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Abstract: Two correlated sources emit a pair of sequences, each of which is observed by a different
encoder. Each encoder produces a rate-limited description of the sequence it observes, and the two
descriptions are presented to a guessing device that repeatedly produces sequence pairs until correct.
The number of guesses until correct is random, and it is required that it have a moment (of some
prespecified order) that tends to one as the length of the sequences tends to infinity. The description
rate pairs that allow this are characterized in terms of the Rényi entropy and the Arimoto–Rényi
conditional entropy of the joint law of the sources. This solves the guessing analog of the Slepian–Wolf
distributed source-coding problem. The achievability is based on random binning, which is analyzed
using a technique by Rosenthal.
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1. Introduction

In the Massey–Arıkan guessing problem [1,2], a random variable X is drawn from a finite set
X according to some probability mass function (PMF) PX, and it has to be determined by making
guesses of the form “Is X equal to x?” until the guess is correct. The guessing order is determined by a
guessing function G, which is a bijective function from X to {1, . . . , |X |}. Guessing according to G
proceeds as follows: the first guess is the element x̂1 ∈ X satisfying G(x̂1) = 1; the second guess is the
element x̂2 ∈ X satisfying G(x̂2) = 2, and so on. Consequently, G(X) is the number of guesses needed
to guess X. Arıkan [2] showed that for any ρ > 0, the ρth moment of the number of guesses required
by an optimal guesser G∗ to guess X is bounded by:

1
(1 + ln |X |)ρ 2ρH1/(1+ρ)(X) ≤ E[G∗(X)ρ] ≤ 2ρH1/(1+ρ)(X), (1)

where ln(·) denotes the natural logarithm, and H1/(1+ρ)(X) denotes the Rényi entropy of order 1
1+ρ ,

which is defined in Section 3 ahead (refinements of (1) were recently derived in [3]).
Guessing with an encoder is depicted in Figure 1. Here, prior to guessing X, the guesser

is provided some side information about X in the form of f (X), where f : X → {1, . . . ,M} is
a function taking on at most M different values (“labels”). Accordingly, a guessing function
G(·|·) is a function from X × {1, . . . ,M} to {1, . . . , |X |} such that for every label m ∈ {1, . . . ,M},
G(·|m) : X → {1, . . . , |X |} is bijective. If, among all encoders, f ∗ minimizes the ρth moment of
the number of guesses required by an optimal guesser to guess X after observing f (X), then [4]
(Corollary 7):

1
(1 + ln |X |)ρ 2ρ[H1/(1+ρ)(X)−logM] ≤ E[G∗(X| f ∗(X))ρ] ≤ 1 + 2ρ[H1/(1+ρ)(X)−logM+1]. (2)
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Thus, in guessing a sequence of independent and identically distributed (IID) random variables,
a description rate of approximately H1/(1+ρ)(X) bits per symbol is needed to drive the ρth moment
of the number of guesses to one as the sequence length tends to infinity [4,5] (see Section 2 for more
related work).

X
f

f (X) ∈ {1, . . . ,M}
Guesser

x̂1, x̂2, . . .

Figure 1. Guessing with an encoder f .

In this paper, we generalize the single-encoder setting from Figure 1 to the setting with distributed
encoders depicted in Figure 2, which is the analog of Slepian–Wolf coding [6] for guessing: A source
generates a sequence of pairs {(Xi, Yi)}n

i=1 over a finite alphabet X ×Y . The sequence Xn is described
by one of b2nRXc labels and the sequence Yn by one of b2nRYc labels using functions:

fn : X n → {1, . . . , b2nRXc}, (3)

gn : Yn → {1, . . . , b2nRYc}, (4)

where RX ≥ 0 and RY ≥ 0. Based on fn(Xn) and gn(Yn), a guesser repeatedly produces guesses of the
form (x̂n, ŷn) until (x̂n, ŷn) = (Xn, Yn).

Xn

Yn

fn

gn

fn(Xn) ∈ {1, . . . , b2nRXc}

gn(Yn) ∈ {1, . . . , b2nRYc}
Guesser

(x̂n, ŷn), . . .

Figure 2. Guessing with distributed encoders fn and gn.

For a fixed ρ > 0, a rate pair (RX,RY) ∈ R2
≥0 is called achievable if there exists a sequence of

encoders and guessing functions {( fn, gn, Gn)}∞
n=1 such that the ρth moment of the number of guesses

tends to one as n tends to infinity, i.e.,

lim
n→∞

E
[
Gn
(
Xn, Yn| fn(Xn), gn(Yn)

)ρ]
= 1. (5)

Our main contribution is Theorem 1, which characterizes the achievable rate pairs. For a
fixed ρ > 0, let the region R(ρ) comprise all rate pairs (RX,RY) ∈ R2

≥0 satisfying the following
inequalities simultaneously:

RX ≥ lim sup
n→∞

Hρ̃(Xn|Yn)

n
, (6)

RY ≥ lim sup
n→∞

Hρ̃(Yn|Xn)

n
, (7)

RX + RY ≥ lim sup
n→∞

Hρ̃(Xn, Yn)

n
, (8)

where the Rényi entropy Hα(·) and the Arimoto–Rényi conditional entropy Hα(·|·) of order α are both
defined in Section 3 ahead, and throughout the paper,

ρ̃ ,
1

1 + ρ
. (9)
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Theorem 1. For any ρ > 0, all rate pairs in the interior ofR(ρ) are achievable, while those outsideR(ρ) are
not. If {(Xi, Yi)}∞

i=1 are IID according to PXY, then (6)–(8) reduce to:

RX ≥ Hρ̃(X|Y), (10)

RY ≥ Hρ̃(Y|X), (11)

RX + RY ≥ Hρ̃(X, Y). (12)

Proof. The converse follows from Corollary 1 in Section 4; the achievability follows from Corollary 2 in
Section 5; and the reduction of (6)–(8) to (10)–(12) in the IID case follows from (19) and (20) ahead.

The rate region defined by (10)–(12) resembles the rate region of Slepian–Wolf coding [6]
(Theorem 15.4.1); the difference is that the Shannon entropy and conditional entropy are replaced by
their Rényi counterparts. The rate regions are related as follows:

Remark 1. For memoryless sources and ρ > 0, the region R(ρ) is contained in the Slepian–Wolf region.
Typically, the containment is strict.

Proof. The containment follows from the monotonicity of the Arimoto–Rényi conditional entropy:
(9) implies that ρ̃ ∈ (0, 1), so, by [7] (Proposition 5), Hρ̃(X|Y) ≥ H(X|Y), Hρ̃(Y|X) ≥ H(Y|X), and
Hρ̃(X, Y) ≥ H(X, Y). As for the strict containment, first note that the Slepian–Wolf region contains at
least one rate pair (RX,RY) satisfying RX + RY = H(X, Y). Consequently, if Hρ̃(X, Y) > H(X, Y), then
the containment is strict. Because Hρ̃(X, Y) > H(X, Y) unless (X, Y) is distributed uniformly over its
support [8], the containment is typically strict.

The claim can also be shown operationally: The probability of error is equal to the probability
that more than one guess is needed, and for every ρ > 0,

Pr
[
Gn
(
Xn, Yn| fn(Xn), gn(Yn)

)
≥ 2

]
= Pr

[
Gn
(
Xn, Yn| fn(Xn), gn(Yn)

)ρ − 1 ≥ 2ρ − 1
]

(13)

≤
E
[
Gn
(
Xn, Yn| fn(Xn), gn(Yn)

)ρ ]− 1
2ρ − 1

, (14)

where (14) follows from Markov’s inequality. Thus, the probability of error tends to zero if the ρth
moment of the number of guesses tends to one.

Despite the resemblance between (10)–(12) and the Slepian–Wolf region, there is an important
difference: while Slepian–Wolf coding allows separate encoding with the same sum rate as with joint
encoding, this is not necessarily true in our setting:

Remark 2. Although the sum rate constraint (12) is the same as in single-source guessing [5], separate encoding
of Xn and Yn may require a larger sum rate than joint encoding of Xn and Yn.

Proof. If Hρ̃(X|Y) + Hρ̃(Y|X) > Hρ̃(X, Y), then (10) and (11) together impose a stronger constraint
on the sum rate than (12). For example, if:

PXY(x, y) y = 0 y = 1
x = 0 0.65 0.17
x = 1 0.17 0.01

and ρ = 1, then H1/2(X|Y) + H1/2(Y|X) ≈ 1.61 bits, so separate (distributed) encoding requires a sum
rate exceeding 1.61 bits as opposed to joint encoding, which is possible with H1/2(X, Y) ≈ 1.58 bits (in
Slepian–Wolf coding, this cannot happen because H(X, Y)− H(X|Y)− H(Y|X) = I(X; Y) ≥ 0).

The guessing problem is related to the task-encoding problem, where based on fn(Xn) and gn(Yn),
the decoder outputs a list that is guaranteed to contain (Xn, Yn), and the ρth moment of the list size
is required to tend to one as n tends to infinity. While, in the single-source setting, the guessing
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problem and the task-encoding problem have the same asymptotics [4], this is not the case in the
distributed setting:

Remark 3. For memoryless sources, the task-encoding region from [9] is strictly smaller than the guessing
regionR(ρ) unless X and Y are independent.

Proof. In the IID case, the task-encoding region is the set of all rate pairs (RX,RY) ∈ R2
≥0 satisfying

the following inequalities [9] (Theorem 1):

RX ≥ Hρ̃(X), (15)

RY ≥ Hρ̃(Y), (16)

RX + RY ≥ Hρ̃(X, Y) + Kρ̃(X; Y), (17)

where Kα(X; Y) is a Rényi measure of dependence studied in [10] (when α is one, Kα(X; Y) is the
mutual information). The claim now follows from the following observations: By [7] (Theorem 2),
Hρ̃(X) ≥ Hρ̃(X|Y) with equality if and only if X and Y are independent; similarly, Hρ̃(Y) ≥ Hρ̃(Y|X)

with equality if and only if X and Y are independent; and by [10] (Theorem 2), Kρ̃(X; Y) ≥ 0 with
equality if and only if X and Y are independent.

The rest of this paper is structured as follows: in Section 2, we review other guessing settings;
in Section 3, we recall the Rényi information measures and prove some auxiliary lemmas; in Section 4,
we prove the converse theorem; and in Section 5, we prove the achievability theorem, which is based
on random binning and, in the case ρ > 1, is analyzed using a technique by Rosenthal [11].

2. Related Work

Tighter versions of (1) can be found in [3,12]. The large deviation behavior of guessing was
studied in [13,14]. The relation between guessing and variable-length lossless source coding was
explored in [3,15,16].

Mismatched guessing, where the assumed distribution of X does not match its actual distribution,
was studied in [17], along with guessing under source uncertainty, where the PMF of X belongs to
some known set, and a guesser was sought with good worst-case performance over that set. Guessing
subject to distortion, where instead of guessing X, it suffices to guess an X̂ that is close to X according
to some distortion measure, was treated in [18].

If the guesser observes some side information Y, then the ρth moment of the number of guesses
required by an optimal guesser is bounded by [2]:

1
(1 + ln |X |)ρ 2ρHρ̃(X|Y) ≤ E[G∗(X|Y)ρ] ≤ 2ρHρ̃(X|Y), (18)

where Hρ̃(X|Y) denotes the Arimoto–Rényi conditional entropy of order ρ̃ = 1
1+ρ , which is defined in

Section 3 ahead (refinements of (18) were recently derived in [3]). Guessing is related to the cutoff rate
of a discrete memoryless channel, which is the supremum over all rates for which the ρth moment of
the number of guesses needed by the decoder to guess the message can be driven to one as the block
length tends to infinity. In [2,19], the cutoff rate was expressed in terms of Gallager’s E0 function [20].
Joint source-channel guessing was considered in [21].

Guessing with an encoder, i.e., the situation where the side information can be chosen, was studied
in [4], where it was also shown that guessing and task encoding [22] have the same asymptotics.
With distributed encoders, however, task encoding [9] and guessing no longer have the same
asymptotics; see Remark 3. Lower and upper bounds for guessing with a helper, i.e., an encoder that
does not observe X, but has access to a random variable that is correlated with X, can be found in [5].
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3. Preliminaries

Throughout the paper, log(·) denotes the base-two logarithm. When clear from the context,
we often omit sets and subscripts; for example, we write ∑x for ∑x∈X and P(x) for PX(x). The Rényi
entropy [23] of order α is defined for positive α other than one as:

Hα(X) ,
1

1− α
log ∑

x
P(x)α. (19)

In the limit as α tends to one, the Shannon entropy is recovered, i.e., limα→1 Hα(X) = H(X). The
Arimoto–Rényi conditional entropy [24] of order α is defined for positive α other than one as:

Hα(X|Y) , α

1− α
log ∑

y

[
∑
x

P(x, y)α

] 1
α

. (20)

In the limit as α tends to one, the Shannon conditional entropy is recovered, i.e., limα→1 Hα(X|Y) =
H(X|Y). The properties of the Arimoto–Rényi conditional entropy were studied in [7,24,25].

In the rest of this section, we recall some properties of the Arimoto–Rényi conditional entropy
that will be used in Section 4 (Lemmas 1–3), and we prove auxiliary results for Section 5 (Lemmas 4–7).

Lemma 1 ([7], Theorem 2). Let α > 0, and let PXYZ be a PMF over the finite set X ×Y ×Z . Then,

Hα(X|Y, Z) ≤ Hα(X|Z) (21)

with equality if and only if X (−− Z (−− Y form a Markov chain.

Lemma 2 ([7], Proposition 4). Let α > 0, and let PXYZ be a PMF over the finite set X ×Y ×Z . Then,

Hα(X, Y|Z) ≥ Hα(X|Z) (22)

with equality if and only if Y is uniquely determined by X and Z.

Lemma 3 ([7], Theorem 3). Let α > 0, and let PXYZ be a PMF over the finite set X ×Y ×Z . Then,

Hα(X|Y, Z) ≥ Hα(X|Z)− log |Y|. (23)

Lemma 4 ([20], Problem 4.15(f)). Let Y be a finite set, and let f : Y → R≥0. Then, for all p ∈ (0, 1],[
∑
y

f (y)

]p

≤∑
y

f (y)p. (24)

Proof. If ∑y f (y) = 0, then (24) holds because the left-hand side (LHS) and the right-hand side (RHS)
are both zero. If ∑y f (y) > 0, then:

∑
y

f (y)p =

[
∑
y′

f (y′)

]p

∑
y

[
f (y)

∑y′ f (y′)

]p

(25)

≥
[
∑
y′

f (y′)

]p

∑
y

f (y)
∑y′ f (y′)

(26)

=

[
∑
y′

f (y′)

]p

, (27)
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where (26) holds because p ∈ (0, 1] and f (y)/ ∑y′ f (y′) ∈ [0, 1] for every y ∈ Y .

Lemma 5. Let a, b, and c be nonnegative integers. Then, for all p > 0,

(1 + a + b + c)p ≤ 1 + 4p(ap + bp + cp) (28)

(the restriction to integers cannot be omitted; for example, (28) does not hold if a = b = c = 0.1 and p = 2).

Proof. If p ∈ (0, 1], then (28) follows from Lemma 4 because 4p ≥ 1. If p > 1, then the cases with
a + b + c ∈ {0, 1, 2} can be checked individually. For a + b + c ≥ 3,

(1 + a + b + c)p =

[
3

a + b + c
+ 3
]p

·
[

a + b + c
3

]p

(29)

≤ 4p ·
[

a + b + c
3

]p

(30)

≤ 4p · ap + bp + cp

3
(31)

≤ 1 + 4p(ap + bp + cp), (32)

where (30) holds because a + b + c ≥ 3, and (31) follows from Jensen’s inequality because z 7→ zp is
convex on R≥0 since p > 1.

Lemma 6. Let a, b, c, and d be nonnegative real numbers. Then, for all p > 0,

(a + b + c + d)p ≤ 4p(ap + bp + cp + dp). (33)

Proof. If p ∈ (0, 1], then (33) follows from Lemma 4 because 4p ≥ 1. If p > 1, then:

(a + b + c + d)p = 4p ·
[

a + b + c + d
4

]p

(34)

≤ 4p · ap + bp + cp + dp

4
(35)

≤ 4p(ap + bp + cp + dp), (36)

where (35) follows from Jensen’s inequality because z 7→ zp is convex on R≥0 since p > 1.

Lemma 7 (Rosenthal). Let p > 1, and let X1, . . . , Xn be independent random variables that are either zero or
one. Then, X , ∑n

i=1 Xi satisfies:

E[Xp] ≤ 2p2
max{E[X], E[X]p}. (37)

Proof. This is a special case of [11] (Lemma 1). For convenience, we also provide a self-contained proof:

E[Xp] = E

[
∑

i∈{1,...,n}
Xi ·

{
∑

j∈{1,...,n}
Xj

}p−1]
(38)

= E

[
∑

i∈{1,...,n}
Xi ·

{
1 + ∑

j∈{1,...,n}\{i}
Xj

}p−1]
(39)

= ∑
i∈{1,...,n}

E

[
Xi ·

{
1 + ∑

j∈{1,...,n}\{i}
Xj

}p−1]
(40)
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= ∑
i∈{1,...,n}

E[Xi] · E
[{

1 + ∑
j∈{1,...,n}\{i}

Xj

}p−1]
(41)

≤ ∑
i∈{1,...,n}

E[Xi] · E
[{

1 + ∑
j∈{1,...,n}

Xj

}p−1]
(42)

= E[X] · E[(1 + X)p−1] (43)

≤ E[X] · 2p−1 · (1 + E[Xp−1]) (44)

= 2p−1(E[X] + E[X]E[Xp−1]) (45)

≤ 2p−1
(

E[X] + E[X]E[Xp]
p−1

p
)

(46)

≤ 2p max
{

E[X], E[X]E[Xp]
p−1

p
}

, (47)

where (39) holds because each Xi is either zero or one; (41) holds because X1, . . . , Xn are independent;
(42) holds because z 7→ zp−1 is increasing on R≥0 for p > 1; (44) holds because for real numbers a ≥ 0,
b ≥ 0, and r > 0, we have (a + b)r ≤ (2 max{a, b})r = 2r max{ar, br} ≤ 2r(ar + br); and (46) follows
from Jensen’s inequality because z 7→ z(p−1)/p is concave on R≥0 for p > 1.

We now consider two cases depending on which term on the RHS of (47) achieves the maximum:
If the maximum is achieved by E[X], then E[Xp] ≤ 2p E[X], which implies (37) because 2p ≤ 2p2

since
p > 1. If the maximum is achieved by E[X]E[Xp](p−1)/p, then:

E[Xp] ≤ 2p E[X]E[Xp]
p−1

p . (48)

Rearranging (48), we obtain:

E[Xp] ≤ 2p2
E[X]p, (49)

so (37) holds also in this case.

4. Converse

In this section, we prove a nonasymptotic and an asymptotic converse result (Theorem 2 and
Corollary 1, respectively).

Theorem 2. Let U (−− X (−− Y (−− V form a Markov chain over the finite set U ×X × Y × V , and let
τ , 1 + ln |X × Y|. Then, for every ρ > 0 and for every guesser, the ρth moment of the number of guesses it
takes to guess the pair (X, Y) based on the side information (U, V) satisfies:

E[G(X, Y|U, V)ρ] ≥ max
{

2ρ(Hρ̃(X|Y)−log |U |−log τ),
2ρ(Hρ̃(Y|X)−log |V|−log τ),
2ρ(Hρ̃(X,Y)−log |U×V|−log τ)

}
.

(50)

Proof. We view (50) as three lower bounds corresponding to the three terms in the maximization on
its RHS. The lower bound involving Hρ̃(X, Y) holds because:

E[G(X, Y|U, V)ρ] ≥ 2ρ(Hρ̃(X,Y|U,V)−log τ) (51)

≥ 2ρ(Hρ̃(X,Y)−log |U×V|−log τ), (52)

where (51) follows from (18) and (52) follows from Lemma 3. The lower bound involving Hρ̃(X|Y)
holds because:
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E[G(X, Y|U, V)ρ] ≥ 2ρ(Hρ̃(X,Y|U,V)−log τ) (53)

≥ 2ρ(Hρ̃(X,Y|U,V,Y)−log τ) (54)

= 2ρ(Hρ̃(X|U,V,Y)−log τ) (55)

= 2ρ(Hρ̃(X|U,Y)−log τ) (56)

≥ 2ρ(Hρ̃(X|Y)−log |U |−log τ), (57)

where (53) follows from (18); (54) follows from Lemma 1; (55) follows from Lemma 2; (56) follows
from Lemma 1 because X (−− (U, Y) (−− V form a Markov chain; and (57) follows from Lemma 3.
The lower bound involving Hρ̃(Y|X) is analogous to the one with Hρ̃(X|Y).

Corollary 1. For any ρ > 0, rate pairs outsideR(ρ) are not achievable.

Proof. We first show that (8) is necessary for a rate pair (RX,RY) ∈ R2
≥0 to be achievable. Indeed,

if (8) does not hold, then there exists an ε > 0 such that for infinitely many n,

Hρ̃(Xn, Yn)

n
≥ RX + RY + ε. (58)

Using Theorem 2 with X ′ , X n, Y ′ , Yn, U , {1, . . . , b2nRXc}, V , {1, . . . , b2nRYc}, PX′Y′ ,
PXnYn , U , fn(Xn), V , gn(Yn), and τn = 1 + n ln |X × Y| leads to:

E[G(Xn, Yn|U, V)ρ] ≥ 2ρ(Hρ̃(Xn ,Yn)−log |U×V|−log τn) (59)

≥ 2ρn( 1
n Hρ̃(Xn ,Yn)−RX−RY− 1

n log τn). (60)

It follows from (60), (58), and the fact that 1
n log τn tends to zero as n tends to infinity that the LHS

of (59) cannot tend to one as n tends to infinity, so (RX,RY) is not achievable if (8) does not hold. The
necessity of (6) and (7) can be shown in the same way.

5. Achievability

In this section, we prove a nonasymptotic and an asymptotic achievability result (Theorem 3 and
Corollary 2, respectively).

Theorem 3. Let X , Y , U , and V be finite nonempty sets; let PXY be a PMF; let ρ > 0; and let ε > 0 be
such that:

log |U | ≥ Hρ̃(X|Y) + ε, (61)

log |V| ≥ Hρ̃(Y|X) + ε, (62)

log |U × V| ≥ Hρ̃(X, Y) + ε. (63)

Then, there exist functions f : X → U and g : Y → V and a guesser such that the ρth moment of the number of
guesses needed to guess the pair (X, Y) based on the side information ( f (X), g(Y)) satisfies:

E
[
G
(
X, Y| f (X), g(Y)

)ρ] ≤ {1 + 4ρ+1 · 2−ρε if ρ ∈ (0, 1],

1 + 4(ρ+1)2 · 2−ε if ρ > 1.
(64)

Proof. Our achievability result relies on random binning: we map each x ∈ X uniformly at random to
some u ∈ U and each y ∈ Y uniformly at random to some v ∈ V . We then show that the ρth moment of
the number of guesses averaged over all such mappings f : X → U and g : Y → V is upper bounded
by the RHS of (64). From this, we conclude that there exist f and g that satisfy (64).
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Let the guessing function G correspond to guessing in decreasing order of probability [2] (ties
can be resolved arbitrarily). Let f and g be distributed as described above, and denote by E f ,g[·] the
expectation with respect to f and g. Then,

E f ,g
[
E[G(X, Y| f (X), g(Y))ρ]

]
= ∑

x,y
P(x, y)E f ,g[G(x, y| f (x), g(y))ρ] (65)

≤∑
x,y

P(x, y)E f ,g

[{
∑
x′ ,y′

ψ(x′, y′)φ f (x′)φg(y′)

}ρ]
(66)

= ∑
x,y

P(x, y)E f ,g[(1 + β1 + β2 + β3)
ρ] (67)

≤ 1 + 4ρ ∑
x,y

P(x, y)(E f ,g[β
ρ
1] + E f ,g[β

ρ
2] + E f ,g[β

ρ
3]) (68)

with:

ψ(x′, y′) = ψ(x, y, x′, y′) , 1{P(x′, y′) ≥ P(x, y)}, (69)

φ f (x′) = φ f (x, x′) , 1{ f (x′) = f (x)}, (70)

φg(y′) = φg(y, y′) , 1{g(y′) = g(y)}, (71)

β1 = β1(x, y, f ) , ∑
x′ 6=x

ψ(x′, y)φ f (x′), (72)

β2 = β2(x, y, g) , ∑
y′ 6=y

ψ(x, y′)φg(y′), (73)

β3 = β3(x, y, f , g) , ∑
x′ 6=x,y′ 6=y

ψ(x′, y′)φ f (x′)φg(y′), (74)

where 1{·} is the indicator function that is one if the condition comprising its argument is true and
zero otherwise; (65) holds because ( f , g) and (X, Y) are independent; (66) holds because the number
of guesses is upper bounded by the number of (x′, y′) that are at least as likely as (x, y) and that are
mapped to the same labels (u, v) as (x, y); (67) follows from splitting the sum depending on whether
x′ = x or not and whether y′ = y or not and from the fact that ψ(x, y) = φ f (x) = φg(y) = 1; and
(68) follows from Lemma 5 because β1, β2, and β3 are nonnegative integers. As indicated in (69)–(74),
the dependence of ψ, φ f , φg, β1, β2, and β3 on x, y, f , and g is implicit in our notation.

We first treat the case ρ ∈ (0, 1]. We bound the terms on the RHS of (68) as follows:

∑
x,y

P(x, y)E f ,g[β
ρ
1] ≤∑

x,y
P(x, y)E f ,g[β1]

ρ (75)

= ∑
x,y

P(x, y)

[
∑

x′ 6=x
ψ(x′, y)

1
|U |

]ρ

(76)

≤∑
x,y

P(x, y)

[
∑
x′

[
P(x′, y)
P(x, y)

]ρ̃ 1
|U |

]ρ

(77)

=
1
|U |ρ ∑

x,y
P(x, y)ρ̃

[
∑
x′

P(x′, y)ρ̃

]ρ

(78)

=
1
|U |ρ ∑

y

[
∑
x

P(x, y)ρ̃

][
∑
x′

P(x′, y)ρ̃

]ρ

(79)

=
1
|U |ρ ∑

y

[
∑
x

P(x, y)ρ̃

]1+ρ

(80)

= 2ρ(Hρ̃(X|Y)−log |U |) (81)
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≤ 2−ρε, (82)

where (75) follows from Jensen’s inequality because z 7→ zρ is concave on R≥0 since ρ ∈ (0, 1]; (76) holds
because the expectation operator is linear and because E f ,g[φ f (x′)] = 1/|U | since x′ 6= x; in (77), we
extended the inner summation and used that ψ(x′, y) ≤ [P(x′, y)/P(x, y)]ρ̃; and (82) follows from (61).
In the same way, we obtain:

∑
x,y

P(x, y)E f ,g[β
ρ
2] ≤ 2−ρε. (83)

Similarly,

∑
x,y

P(x, y)E f ,g[β
ρ
3] ≤∑

x,y
P(x, y)E f ,g[β3]

ρ (84)

= ∑
x,y

P(x, y)

[
∑

x′ 6=x,y′ 6=y
ψ(x′, y′)

1
|U × V|

]ρ

(85)

≤∑
x,y

P(x, y)

[
∑
x′ ,y′

[
P(x′, y′)
P(x, y)

]ρ̃ 1
|U × V|

]ρ

(86)

=
1

|U × V|ρ ∑
x,y

P(x, y)ρ̃

[
∑
x′ ,y′

P(x′, y′)ρ̃

]ρ

(87)

=
1

|U × V|ρ

[
∑
x,y

P(x, y)ρ̃

]1+ρ

(88)

= 2ρ(Hρ̃(X,Y)−log |U×V|) (89)

≤ 2−ρε. (90)

From (68), (82), (83), and (90), we obtain:

E f ,g
[
E[G(X, Y| f (X), g(Y))ρ]

]
≤ 1 + 3 · 4ρ · 2−ρε (91)

≤ 1 + 4ρ+1 · 2−ρε (92)

and hence infer the existence of f : X → U and g : Y → V satisfying (64).
We now consider (68) when ρ > 1. Unlike in the case ρ ∈ (0, 1], we cannot use Jensen’s inequality

as we did in (75). Instead, for fixed x ∈ X and y ∈ Y , we upper-bound the first expectation on the
RHS of (68) by:

E f ,g[β
ρ
1] ≤ 2ρ2

max
{

E f ,g[β1], E f ,g[β1]
ρ
}

(93)

≤ 2ρ2(
E f ,g[β1]

ρ + E f ,g[β1]
)
, (94)

where (93) follows from Lemma 7 because ρ > 1 and because β1 is a sum of independent random
variables taking values in {0, 1}. By the same steps as in (76)–(82),

∑
x,y

P(x, y)E f ,g[β1]
ρ ≤ 2−ρε. (95)

As to the expectation of the other term on the RHS of (94),

∑
x,y

P(x, y)E f ,g[β1] ≤
[
∑
x,y

P(x, y)E f ,g[β1]
ρ

] 1
ρ

(96)

≤ 2−ε, (97)
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where (96) follows from Jensen’s inequality because z 7→ z
1
ρ is concave onR≥0 since ρ > 1, and (97) follows

from (95). From (94), (95), and (97), we obtain:

∑
x,y

P(x, y)E f ,g[β
ρ
1] ≤ 2ρ2

(2−ρε + 2−ε) (98)

≤ 2ρ2+1 · 2−ε, (99)

where (99) holds because 2−ρε ≤ 2−ε since ρ > 1 and ε > 0. In the same way, we obtain for the second
expectation on the RHS of (68):

∑
x,y

P(x, y)E f ,g[β
ρ
2] ≤ 2ρ2+1 · 2−ε. (100)

Bounding E f ,g[β
ρ
3], i.e., the third expectation on the RHS of (68), is more involved because β3 is

not a sum of independent random variables. Our approach builds on the ideas used by Rosenthal [11]
(Proof of Lemma 1); compare (47) and (48) with (108) and (123) ahead. For fixed x ∈ X and y ∈ Y ,

E f ,g[β
ρ
3] = E f ,g

[
∑

x′ 6=x,y′ 6=y
ψ(x′, y′)φ f (x′)φg(y′) ·

{
∑

x̃ 6=x,ỹ 6=y
ψ(x̃, ỹ)φ f (x̃)φg(ỹ)

}ρ−1]
(101)

= E f ,g

[
∑

x′ 6=x,y′ 6=y
ψ(x′, y′)φ f (x′)φg(y′) · (1 + γ1 + γ2 + γ3)

ρ−1

]
(102)

= ∑
x′ 6=x,y′ 6=y

E f ,g
[
ψ(x′, y′)φ f (x′)φg(y′) · (1 + γ1 + γ2 + γ3)

ρ−1] (103)

= ∑
x′ 6=x,y′ 6=y

E f ,g
[
ψ(x′, y′)φ f (x′)φg(y′)

]
· E f ,g

[
(1 + γ1 + γ2 + γ3)

ρ−1] (104)

≤ ∑
x′ 6=x,y′ 6=y

E f ,g
[
ψ(x′, y′)φ f (x′)φg(y′)

]
· E f ,g

[
(1 + δ1 + δ2 + β3)

ρ−1] (105)

≤ ∑
x′ 6=x,y′ 6=y

E f ,g
[
ψ(x′, y′)φ f (x′)φg(y′)

]
· 4ρ−1 · E f ,g

[
1 + δ

ρ−1
1 + δ

ρ−1
2 + β

ρ−1
3
]

(106)

= 4ρ−1

{
E f ,g[β3] + ∑

y′ 6=y

1
|V| E f ,g[δ1]E f ,g[δ

ρ−1
1 ]

+ ∑
x′ 6=x

1
|U | E f ,g[δ2]E f ,g[δ

ρ−1
2 ] + E f ,g[β3]E f ,g[β

ρ−1
3 ]

}
(107)

≤ 4ρ max

{
E f ,g[β3], ∑

y′ 6=y

1
|V| E f ,g[δ1]E f ,g[δ

ρ−1
1 ],

∑
x′ 6=x

1
|U | E f ,g[δ2]E f ,g[δ

ρ−1
2 ], E f ,g[β3]E f ,g[β

ρ−1
3 ]

}
(108)

with:

γ1 = γ1(x, y, x′, y′, f ) , ∑
x̃/∈{x,x′}

ψ(x̃, y′)φ f (x̃), (109)

γ2 = γ2(x, y, x′, y′, g) , ∑
ỹ/∈{y,y′}

ψ(x′, ỹ)φg(ỹ), (110)

γ3 = γ3(x, y, x′, y′, f , g) , ∑
x̃/∈{x,x′},ỹ/∈{y,y′}

ψ(x̃, ỹ)φ f (x̃)φg(ỹ), (111)

δ1 = δ1(x, y, y′, f ) , ∑
x̃ 6=x

ψ(x̃, y′)φ f (x̃), (112)
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δ2 = δ2(x, y, x′, g) , ∑
ỹ 6=y

ψ(x′, ỹ)φg(ỹ), (113)

where (102) follows from splitting the sum in braces depending on whether x̃ = x′ or not and whether
ỹ = y′ or not and from assuming ψ(x′, y′) = φ f (x′) = φg(y′) = 1 within the braces, which does not
change the value of the expression because it is multiplied by ψ(x′, y′)φ f (x′)φg(y′); (104) holds because
(φ f (x′), φg(y′)) and (γ1, γ2, γ3) are independent since x̃ 6= x′ and ỹ 6= y′; (105) holds because ρ− 1 > 0,
γ1 ≤ δ1, γ2 ≤ δ2, and γ3 ≤ β3; (106) follows from Lemma 6; and (107) follows from identifying
E f ,g[β3], E f ,g[δ1], and E f ,g[δ2] because φ f (x′) and φg(y′) are independent, E f ,g[φ f (x′)] = 1/|U |, and
E f ,g[φg(y′)] = 1/|V|. As indicated in (109)–(113), the dependence of γ1, γ2, γ3, δ1, and δ2 on x, y, x′,
y′, f , and g is implicit in our notation.

To bound E f ,g[β
ρ
3] further, we study some of the terms on the RHS of (108) separately, starting

with the second, which involves the sum over y′. For fixed x ∈ X , y ∈ Y , and y′ ∈ Y \ {y},

E f ,g[δ1]E f ,g[δ
ρ−1
1 ] ≤ E f ,g[δ

ρ
1 ]

1
ρ E f ,g[δ

ρ
1 ]

ρ−1
ρ (114)

= E f ,g[δ
ρ
1 ] (115)

≤ 2ρ2
max

{
E f ,g[δ1], E f ,g[δ1]

ρ
}

(116)

≤ 2ρ2(
E f ,g[δ1] + E f ,g[δ1]

ρ
)
, (117)

where (114) follows from Jensen’s inequality because z 7→ z
1
ρ and z 7→ z

ρ−1
ρ are both concave on R≥0

since ρ > 1, and (116) follows from Lemma 7 because ρ > 1 and because δ1 is a sum of independent
random variables taking values in {0, 1}. This implies that for fixed x ∈ X and y ∈ Y ,

∑
y′ 6=y

1
|V| E f ,g[δ1]E f ,g[δ

ρ−1
1 ] ≤ 2ρ2

∑
y′ 6=y

1
|V|
(
E f ,g[δ1] + E f ,g[δ1]

ρ
)

(118)

= 2ρ2
E f ,g[β3] + 2ρ2

∑
y′ 6=y

1
|V| E f ,g[δ1]

ρ, (119)

where (119) follows from the definitions of δ1 and β3. Similarly, for the third term on the RHS of (108),

∑
x′ 6=x

1
|U | E f ,g[δ2]E f ,g[δ

ρ−1
2 ] ≤ 2ρ2

E f ,g[β3] + 2ρ2
∑

x′ 6=x

1
|U | E f ,g[δ2]

ρ. (120)

With the help of (119) and (120), we now go back to (108) and argue that it implies that for fixed
x ∈ X and y ∈ Y ,

E f ,g[β
ρ
3] ≤ 2 · 4ρ2

[
E f ,g[β3] + ∑

y′ 6=y

1
|V| E f ,g[δ1]

ρ + ∑
x′ 6=x

1
|U | E f ,g[δ2]

ρ + E f ,g[β3]
ρ

]
. (121)

To prove this, we consider four cases depending on which term on the RHS of (108) achieves
the maximum: If E f ,g[β3] achieves the maximum, then (121) holds because 4ρ ≤ 2 · 4ρ2

. If the LHS
of (118) achieves the maximum, then (121) follows from (119) because 4ρ · 2ρ2 ≤ 2 · 4ρ2

. If the LHS of
(120) achieves the maximum, then (121) follows similarly. Finally, if E f ,g[β3]E f ,g[β

ρ−1
3 ] achieves the

maximum, then:

E f ,g[β
ρ
3] ≤ 4ρ E f ,g[β3]E f ,g[β

ρ−1
3 ] (122)

≤ 4ρ E f ,g[β3]E f ,g[β
ρ
3]

ρ−1
ρ , (123)
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where (123) follows from Jensen’s inequality because z 7→ z
ρ−1

ρ is concave on R≥0 for ρ > 1.
Rearranging (123), we obtain:

E f ,g[β
ρ
3] ≤ 4ρ2

E f ,g[β3]
ρ, (124)

so (121) holds also in this case.
Having established (121), we now take the expectation of its sides to obtain:

∑x,y P(x, y)E f ,g[β
ρ
3] ≤ 2 · 4ρ2

∑x,y P(x, y)

[
E f ,g[β3] + ∑y′ 6=y

1
|V| E f ,g[δ1]

ρ + ∑x′ 6=x
1
|U | E f ,g[δ2]

ρ + E f ,g[β3]
ρ

]
. (125)

We now study the terms on the RHS of (125) separately, starting with the fourth (last). By (85)–(90),
which hold also if ρ > 1,

∑
x,y

P(x, y)E f ,g[β3]
ρ ≤ 2−ρε. (126)

As for the first term on the RHS of (125),

∑
x,y

P(x, y)E f ,g[β3] ≤ 2−ε, (127)

which follows from (126) in the same way as (97) followed from (95). As for the second term on the
RHS of (125),

∑
x,y

P(x, y) ∑
y′ 6=y

1
|V| E f ,g[δ1]

ρ

= ∑
x,y

P(x, y) ∑
y′ 6=y

1
|V|

[
∑

x′ 6=x
ψ(x′, y′)

1
|U |

]ρ

(128)

≤∑
x,y

P(x, y)ρ̃ ∑
y′

1
|V|

[
∑
x′

P(x′, y′)ρ̃ 1
|U |

]ρ

(129)

= ∑
x,y

P(x, y)ρ̃ ∑
y′

[
∑
x′

P(x′, y′)ρ̃ 1
|U × V|ρ

] 1
ρ

·
[
∑
x′

P(x′, y′)ρ̃ 1

|U |
ρ

1+ρ

](1+ρ)· ρ−1
ρ

(130)

≤∑
x,y

P(x, y)ρ̃

{
∑
y′

∑
x′

P(x′, y′)ρ̃ 1
|U × V|ρ

} 1
ρ

·
{

∑
y′

[
∑
x′

P(x′, y′)ρ̃ 1

|U |
ρ

1+ρ

]1+ρ} ρ−1
ρ

(131)

=

{
1

|U × V|ρ

[
∑
x,y

P(x, y)ρ̃

]1+ρ} 1
ρ

·
{

1
|U |ρ ∑

y′

[
∑
x′

P(x′, y′)ρ̃

]1+ρ} ρ−1
ρ

(132)

≤ (2−ρε)
1
ρ · (2−ρε)

ρ−1
ρ (133)

= 2−ρε, (134)

where in (129), we extended the inner summations and used that ψ(x′, y′) ≤ [P(x′, y′)/P(x, y)]ρ̃;
(131) follows from Hölder’s inequality; and (133) follows from (89)–(90) and (81)–(82). In the same
way, we obtain for the third term on the RHS of (125):

∑
x,y

P(x, y) ∑
x′ 6=x

1
|U | E f ,g[δ2]

ρ ≤ 2−ρε. (135)

From (125), (127), (134), (135), and (126), we deduce:
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∑
x,y

P(x, y)E f ,g[β
ρ
3] ≤ 2 · 4ρ2

(2−ε + 2−ρε + 2−ρε + 2−ρε) (136)

≤ 8 · 4ρ2 · 2−ε, (137)

where (137) holds because 2−ρε ≤ 2−ε since ρ > 1 and ε > 0. Finally, (68), (99), (100), and (137) imply:

E f ,g
[
E[G(X, Y| f (X), g(Y))ρ]

]
≤ 1 + 4ρ(2 · 2ρ2+1 · 2−ε + 8 · 4ρ2 · 2−ε) (138)

≤ 1 + 4(ρ+1)2 · 2−ε (139)

and thus prove the existence of f : X → U and g : Y → V satisfying (64).

Corollary 2. For any ρ > 0, rate pairs in the interior ofR(ρ) are achievable.

Proof. Let (RX,RY) be in the interior of R(ρ). Then, (6)–(8) hold with strict inequalities, and there
exists a δ > 0 such that for all sufficiently large n,

logb2nRXc ≥ Hρ̃(Xn|Yn) + nδ, (140)

logb2nRYc ≥ Hρ̃(Yn|Xn) + nδ, (141)

logb2nRXc+ logb2nRYc ≥ Hρ̃(Xn, Yn) + nδ. (142)

Using Theorem 3 with X ′ , X n, Y ′ , Yn, U , {1, . . . , b2nRXc}, V , {1, . . . , b2nRYc}, PX′Y′ ,
PXnYn , and εn , nδ shows that, for all sufficiently large n, there exist encoders fn : X n → U and
gn : Yn → V and a guessing function Gn satisfying:

E
[
Gn
(
Xn, Yn| fn(Xn), gn(Yn)

)ρ] ≤ {1 + 4ρ+1 · 2−ρεn if ρ ∈ (0, 1],

1 + 4(ρ+1)2 · 2−εn if ρ > 1.
(143)

Because εn tends to infinity as n tends to infinity, the RHS of (143) tends to one as n tends to
infinity, which implies that the rate pair (RX,RY) is achievable.
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