That is, Eve can guess (X, U) using some guessing function
G(·, ·|Y, I, Û, V̂ ) satisfying, for every y ∈ Y , i ∈ I, û ∈ Vs ,
and v̂ ∈ {0, 1, . . . , ci − 1}, that

G(·, ·|y, i, û, v̂) = Gi

·, ·|y, (û, v̂)

�
. (132)

By (131) the number of guesses that she needs to do so is
given by

G(X, U |Y, I, Û, V̂ )

= GI


X, U |Y, (Û, V̂ )

�
(133)

= GI (X, U |Y, MI ) (134)

= G1(X, U |Y, M1) ∧ G2(X, U |Y, M2). (135)

Consequently, (127) holds when we set Z = (I, Û, V̂ ).
To conclude the proof of the second intermediate claim, note
that the triple (I, Û, V̂ ) takes values in the set�

(1, û, v̂) : (û, v̂) ∈ Vs × V1
�

∪ �(2, û, v̂) : (û, v̂) ∈ Vs × V2
�

(136)
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whose cardinality is given by

|Vs × V1| + |Vs × V2| = cs(c1 + c2). (137)

We are now ready to prove (63) and (74):

E
�
G1(X |Y, M1)

ρ ∧ G2(X |Y, M2)ρ
�

(a)= E
�
G1(X, U |Y, M1)

ρ ∧ G2(X, U |Y, M2)
ρ
�

(138)
(b)= E

�
G(X, U |Y, I, Û, V̂ )ρ

�
(139)

(c)≥ 

1 + ln |X |�−ρ2ρ(Hρ̃ (X,U |Y )−log(cs(c1+c2))) (140)

(d)= 

1 + ln |X |�−ρ

2ρ(Hρ̃ (X |Y )−log(c1+c2)) (141)

where (a) holds by (130); (b) holds by (135); (c) follows from
Corollary 7 and the fact that (I, Û, V̂ ) takes values in a set of
size cs(c1 + c2); and (d) holds because

Hρ̃(X, U |Y )

= 1

ρ
log
�
y∈Y

��
x∈X

�
u∈Vs



PX,Y (x, y)/|Vs|

�ρ̃	1+ρ

(142)

= 1

ρ
log

⎛
⎝�

y∈Y

��
x∈X

PX,Y (x, y)ρ̃
	1+ρ

|Vs|ρ
⎞
⎠ (143)

= Hρ̃(X |Y ) + log cs. (144)

The equality in (142) holds because U is independent of
(X, Y ) and uniform over the set Vs of size |Vs| = cs. This
concludes the proof of the achievability results.

It remains to establish the converse results, i.e., (64)–(66) in
the guessing version and (75)–(77) in the list version. In the
guessing version (64) follows from Corollary 7, and in the
list version (75) follows from Theorem 4. From (56) we
see that (65) and (76) follow from (66) and (77), respec-
tively, and hence it only remains to establish (66) and (77).
By Corollary 6, it holds for every k ∈ {1, 2} and l ∈ {1, 2}\{k}
that

min
G (·|Y,M1,M2)

E
�
G(X |Y, M1, M2)

ρ
�

≥ |Ml |−ρ min
Gk(·|Y,Mk)

E
�
Gk(X |Y, Mk )ρ

�
. (145)

Since

min
G (·|Y,M1,M2)

E
�
G(X |Y, M1, M2)

ρ
� ≤ E


��LY
M1,M2

��ρ� (146)

(145) implies that in both versions the ambiguity ÃE(PX,Y )
exceeds Bob’s ambiguity by at most a factor of


|M1| ∧
|M2|

�ρ . That is, ˜AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A
(g)

B (PX,Y )

and ˜AE(PX,Y ) ≤ 
|M1| ∧ |M2|
�ρ

A (l)
B (PX,Y ). Another upper

bound on ÃE(PX,Y ) is obtained by considering the case where
Eve ignores the hint that she observes and guesses X based
on Y alone. In this case it follows from Theorem 3 that

min
Gk(·|Y,Mk)

E
�
Gk(X |Y, Mk )ρ

� ≤ 2ρHρ̃ (X |Y ),

∀ k ∈ {1, 2}. (147)

B. Proof of Theorem 16

If R1 + R2 < Hρ̃(X |Y), then (64) in the guessing version
and (75) in the list version imply that the privacy-exponent is
negative infinity. We hence assume that R1 + R2 > Hρ̃(X|Y).

We first show that the privacy-exponent cannot exceed
the RHS of (83). To this end suppose that (58) holds and
consequently

lim sup
n→∞

log


AB(PXn,Y n )

�
n

= 0. (148)

This, combined with (65) in the guessing version and (76) in
the list version, implies that

lim sup
n→∞

log


AE(PXn,Y n )

�
n

≤ ρ


R1 ∧ R2 ∧ Hρ̃(X |Y)

�
.

(149)

Hence, the privacy-exponent cannot exceed the RHS of (83).
We next show that the privacy-exponent cannot be smaller

than the RHS of (83). By possibly relabeling the hints, we can
assume w.l.g. that R2 = R1 ∧ R2. Fix some � > 0 satisfying

� ≤ R1 + R2 − Hρ̃(X|Y ). (150)

Choose a nonnegative rate-triple (Rs, R̃1, R̃2) ∈ (R+
0 )3 as

follows:
1) If R2 ≤ Hρ̃(X|Y)/2, then choose

Rs = 0, R̃1 = Hρ̃(X|Y) − R2 + �, R̃2 = R2. (151)

2) Else if Hρ̃(X |Y)/2 < R2 ≤ Hρ̃(X|Y), then choose

Rs = 2R2 − Hρ̃(X|Y ) − �, (152a)

R̃1 = R̃2 = Hρ̃(X |Y) − R2 + �. (152b)

(To guarantee that Rs ≥ 0, we assume in this case that
� > 0 is sufficiently small so that, in addition to (150),
also

� < 2R2 − Hρ̃(X|Y) (153)

holds.)
3) Else if Hρ̃(X |Y) < R2, then choose

Rs = R2, R̃1 = R̃2 = 0. (154)

We note that in all cases,

Rs + R̃1 + R̃2 > Hρ̃(X |Y). (155)

Having chosen (Rs, R̃1, R̃2), choose the triple (cs, c1, c2) ∈
N

3 as 

cs, c1, c2

� = 
2nRs , 2nR̃1 , 2nR̃2
�
. (156)

For every sufficiently-large n, this choice implies (61)
and (72), and by Theorems 12 and Theorem 14 we can thus
guarantee (62)–(63) in the guessing version and (73)–(74) in
the list version.

Combining (155) and (156) with (62) in the guessing
version and with (73) in the list version yields that Bob’s
ambiguity tends to 1, i.e., (58). As to Eve’s, combining (156)
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with (63) in the guessing version and with (74) in the list
version implies that

lim inf
n→∞

log


AE(PXn ,Y n )

�
n

≥ ρ


Hρ̃(X|Y) − (R̃1 ∨ R̃2)

�
(157)

≥ ρ


(R1 ∧ R2 − �) ∧ Hρ̃(X |Y)

�
(158)

where (158) follows from (157) by plugging-in the settings for
R̃1 and R̃2 for each of the 3 cases as detailed in (151)–(154).
Letting � tend to zero proves that the privacy-exponent cannot
be smaller than the RHS of (83).

VII. RESILIENCE AGAINST DISK FAILURES

In this section we generalize the model of Section IV to
allow for Alice to produce δ hints (not necessarily two) and
store them on different disks, for Bob to see ν ≤ δ (not
necessarily 2) of those hints, and for Eve to see η < ν (not
necessarily one) of the hints. We assume that, after observing
X and Y , an adversarial “genie” reveals to Bob the ν hints
that maximize his ambiguity and to Eve the η hints that
minimize her ambiguity. The former guarantees that the system
be robust against δ − ν disk failures, no matter which disks
fail; and the latter guarantees that Eve’s ambiguity be “large”
no matter which η hints she sees. We allow the genie to
observe (X, Y ), because, as we have seen, not allowing the
genie to observe (X, Y ) would lead to a weaker form of
secrecy (see Example 18).

The current network can be described as follows. As in
Section IV, we consider two problems, the “guessing version”
and the “list version,” which differ in the definition of Bob’s
ambiguity. Upon observing (X, Y ) = (x, y), Alice draws the
δ-tuple M = (M1, . . . , Mδ) from the finite set F

δ
2s according

to some conditional PMF

P[M = m|X = x, Y = y], m ∈ F
δ
2s . (159)

We assume here that each hint comprises s bits (i.e., that M
takes values in F

δ
2s ); why this assumption is reasonable will be

explained shortly (see Theorem 27 and Remark 28 ahead). Bob
gets to see a size-ν set B ⊆ {1, . . . , δ}, the components MB
of M indexed by B, and the side information Y . As already
mentioned, the index set B is chosen by an adversary of his.
In the guessing version Bob guesses X using an optimal guess-
ing function GB(·|Y, MB), which minimizes the ρ-th moment
of the number of guesses that he needs. (As indicated by
the subscript, the guessing function GB(·|Y, MB) can depend
on B.) His min-max ambiguity about X is thus given by

A
(g)

B (PX,Y ) = min
GB∗ (·|Y,MB∗)

E



max
B

GB(X |Y, MB)ρ
�

(160)

where B∗ is the maximization-achieving set. In the list version
Bob’s ambiguity about X is

A (l)
B (PX,Y ) = E



max
B
��LY

MB
��ρ� (161)

where for all y ∈ Y and mB ∈ F
δ
2s

Ly
mB = �x : P[X = x |Y = y, MB = mB] > 0

�
(162)

is the list of all the realizations of X of positive posterior
probability

P[X = x |Y = y, MB = mB]
= PX,Y (x, y) P[MB = mB|X = x, Y = y]�

x̃ PX,Y (x̃, y) P[MB = mB|X = x̃, Y = y] . (163)

Note that for Bc � {1, . . . , δ} \ B we have

P[MB = mB|X = x, Y = y]
=
�
mBc

P[M = m|X = x, Y = y]. (164)

Eve observes a size-η set E ⊆ {1, . . . , δ}, the components ME
of M indexed by E , and the side information Y . The index set
E is chosen by an accomplice of hers. Eve guesses X using an
optimal guessing function GE (·|X, ME), which minimizes the
ρ-th moment of the number of guesses that she needs. (The
guessing function GE(·|X, ME ) can depend on E .) In both
versions her ambiguity about X is thus given by

AE(PX,Y ) = min
GE∗ (·|X,ME∗ )

E



min
E

GE(X |Y, ME)ρ
�

(165)

where E∗ is the maximization achieving set.
Optimizing over Alice’s choice of the conditional PMF

in (159), we wish to characterize the largest ambiguity that
we can guarantee that Eve will have subject to a given upper
bound on the ambiguity that Bob may have.

Of special interest to us is the asymptotic regime where
(X, Y ) is an n-tuple (not necessarily drawn IID), and where
each hint stores

s = n Rs (166)

bits, where Rs is nonnegative and corresponds to the per-
hint storage-rate. (We assume that δ, ν, and η are fixed.) For
both versions of the problem, we shall characterize the largest
exponential growth that we can guarantee for Eve’s ambiguity
subject to the constraint that Bob’s ambiguity tend to one,
i.e., we shall characterize the privacy-exponent EE defined in
Definition 11.

In the next two theorems (ν − η)r should be viewed as
the number of information-bits that can be gleaned about
X from ν but not from η hints. Moreover, for every γ ∈
{η, ν}, γ p should be viewed as the number of information-
bits that any γ hints reveal about X . By adapting the proof
of Theorems 24 and 25 to the case at hand (see Appendix F),
we obtain the following results.

Theorem 24 (Finite-Blocklength Guessing-Version): For
every pair (p, r) ∈ {0, . . . , s}2 satisfying

p + r = s (167a)

p, r ∈ {0} ∪ �
log δ�, 
log δ� + 1, . . .
�

(167b)

there is a choice of the conditional PMF in (159) for which
Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−νs+ηr+1) (168)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−η(s−r)−η log δ−log(1+ln |X |)). (169)
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Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A
(g)

B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−νs−log(1+ln |X |)) ∨ 1 (170)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (171)

Proof: See Appendix F.
Theorem 25 (Finite-Blocklength List-Version): If 2νs >

log |X | + 2, then for every pair (p, r) ∈ {0, . . . , s} satisfying

p + r = s (172a)

p, r ∈ {0} ∪ �
log δ�, 
log δ� + 1, . . .
�

(172b)

2νs−ηr > log |X | + 2 (172c)

there is a choice of the conditional PMF in (159) for which
Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(2νs−ηr−log |X |−2)+2) (173)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−η(s−r)−η log δ−log(1+ln |X |)). (174)

Conversely, for every conditional PMF, Bob’s ambiguity is
lower-bounded by

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−νs) ∨ 1 (175)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (176)

Proof: See Appendix F.
The bounds in Theorems 24 and 25 are tight in the

sense that, with a judicious choice of p and r , the achiev-
ability results (namely (168)–(169) in the guessing version
and (173)–(174) in the list version) match the corresponding
converse results (namely (170)–(171) in the guessing version
and (175)–(176) in the list version) up to polynomial factors of
δη and of ln |X |. This can be seen from the following corollary
to Theorems 24 and 25, which states the achievability results
in a simplified and more accessible form.

Corollary 26 (Simplified Finite-Blocklength Achievability-
Results): In the guessing version, for any constant UB
satisfying

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−νs+1) (177)

there is a choice of the conditional PMF in (159) for which
Bob’s ambiguity about X is upper-bounded by

A
(g)

B (PX,Y ) < UB (178)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y )

≥ 
δη(1 + ln |X |)�−ρ
!


(2δ)−ρη2ρ(ν−η)s(UB − 1)
�

∧ 2ρHρ̃ (X |Y )
"
. (179)

In the list version, for any constant UB satisfying

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−log(2νs−log |X |−2)+2) (180)

there is a choice of the conditional PMF in (159) for which
Bob’s ambiguity about X is upper-bounded by

A (l)
B (PX,Y ) < UB (181)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y )

≥ 
δη(1 + ln |X |)�−ρ
�


2−3ρ(2δ)−ρη2ρ(ν−η)s(UB − 1)
�

∧ 2ρHρ̃ (X |Y )

∧
�!

2(2δ)η


2 + log |X |�"−ρ

2ρ((ν−η)s+Hρ̃ (X |Y ))

		
.

(182)

Proof: The result is a corollary to Theorems 24 and 25.
See Appendix G for a detailed proof.

We conclude this section by explaining why it is a good
idea to store an equal number of bits on each disk. This can
be seen from the next theorem.

Theorem 27 (Converse Results: Disk � stores s� Bits): Sup-
pose that for every � ∈ {1, . . . , δ} Disk � stores s� bits,
where s1 ≤ . . . ≤ sδ . For every conditional PMF in (159),
Bob’s ambiguity about X is—depending on the version of the
problem—lower-bounded by

A
(g)

B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−�ν
�=1 s�−log(1+ln |X |)) ∨ 1 (183a)

A (l)
B (PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−�ν

�=1 s�) ∨ 1 (183b)

and Eve’s ambiguity about X is upper-bounded by

AE(PX,Y ) ≤ 2ρ
�ν−η

�=1 s�A
(g)

B (PX,Y ) ∧ 2ρHρ̃ (X |Y ) (184a)

AE(PX,Y ) ≤ 2ρ
�ν−η

�=1 s�A (l)
B (PX,Y ) ∧ 2ρHρ̃ (X |Y ). (184b)

Proof: See Appendix H.
Remark 28 (Why Store s Bits on Each Disk?): Compare a

scenario where for every � ∈ {1, . . . , δ} Disk � stores s� bits,
where s1 ≤ . . . ≤ sδ , with a scenario where each disk stores�
(s1+. . .+sδ)/δ

�
bits. Based on Theorem 27 and Corollary 26,

neglecting polynomial factors of δη and of ln |X |, every pair of
ambiguities for Bob and Eve that is achievable in the former
scenario is also achievable in the latter scenario.

VIII. SUMMARY

This paper studies a distributed-storage system whose
encoder, Alice, observes some sensitive information X
(e.g., a password) that takes values in a finite set X and
describes it using two hints, which she stores in different
locations. The legitimate receiver, Bob, sees both hints, and—
depending on the version of the problem—must either guess X
(the guessing version) or must form a list that is guaranteed to
contain X (the list version). The eavesdropper, Alice, sees only
one of the hints; an accomplice of hers controls which. Based
on her observation, Eve wishes to guess X . For an arbitrary
ρ > 0, Bob’s and Eve’s ambiguity about X are quantified as
follows: In the guessing version we quantify Bob’s ambiguity
by the ρ-th moment of the number of guesses that he needs to
guess X , and in the list version we quantify Bob’s ambiguity
by the ρ-th moment of the size of the list that he must
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form. In both versions we quantify Eve’s ambiguity by the
ρ-th moment of the number of guesses that she needs to
guess X . For each version this paper characterizes—up to
polylogarithmic factors of |X |—the largest ambiguity that we
can guarantee that Eve will have subject to a given upper
bound on the ambiguity that Bob may have. Our results imply
that, if the hint that is available to Bob but not to Eve can
assume σ realizations, then—up to polylogarithmic factors
of |X |—the ambiguity that we can guarantee that Eve will
have either exceeds the ambiguity that Bob may have by a
factor of σρ or—in case the hint that Eve observes reveals
no information about X—is as large as it can be. This holds
even if we require that—up to polylogarithmic factors of
|X |—Bob’s ambiguity be as small as it can be. The paper
also discusses an extension to a distributed-storage system
that is robust against disk failures and—in the supplementary
material—a rate-distortion version of the problem.

The results for the guessing and the list version are remark-
ably similar: Every pair of ambiguities for Bob and Eve that is
achievable in the guessing version is—up to polylogarithmic
factors of |X |—also achievable in the list version and vice
versa. This can be explained by the close relation between
Arikan’s guessing problem [5] and Bunte and Lapidoth’s task-
encoding problem [6] that this paper reveals. The relation can
be used to give alternative proofs of [6, Theorems I.2 and VI.2]
as well as the direct part of [10, Theorem I.1]. As we
show in the supplementary material, the relation holds also
for the rate-distortion versions of the guessing and task-
encoding problems, which were introduced in [6], [12]; and
in this case it can be used to give an alternative proof
of [6, Theorem VII.1].

APPENDIX A
PROOF OF COROLLARY 13

The converse results readily follow from the converse results
of Theorem 12: (64) implies (70) and (65) implies (71). The
proof of the achievability results (68)–(69) is more involved.
Suppose that (67) holds. To show that there is a choice
of the conditional PMF in (49) for which (68)–(69) hold,
we will exhibit a judicious choice of the triple (cs, c1, c2) ∈
N

3 for which (68) follows from (62) and (69) from (63).
By possibly relabeling the hints, we can assume w.l.g. that
|M2| = |M1| ∧ |M2|. Our choice of (cs, c1, c2) depends
on the constant UB and the cardinalities |M1| and |M2|.
Specifically, we distinguish between three different cases.

The first case is the case where

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−log |M2|+1). (185)

In this case we choose

cs = |M2| and c1 = c2 = 1. (186)

Note that this choice satisfies (61). Consequently, (62) implies
that Bob’s ambiguity satisfies (68):

A
(g)

B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log |M2|+1) (187)

≤ UB (188)

where the second inequality holds by (185). Moreover, it fol-
lows from (63) that Eve’s ambiguity satisfies (69):

AE(PX,Y ) ≥ (1 + ln |X |)−ρ2ρ(Hρ̃ (X |Y )−log 2) (189)

= 2−ρ(1 + ln |X |)−ρ2ρHρ̃ (X |Y ). (190)

The second case is the case where

UB ≥ 1 + �|M1|/|M2|
�−ρ2ρ(Hρ̃ (X |Y )−log |M2|+1) (191a)

and

UB < 1 + 2ρ(Hρ̃ (X |Y )−log |M2|+1). (191b)

In this case we choose

cs = |M2| (192a)

c1 =
#

2Hρ̃ (X |Y )−log |M2|+1−ρ−1 log(UB−1)
$

(192b)

c2 = 1. (192c)

By (191a), this choice satisfies (61). Moreover, note that

csc1 c2 ≥ |M2| 2Hρ̃ (X |Y )−log |M2|+1−ρ−1 log(UB−1) (193)

= 2Hρ̃ (X |Y )+1−ρ−1 log(UB−1). (194)

Consequently, it follows from (62) that Bob’s ambiguity
satisfies (68):

A
(g)

B (PX,Y )

< 1 + 2ρ(Hρ̃ (X |Y )−(Hρ̃ (X |Y )+1−ρ−1 log(UB−1))+1) (195)

= UB. (196)

From (191b) it follows that

1 < 2Hρ̃ (X |Y )−log |M2|+1−ρ−1 log(UB−1). (197)

Note that, for every ξ > 1, it holds that 
ξ� < 2ξ .
Consequently, (192) and (197) imply that


ξ� < 2ξ, ξ > 1 (198)

imply that

c1 + c2 = c1 + 1 (199)

< 2 c1 (200)

< 2Hρ̃ (X |Y )−log |M2|+3−ρ−1 log(UB−1). (201)

Eve’s ambiguity satisfies (69), because from (63) and (201) it
follows that:

AE(PX,Y )

>


1 + ln |X |�−ρ

· 2ρ(Hρ̃ (X |Y )−(Hρ̃ (X |Y )−log |M2|+3−ρ−1 log(UB−1))) (202)

= 2−3ρ


1 + ln |X |�−ρ |M2|ρ(UB − 1) (203)

= 2−3ρ


1 + ln |X |�−ρ
|M1| ∧ |M2|

�ρ
(UB − 1) (204)

where the last equality holds by the assumption that |M2| =
|M1| ∧ |M2|.

The third and last case is the case where

UB < 1 + �|M1|/|M2|
�−ρ2ρ(Hρ̃ (X |Y )−log |M2|+1). (205)
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In this case we let k� ∈ N be the largest positive integer k for
which

1 + 2ρk−ρ
�|M1|/k

�−ρ�|M2|/k
�−ρ2ρHρ̃ (X |Y ) ≤ UB (206)

and we choose

cs = k�, c1 = �|M1|/k�
�
, c2 = �|M2|/k�

�
. (207)

The existence of such a k� follows from (67), which implies
that (206) holds when we substitute 1 for k. The choice
in (207) satisfies (61). Consequently, (62) implies that Bob’s
ambiguity satisfies (68):

A
(g)

B (PX,Y )

< 1 + 2ρ(Hρ̃ (X |Y )−log(cs�|M1|/cs
�|M2|/cs
)+1) (208)

≤ UB (209)

where in the second inequality we used that (206) holds when
we substitute cs for k. By the choice of cs in (207) we also
have

2−ρHρ̃ (X |Y )(UB − 1)

< 2ρ(cs + 1)−ρ

% |M1|
cs + 1

&−ρ% |M2|
cs + 1

&−ρ

(210)

< 23ρ

�
cs + 1

|M1| |M2|
	ρ

(211)

≤ 24ρ

�
cs

|M1| |M2|
	ρ

(212)

where (210) holds because cs is the largest positive integer k
for which (206) holds and consequently

UB < 1 + 2ρ(cs + 1)−ρ

% |M1|
cs + 1

&−ρ% |M2|
cs + 1

&−ρ

2ρHρ̃ (X |Y );
(213)

(211) holds because (205) and the fact that (206) holds for
every positive integer k < cs + 1 imply that |M2| ≥ cs + 1
and consequently that |M1| ∧ |M2| ≥ cs + 1, and because

ξ/2 < �ξ
, ξ ≥ 1; (214)

and (212) holds because cs ≥ 1 and consequently cs+1 ≤ 2 cs.
From (212) we obtain that

(c1 + c2)
−ρ =

!�|M1|/cs
�+ �|M2|/cs

�"−ρ
(215)

≥ 2−ρ

�
cs

|M1|
	ρ

(216)

> 2−5ρ |M2|ρ 2−ρHρ̃ (X |Y )(UB − 1) (217)

where (215) holds by (207); (216) holds by the assumption
that |M2| ≤ |M1|; and (217) holds by (212). From (217) and
(63) we obtain that Eve’s ambiguity satisfies (69):

AE(PX,Y )

> 2−5ρ


1 + ln |X |�−ρ |M2|ρ(UB − 1) (218)

= 2−5ρ


1 + ln |X |�−ρ
|M1| ∧ |M2|

�ρ
(UB − 1) (219)

where the last equality holds by the assumption that |M2| =
|M1| ∧ |M2|.

APPENDIX B
PROOF OF COROLLARY 15

The converse results readily follow from the converse results
of Theorem 14: (75) implies (81), and (76) implies (82). The
proof of the achievability results (79)–(80) is more involved.
Suppose that |M1| |M2| > log |X | + 2 and that (78) holds.
To show that there is a choice of the conditional PMF in (49)
for which (79)–(80) hold, we will exhibit a judicious choice
of the triple (cs, c1, c2) ∈ N

3 for which (79) follows from
(73) and (80) from (74). By possibly relabeling the hints,
we can assume w.l.g. that |M2| = |M1| ∧ |M2|. Our choice
of (cs, c1, c2) depends on UB, |M1|, and |M2|; specifically,
we distinguish three different cases.

The first case is the case where

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−log(|M2|−log |X |−2)+2). (220)

In this case we choose

cs = |M2|, c1 = c2 = 1. (221)

Note that this choice satisfies (72). Consequently, (73) implies
that Bob’s ambiguity satisfies (79), because

A (l)
B (PX,Y ) < 1 + 2ρ(Hρ̃ (X |Y )−log(|M2|−log |X |−2)+2) (222)

≤ UB (223)

where the second inequality holds by (220). Moreover, from
(74) it follows that Eve’s ambiguity satisfies (80):

AE(PX,Y ) ≥ 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log 2) (224)

= 2−ρ


1 + ln |X |�−ρ

2ρHρ̃ (X |Y ). (225)

The second case is the case where

UB ≥ 1 + 2ρ(Hρ̃ (X |Y )−log(|M2| �|M1|/|M2|
−log |X |−2)+2)

(226a)

and

UB < 1 + 2ρ(Hρ̃ (X |Y )−log(|M2|−log |X |−2)+2). (226b)

In this case we choose

cs = |M2| (227a)

c1 =
#


2Hρ̃ (X |Y )+2−ρ−1 log(UB−1) + log |X | + 2
�
/|M2|

$
(227b)

c2 = 1. (227c)

By (226a), this choice satisfies (72). Moreover, note that

csc1 c2 ≥ 2Hρ̃ (X |Y )+2−ρ−1 log(UB−1) + log |X | + 2. (228)

Consequently, (73) implies that Bob’s ambiguity satisfies (79),
because

A (l)
B (PX,Y )

< 1 + 2ρ



Hρ̃ (X |Y )−log



2Hρ̃ (X |Y )+2−ρ−1 log(UB−1)
�
+2
�

(229)

= UB. (230)

From (226b) it follows that

1 <
!

2Hρ̃ (X |Y )+2−ρ−1 log(UB−1) + log |X | + 2
"
/|M2|. (231)
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Note that, for every ξ > 1, it holds that 
ξ� < 2ξ .
Consequently, (227) and (231) imply that

c1 + c2

= c1 + 1 (232)

< 2c1 (233)

< 4
!

2Hρ̃ (X |Y )+2−ρ−1 log(UB−1) + log |X | + 2
"
/|M2|. (234)

From (74) and (234) it follows that Eve’s ambiguity satis-
fies (80):

AE(PX,Y )

> 2−2ρ


1 + ln |X |�−ρ |M2|ρ

· 2ρ



Hρ̃ (X |Y )−log



2Hρ̃ (X |Y )+2−ρ−1 log(UB−1)+log |X |+2
��

(235)

= 2−2ρ


1 + ln |X |�−ρ |M2|ρ 2ρHρ̃ (X |Y )

· 
2Hρ̃ (X |Y )+2−ρ−1 log(UB−1) + log |X | + 2
�−ρ

(236)

≥ 2−5ρ


1 + ln |X |�−ρ |M2|ρ(UB − 1)

∧ 2−3ρ


1 + ln |X |�−ρ

(2 + log |X |)−ρ |M2|ρ 2ρHρ̃ (X |Y )

(237)

= 2−5ρ


1 + ln |X |�−ρ
|M1| ∧ |M2|

�ρ
(UB − 1)

∧ 2−3ρ


1 + ln |X |�−ρ

(2 + log |X |)−ρ

|M1| ∧ |M2|

�ρ
· 2ρHρ̃ (X |Y ) (238)

where (237) holds because

1

a + b
≥ 1

2a
∧ 1

2b
, a, b > 0; (239)

and (238) holds by the assumption that |M2| = |M1|∧|M2|.
The third and last case is the case where

UB < 1 + 2ρ(Hρ̃ (X |Y )−log(|M2| �|M1|/|M2|
−log |X |−2)+2).

(240)

In this case we let k� ∈ N be the largest positive integer k for
which

1 + 2ρ(Hρ̃ (X |Y )−log(k�|M1|/k
�|M2|/k
−log |X |−2)+2) ≤ UB

(241)

and we choose

cs = k�, c1 = �|M1|/k�
�
, c2 = �|M2|/k�

�
. (242)

The existence of such a k� follows from (78), which implies
that (241) holds when we substitute 1 for k. Note that the
choice in (242) satisfies (72). Consequently, (73) implies that
Bob’s ambiguity satisfies (79), because

A (l)
B (PX,Y )

< 1 + 2ρ(Hρ̃ (X |Y )−log(cs�|M1|/cs
�|M2|/cs
−log |X |−2)+2) (243)

≤ UB (244)

where in the second inequality we used that (241) holds
when we substitute cs for k. By the choice of cs in (242)

we also have

2−ρ(Hρ̃ (X |Y )+2)(UB − 1)

<

�
(cs + 1)

% |M1|
cs + 1

&% |M2|
cs + 1

&
− log |X | − 2

	−ρ

(245)

<

� |M1| |M2|
4(cs + 1)

− log |X | − 2

	−ρ

(246)

≤
� |M1| |M2|

8cs
− log |X | − 2

	−ρ

(247)

where (245) holds because cs is the largest positive integer k
for which (241) holds and consequently

UB < 1 + 2ρ



Hρ̃ (X |Y )−log


(cs+1)

� |M1|
cs+1

�� |M2 |
cs+1

�
−log |X |−2

�
+2
�
;

(248)

(246) holds because (240) and the fact that (241) holds for
every positive integer k < cs + 1 imply that |M2| ≥ cs + 1
and consequently that |M1| ∧ |M2| ≥ cs + 1, and because

ξ/2 < �ξ
, ξ ≥ 1; (249)

and (247) holds because cs ≥ 1 and consequently cs+1 ≤ 2 cs.
From (247) we obtain that�

cs

|M1|
	ρ

> 2−3ρ |M2|ρ
!
(UB − 1)−1/ρ2Hρ̃ (X |Y )+2

+ log |X | + 2
"−ρ

(250)

and consequently that

(c1 + c2)
−ρ

=
!�|M1|/cs

�+ �|M2|/cs
�"−ρ

(251)

≥ 2−ρ

�
cs

|M1|
	ρ

(252)

> 2−4ρ |M2|ρ
!
(UB − 1)−1/ρ2Hρ̃ (X |Y )+2 + log |X | + 2

"−ρ

(253)

≥ 2−7ρ |M2|ρ(UB − 1)2−ρHρ̃ (X |Y )

∧ 2−5ρ(2 + log |X |)−ρ |M2|ρ (254)

where (251) holds by (242); (252) holds by the assumption
that |M2| ≤ |M1|; (253) holds by (250); and (254) holds
because

1

a + b
≥ 1

2a
∧ 1

2b
, a, b > 0. (255)

From (254) and (74) we obtain that Eve’s ambiguity satis-
fies (80):

AE(PX,Y )

> 2−5ρ


1 + ln |X |�−ρ |M2|ρ

·
!

2−2ρ(UB − 1) ∧ 
2 + log |X |�−ρ
2ρHρ̃ (X |Y )

"
(256)

= 2−5ρ


1 + ln |X |�−ρ
|M1| ∧ |M2|

�ρ
·
!

2−2ρ(UB − 1) ∧ 
2 + log |X |�−ρ2ρHρ̃ (X |Y )
"

(257)

where the last equality holds by the assumption that |M2| =
|M1| ∧ |M2|.
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APPENDIX C
PROOF OF THEOREM 19

We first establish the achievability results, i.e., (89)–(90).
To this end suppose that |M1| ∧ |M2| ≥ 1 + �log |X |�. Let

cs = 1 + �log |X |�, c1 =
% |M1|

cs

&
, c2 =

% |M2|
cs

&
(258)

and for each ν ∈ {cs, c1, c2} let Vν be a chance variable taking
values in the set Vν = {0, . . . , cν −1}. Corollary 7 implies that
there exists some {0, 1}-valued conditional PMF P

�
(V1, V2) =

(v1, v2)
��X = x, Y = y

�
for which

min
G (·|Y,V1,V2)

E
�
G(X |Y, V1, V2)

ρ
�

< 1 + 2ρ(Hρ̃ (X |Y )−log(c1 c2)+1). (259)

Draw (V1, V2) from V1×V2 according to the above conditional
PMF. Fix � > 0 and draw (V �

1, V �
2) from V1 × V2 according

to the conditional PMF

P
�
(V �

1, V �
2) = (v �

1, v
�
2)
��(V1, V2) = (v1, v2)

�
=
�

1 − 2−� − 2−�

|V1| |V2|
	
�{(v �

1,v
�
2)=(v1,v2)} + 2−�

|V1| |V2| .
(260)

Note that, irrespective of the realization (v1, v2) of (V �
1, V �

2),
the probability that (V �

1, V �
2) equals (v1, v2) is 1 − 2−� .

Let G�(·|Y, V1, V2) be an optimal guessing function, which
minimizes E

�
G(X |Y, V1, V2)

ρ
�
. Define the guessing function

G(·|Y, V �
1, V �

2) by

G(x |y, v �
1, v

�
2) = G�(x |y, v �

1, v
�
2),

∀ (x, y, v �
1, v

�
2) ∈ X × Y × V1 × V2. (261)

Using the trivial bound

G(x |y, v �
1, v

�
2) ≤ |X |, ∀ (x, y, v �

1, v
�
2) ∈ X × Y × V1 × V2

(262)

we obtain that

E
�
G(X |Y, V �

1, V �
2)

ρ
�

≤ (1 − 2−�) E
�
G�(X |Y, V1, V2)

ρ
�+ 2−� |X |ρ. (263)

Consequently,

min
G (·|Y,V �

1,V
�
2)

E
�
G(X |Y, V �

1, V �
2)

ρ
�

≤ (1 − 2−�) min
G (·|Y,V1,V2)

E
�
G(X |Y, V1, V2)

ρ
�+ 2−� |X |ρ

(264)

< 1 + 2−(�−ρ log|X |) + 2ρ(Hρ̃ (X |Y )−log(c1 c2)+1) (265)

where (265) follows from (259). Corollary 10 and (258) imply
that there exists some {0, 1}-valued conditional PMF

P[Vs = vs|X = x, Y = y, V �
1 = v1, V �

2 = v2]
for which

E


��LY
Vs,V �

1,V
�
2

��ρ�
≤ min

G (·|Y,V �
1,V

�
2)

E
�
G(X |Y, V �

1, V �
2)

ρ
�

(266)

< 1 + 2−(�−ρ log|X |) + 2ρ(Hρ̃ (X |Y )−log(c1 c2)+1). (267)

Draw Vs from Vs according to the above conditional PMF.
Using the assumption that |M1| ∧ |M2| ≥ 1 + �

log |X |�
and (258), we obtain that

ck >
|Mk|

2


1 + �log |X |�� , k ∈ {1, 2}. (268)

From (267) and (268) it follows that

E


��LY
Vs,V �

1,V
�
2

��ρ�
< 1 + 2−(�−ρ log |X |)

+ 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)+2 log(1+�log |X |
)+3). (269)

By (258) |M1| ≥ csc1 and |M2| ≥ csc2, and hence it
suffices to prove (89)–(90) for a conditional PMF (49) that
assigns positive probability only to csc1 elements of M1
and csc2 elements of M2, and we thus assume w.l.g. that
M1 = Vs × V1 and M2 = Vs × V2. That is, we can
choose M1 = (Vs ⊕cs U, V �

1) and M2 = (U, V �
2), where U

is independent of (X, Y, Vs, V �
1, V �

2) and uniform over Vs. For
this choice it follows from (269) that

A (l)
B (PX,Y )

< 1 + 2−(�−ρ log |X |)

+ 2ρ(Hρ̃ (X |Y )−log(|M1| |M2|)+2 log(1+�log |X |
)+3). (270)

This proves that (89) holds for every sufficiently-large �.
As to (74), note that for every � > 0

LY
M1

= LY
M2

= LY (271)

because

P[M1 = m1, M2 = m2|X = x, Y = y] > 0,

∀ (x, y, m1, m2) ∈ X × Y × M1 × M2. (272)

We next conclude by establishing the converse results
(92)–(93). Theorem 4 implies (92); and (93) trivially holds,
because the list that Eve forms based on Y and the hint that
she observes cannot be larger than the list that she would have
to form if she were to observe only Y .

APPENDIX D
PROOF OF THEOREMS 20 AND 21

We first establish the achievability results, i.e., (99)–(100) in
the guessing version and (104)–(105) in the list version. To this
end, fix c ∈ N satisfying (98) in the guessing version and (103)
in the list version. Both (98) and (103) imply that c ≤ |Mp|.
Hence it suffices to prove (99)–(100) and (104)–(105) for a
{0, 1}-valued conditional PMF as in (94) that assigns positive
probability only to c elements of Mp. We can thus assume
w.l.g. that |Mp| = c. Corollary 7 implies that there exists
some {0, 1}-valued conditional PMF

P[Mp = mp, Ms = ms|X = x, Y = y] (273)

for which

min
G (·|Y,Mp,Ms)

E
�
G(X |Y, Mp, Ms )

ρ
�

< 1 + 2ρ(Hρ̃ (X |Y )−log(|Mp| |Ms|)+1) (274)

= 1 + 2ρ(Hρ̃ (X |Y )−log(c |Ms|)+1). (275)



6994 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 11, NOVEMBER 2019

In addition, Theorem 4 implies that there exists some deter-
ministic task-encoder f (·|Y ) : X → Mp × Ms for which

E


��LY
Mp,Ms

��ρ�
< 1 + 2ρ(Hρ̃ (X |Y )−log(|Mp×Ms|−log |X |−2)+2) (276)

= 1 + 2ρ(Hρ̃ (X |Y )−log(c |Ms|−log |X |−2)+2) (277)

where (Mp, Ms) = f (X |Y ). Accordingly, in the guessing
version (99) follows from (275) and in the list version (104)
follows from (277). Moreover, Corollary 7 implies (100) in
the guessing version and (105) in the list version:

min
G (·|Y,Mp)

E
�
G(X |Y, Mp)ρ

�
≥ 
1 + ln |X |�−ρ

2ρ(Hρ̃ (X |Y )−log |Mp|) (278)

= 
1 + ln |X |�−ρ
2ρ(Hρ̃ (X |Y )−log c). (279)

It remains to establish the converse results, i.e., (101)–(102)
in the guessing version and (106)–(107) in the list version.
In the guessing version (101) follows from Corollary 7, and in
the list version (106) follows from Theorem 4. To prove (102)
and (107), we first note from Corollary 6 that

min
G (·|Y,Mp,Ms)

E
�
G(X |Y, Mp, Ms)

ρ
�

≥ |Ms|−ρ min
G (·|Y,Mp)

E
�
G(X |Y, Mp)

ρ
�
. (280)

Moreover, we also note that

min
G (·|Y,Mp,Ms)

E
�
G(X |Y, Mp, Ms)

ρ
� ≤ E


��LY
Mp,Ms

��ρ�. (281)

From (280) and (281) it follows that in both versions Eve’s
ambiguity exceeds Bob’s by at most a factor of |Ms|ρ ,
i.e., AE(PX,Y ) ≤ |Ms|ρA

(g)
B (PX,Y ) and AE(PX,Y ) ≤

|Ms|ρA (l)
B (PX,Y ). Since Eve can ignore Mp and guess X

based on Y alone, we obtain from Theorem 3 that in both
versions Eve’s ambiguity cannot exceed 2ρHρ̃ (X |Y ). That is,

AE(PX,Y ) = min
G (·|Y,Mp)

E
�
G(X |Y, Mp)

ρ
� ≤ 2ρHρ̃ (X |Y ). (282)

This concludes the proof of (102) and (107) and consequently
that of the converse results.

APPENDIX E
PROOF OF THEOREMS 22 AND 23

We first establish the achievability results, i.e., (113)–(114)
in the guessing version and (118)–(119) in the list version.
To this end fix c ∈ N satisfying (112) in the guessing version
and (117) in the list version. Let Mp be a chance variable that
takes values in the set Mp, and let Ms be a chance variable
that takes values in the set K. Corollary 7 implies that there
exists some {0, 1}-valued conditional PMF P[Mp = mp, Ms =
ms|X = x, Y = y] for which

min
G (·|Y,Mp,Ms)

E
�
G(X |Y, Mp, Ms)

ρ
�

< 1 + 2ρ(Hρ̃ (X |Y )−log(|Mp| |Ms|)−1) (283)

= 1 + 2ρ(Hρ̃ (X |Y )−log(c |K|)−1). (284)

Theorem 4 implies that there exists some deterministic task-
encoder f (·|Y ) : X → Mp × Ms for which

E


��LY
Mp,Ms

��ρ�
< 1 + 2ρ(Hρ̃ (X |Y )−log(|Mp| |Ms|−log |X |−2)+2) (285)

= 1 + 2ρ(Hρ̃ (X |Y )−log(c |K|−log |X |−2)+2) (286)

where (Mp, Ms) = f (X |Y ). Both (112) and (117) imply that
c |K| ≤ |M|. Hence it suffices to prove (113)–(114) and
(118)–(119) for a {0, 1}-valued conditional PMF as in (108)
that assigns positive probability only to c |K| elements of M.
We can thus assume w.l.g. that M = K ×Mp, where Mp is
a set of cardinality c, and K = �0, . . . , |K| − 1

�
. That is, we

can choose M = (Ms ⊕|K| K , Mp), where (Ms, Mp) is drawn
according to one of the above conditional PMFs depending on
the version. Bob observes the hint M and the secret key K
and can thus recover the pair (Ms, Mp). Hence, in the guessing
version (113) follows from (284), and in the list version (118)
follows from (286).

The proof of (114) and (119) is more involved. Note that
in both versions (guessing and list) there exists some mapping
g : X × Y × M → K for which

K = g(X, Y, M). (287)

Given any guessing function G(·|Y, M) for X , introduce some
guessing function G(·, ·|Y, M) for (X, K ) satisfying that

G


x, g(x, y, m)

��y, m
� = G(x |y, m),

∀ (x, y, m) ∈ X × Y × M. (288)

From (287) it then follows that

G(X, K |Y, M) = G(X |Y, M), (289)

and consequently that Eve can guess X and the pair (X, K )
with the same number of guesses. In particular,

E
�
G(X |Y, M)ρ

� = E
�
G(X, K |Y, M)ρ

�
. (290)

Corollary 7 implies that

min
G (·,·|Y,M)

E
�
G(X, K |Y, M)ρ

�
≥ 
1 + ln |X |�−ρ2ρ(Hρ̃ (X,K |Y )−log |M|) (291)

= 
1 + ln |X |�−ρ2ρ(Hρ̃ (X,K |Y )−log(c |K|)). (292)

Note, that

Hρ̃(X, K |Y )

= 1

ρ
log
�
y∈Y

��
x∈X

�
k∈K

�
PX,Y (x, y)

|K|
	ρ̃	1+ρ

(293)

= 1

ρ
log

⎛
⎝�

y∈Y

��
x∈X

PX,Y (x, y)ρ̃
	1+ρ

|K|ρ
⎞
⎠ (294)

= Hρ̃(X |Y ) + log |K| (295)

where the first equality holds because K is independent of
(X, Y ) and uniform over the set K. Consequently, (290) and
(292) imply (114) in the guessing version and (119) in the list
version.
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It remains to establish the converse results, i.e., (115)–(116)
in the guessing version and (120)–(121) in the list version.
To this end we first note that

Hρ̃(X |Y, K )

= α

1 − α
log
�
y∈Y

�
k∈K

��
x∈X

�
PX,Y (x, y)

|K|
	α	1

α

(296)

= α

1 − α
log
�
y∈Y

��
x∈X

PX,Y (x, y)α
	1

α

(297)

= Hρ̃(X |Y ) (298)

where the first equality holds because K is independent of
(X, Y ) and uniform over the set K. In the guessing version
(115) follows from Corollary 7 and (298), and in the list
version (120) follows from Theorem 4 and (298). To prove
(116) and (121), we first note that by Corollary 6

min
G (·|Y,K ,M)

E
�
G(X |Y, K , M)ρ

�
≥ |K|−ρ min

G (·|Y,M)
E
�
G(X |Y, M)ρ

�
. (299)

Because

min
G (·|Y,K ,M)

E
�
G(X |Y, K , M)ρ

� ≤ E


��LY,K
M

��ρ� (300)

(299) implies that in both versions Eve’s ambiguity exceeds
Bob’s by at most a factor of |K|ρ , i.e., AE(PX,Y ) ≤
|K|ρA

(g)
B (PX,Y ) and AE(PX,Y ) ≤ |K|ρA (l)

B (PX,Y ). Since Eve
can ignore M and guess X based on Y alone, we obtain
from Theorem 3 that in both versions Eve’s ambiguity cannot
exceed 2ρHρ̃ (X |Y ):

AE(PX,Y ) = min
G (·|Y,M)

E
�
G(X |Y, M)ρ

� ≤ 2ρHρ̃ (X |Y ). (301)

This concludes the proof of (116) and (121) and consequently
that of the converse results.

APPENDIX F
PROOF OF THEOREMS 24 AND 25

Fix p, r ∈ {1, . . . , s} satisfying (167) in the guessing ver-
sion and (172) in the list version, and let V and W be chance
variables taking values in V = F

ν
2p and W = F

ν−η
2r , respec-

tively. Corollary 7 implies that there exists some {0, 1}-valued
conditional PMF P

�
(V , W ) = (v,w)

��X = x, Y = y
�

for
which

min
G (·|Y,V ,W )

E
�
G(X |Y, V , W )ρ

�
< 1 + 2ρ(Hρ̃ (X |Y )−νs+ηr+1).

(302)

Theorem 4 implies that there exists some deterministic task-
encoder f (·|Y ) : X → V × W for which

E


��LY
V ,W

��ρ� < 1 + 2ρ(Hρ̃ (X |Y )−log(2νs−ηr−log |X |−2)+2) (303)

where (V , W ) = f (X |Y ). Draw U independently of (X, Y )

and uniformly over F
η
2r . Choose GV ∈ F

ν×δ
2p , GW ∈ F

(ν−η)×δ
2r ,

and GU ∈ F
η×δ
2r so that

GV ,

�
GU
GW

	
, GU (304)

are generator matrices of MDS codes. (This is possible,
because both (167) and (172) imply that

p > 0 �⇒ 2p ≥ δ (305a)

r > 0 �⇒ 2r ≥ δ; (305b)

if p = 0, then V can assume but one value, and hence we do
not need GV ; and if r = 0, then (W, U) can assume but one
value, and hence we do not need GW and GU .) Define the
chance variables

Mp = V GV (306a)

Mr = U GU ⊕ W GW = 
U W
��GU

GW

	
(306b)

where Mp is computed in the field F2p and Mr in F2r . Note
that Mp ∈ F

δ
2p and Mr ∈ F

δ
2r . Since both (167) in the guessing

version and (172) in the list version imply that s = p+r , Alice
can choose the �-th hint to comprise the �-th components of
Mp and Mr , so

M� = 
[Mp]�, [Mr ]�
�
, � ∈ {1, . . . , δ}. (307)

For this choice of the hints Bob can recover (V , W, U) no
matter which ν hints he observes, because

GV ,

�
GU
GW

	
(308)

are generator matrices of MDS codes. Hence, in the guessing
version (168) follows from (302), and in the list version (173)
follows from (303).

The proof of (169) and (174) is more involved. Recall that
Eve observes a size-η set E ⊂ {1, . . . , δ} and the components
ME of M indexed by E . Index the possible sets that E could
denote by the elements of some size-


δ
η

�
set K, and denote

by E(k) the set that is indexed by k. The proof of (169) and
(174) builds on the following two intermediate claims, which
we prove next:

1) Eve’s ambiguity can be alternatively expressed as

AE(PX,Y )

= min
K , G (·|Y,ME(K ),K )

E
�
G(X |Y, ME(K ), K )ρ

�
(309)

where K is a chance variable of support K, and
where the minimization is over all conditional PMFs
of K given (X, Y, M) and all guessing functions
G(·|Y, ME(K ), K ).

2) We can assume w.l.g. that Eve must guess not only X
but the pair (X, U).

We first prove Claim 1, i.e., that

min
GE (·|Y,ME )

E



min
E

GE(X |Y, ME )ρ
�

= min
K , G (·|Y,ME(K ),K )

E
�
G(X |Y, ME(K ), K )ρ

�
. (310)

Note that

min
E

GE (X |Y, ME ) = min
k

GE(k)(X |Y, ME(k)); (311)

and for any given GE(k)(·|Y, ME(k)), k ∈ K, define

K = argmin
k

GE(k)(X |Y, ME(k)) (312)
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and introduce the guessing function G(·|Y, ME(K ), K ) satis-
fying that, for every (x, y) ∈ X ×Y , mE(k) ∈ F

η
2s , and k ∈ K,

G(x |y, mE(k), k) = GE(k)(x |y, mE(k)). (313)

We then obtain that

E
�
G(X |Y, ME(K ), K )ρ

� = E



min
E

GE(X |Y, ME)ρ
�

(314)

and consequently that

min
GE (·|Y,ME )

E



min
E

GE(X |Y, ME)ρ
�

≥ min
K , G (·|Y,ME ,K )

E
�
G(X |Y, ME(K ), K )ρ

�
. (315)

To see that equality holds, note that, irrespective of K and
G(·|Y, ME(K ), K ),

E
�
G(X |Y, ME(K ), K )ρ

� ≥ E



min

k
G(X |Y, ME(k), k)ρ

�
.

(316)

For any given G(·|Y, ME(K ), K ) introduce the collection of
guessing functions GE(k)(·|Y, ME(K )), k ∈ K that, for every
(x, y) ∈ X × Y and mE(k) ∈ F

η
2s , satisfy

GE(k)(x |y, mE(k)) = G(x |y, mE(k), k). (317)

We then obtain from (316) that

E
�
G(X |Y, ME(K ), K )ρ

� ≥ E



min

k
GE(k)(X |Y, ME(k))

ρ
�

(318)

and consequently that

min
GE (·|Y,ME )

E



min
E

GE(X |Y, ME)ρ
�

≤ min
K , G (·|Y,ME ,K )

E
�
G(X |Y, ME(K ), K )ρ

�
. (319)

From (315) and (319) we conclude that (310) holds.
We next prove Claim 2. To this end we shall use Claim 1.

Let K be any chance variable of finite support K, and note
that W is deterministic given (X, Y ). By (306b)

[U GU ]E(K ) = [Mr ]E(K ) � [W GV ]E(K ) (320)

where � denotes subtraction in the field F2r . Consequently,
[U GU ]E(K ) is deterministic given (X, Y, ME(K ), K ). Because
GU is a generator matrix of an MDS code, and because
|E(K )| = η, it follows that U is deterministic given
(X, Y, ME(K ), K ), i.e., that there exists some mapping

g : X × Y × F
η
2r × K → U (321)

for which

U = g(X, Y, ME(K ), K ). (322)

Given any guessing function G(·|Y, ME(K ), K ) for X , intro-
duce some guessing function G(·, ·|Y, ME(K ), K ) for (X, U)
satisfying that

G


X, g(X, Y, ME(K ), K )

��Y, ME(K ), K
�

= G(X |Y, ME(K ), K ) (323)

and note that

G(X, U |Y, ME(K ), K ) = G(X |Y, ME(K ), K ). (324)

This proves Claim 2.
Having established Claims 1 and 2, we are now ready to

prove (169) and (174):

min
GE (·|Y,ME )

E



min
E

GE(X |Y, ME )ρ
�

= min
K , G (·|Y,ME ,K )

E
�
G(X |Y, ME(K ), K )ρ

�
(325)

= min
K , GE(·|Y,ME ,K )

E
�
G(X, U |Y, ME(K ), K )ρ

�
(326)

≥ 2ρ(Hρ̃ (X,U |Y )−ηs−log(δ
η)−log(1+ln |X |)) (327)

≥ 2ρ(Hρ̃ (X |Y )−η(s−r)−η log δ−log(1+ln |X |)) (328)

where (325) holds by (310); (326) holds by (324); (327) fol-
lows from Corollary 7 and the fact that (ME(K ), K ) takes
values in a set of size 2ηs


δ
η

�
; and (328) holds because


δ
η

� ≤ δη

and

Hρ̃(X, U |Y )

= 1

ρ
log
�
y∈Y

��
x∈X

�
u∈F

η
2r



PX,Y (x, y)/2ηr�ρ̃	1+ρ

(329)

= 1

ρ
log

⎛
⎝�

y∈Y

��
x∈X

PX,Y (x, y)ρ̃
	1+ρ

2ρηr

⎞
⎠ (330)

= Hρ̃(X |Y ) + ηr (331)

where (329) holds because U is independent of (X, Y ) and
uniform over the set F

η
2r of size 2ηr . This concludes the proof

of the achievability results.
It remains to establish the converse results, i.e., (170)–(171)

in the guessing version and (175)–(176) in the list version.
To this end we first note that

A
(g)

B (PX,Y ) = min
GB(·|Y,MB)

E



max
B

GB(X |Y, MB)ρ
�

≥ min
GB(·|Y,MB)

max
B

E
�
GB(X |Y, MB)ρ

�
(332a)

A (l)
B (PX,Y ) = E



max
B
��LY

MB
��ρ�

≥ max
B

E


��LY
MB
��ρ�. (332b)

Because B ⊆ {1, . . . , δ} is a size-ν set, in the guessing version
(170) follows from (332a) and Corollary 7, and in the list
version (175) follows from (332b) and Theorem 4. To prove
(171) and (176), we first note that

AE(PX,Y ) = min
GE (·|Y,ME )

E



min
E

GE (X |Y, ME )ρ
�

(333)

≤ min
E, GE (·|Y,ME )

E
�
GE(X |Y, ME )ρ

�
. (334)

Corollary 6 implies that, for every size-ν set B ⊆ {1, . . . , δ}
and every size-η set E ⊂ B,

min
GB(·|Y,MB)

E
�
GB(X |Y, MB)ρ

�
≥ 2−ρ(ν−η)s min

GE (·|Y,ME )
E
�
GE(X |Y, ME)ρ

�; (335)
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and, because

min
GB(·|Y,MB)

E
�
GB(X |Y, MB)ρ

� ≤ E


��LY
MB
��� (336)

(334) and (335) imply that in both versions Eve’s ambi-
guity exceeds Bob’s by at most a factor of 2ρ(ν−η)s ,
i.e., AE(PX,Y ) ≤ 2ρ(ν−η)sA

(g)
B (PX,Y ) and AE(PX,Y ) ≤

2ρ(ν−η)sA (l)
B (PX,Y ). Since Eve can ignore the hints that she

observes and guess X based on Y alone, we obtain from
Theorem 3 that, for every size-η set E ⊂ {1, . . . , δ},

min
GE (·|Y,ME )

E
�
GE(X |Y, ME)ρ

� ≤ 2ρHρ̃ (X |Y ); (337)

and (334) and (337) imply that in both versions Eve’s ambigu-
ity cannot exceed 2ρHρ̃ (X |Y ), i.e., AE(PX,Y ) ≤ 2ρHρ̃ (X |Y ). This
concludes the proof of (171) and (176) and consequently that
of the converse results.

APPENDIX G
PROOF OF COROLLARY 26

For the guessing version, the results in (178)–(179) follow
from Theorem 24 if we let

r̃ = νs + ρ−1 log(UB − 1) − Hρ̃(X |Y ) − 1

η
(338)

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 �r̃
 ∈ (−∞, log δ),

�r̃
 �r̃
 ∈ [log δ, s − log δ),

s − 
log δ� �r̃
 ∈ [s − log δ, s),

s �r̃
 ∈ [s,∞)

(339)

p = s − r (340)

and note that

r �= s �⇒ r̃ − r < log δ + 1. (341)

To obtain the results in (181)–(182) for the list version, let

r̃ =
νs − log

!
2Hρ̃ (X |Y )− 1

ρ log(UB−1)+2 + log |X | + 2
"

η
(342)

and choose r as in (339). Then, (173) implies that Bob’s
ambiguity satisfies (181). Since

r �= s �⇒ r̃ − r < log δ + 1 (343)

we obtain from (174) that, if r �= s, then

AE(PX,Y ) > 2ρ(Hρ̃ (X |Y )+(ν−η)s−2η log δ−η−log(1+ln |X |))

·
!

2Hρ̃ (X |Y )− 1
ρ log(UB−1)+2 + log |X | + 2

"−ρ
.

(344)

Because

1

a + b
≥ 1

2 a
∧ 1

2 b
, a, b > 0 (345)

the second factor satisfies the lower bound!
2Hρ̃ (X |Y )− 1

ρ log(UB−1)+2 + log |X | + 2
"−ρ

≥ 2−ρ(Hρ̃ (X |Y )− 1
ρ log(UB−1)+3) ∧ 
2(log |X | + 2)

�−ρ
. (346)

We are now ready to conclude the proof of (182): if r �= s,
then (182) follows from (344) and (346); and if r = s, then
(174) implies that

AE(PX,Y ) ≥ 2ρ(Hρ̃ (X |Y )−η log δ−log(1+ln |X |)) (347)

and consequently that (182) holds.

APPENDIX H
PROOF OF THEOREM 27

If we choose B = {1, . . . , ν}, then in the guessing version
(183a) follows from (332a) and Corollary 7, and in the list
version (183b) follows from (332b) and Theorem 4. For B =
{1, . . . , ν} and E = {ν − η + 1, . . . , ν}, Corollary 6 implies
that

min
GB(·|Y,MB)

E
�
GB(X |Y, MB)ρ

�
≥ 2−ρ

�η−ν
�=1 s� min

GE (·|Y,ME )
E
�
GE (X |Y, ME )ρ

�
. (348)

Since

min
GB(·|Y,MB)

E
�
GB(X |Y, MB)ρ

� ≤ E


��LY
MB
��� (349)

(334) and (348) imply that in both versions Eve’s ambiguity
exceeds Bob’s by at most a factor of 2ρ

�η−ν
�=1 s� . That is,

AE(PX,Y ) ≤ 2ρ
�η−ν

�=1 s�A
(g)

B (PX,Y ) (350)

and

AE(PX,Y ) ≤ 2ρ
�η−ν

�=1 s�A (l)
B (PX,Y ). (351)

Moreover, (334) and (337) imply that in both versions Eve’s
ambiguity cannot exceed 2ρHρ̃ (X |Y ). That is,

AE(PX,Y ) ≤ 2ρHρ̃ (X |Y ) (352)

which concludes the proof of (184).
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