
4

IEEE Information Theory Society Newsletter September 2014

Teaching IT Power Spectral Density  
of Communication Signals

Amos Lapidoth 
ETH Zurich, Switzerland 

Abstract

The transmitted waveforms in digital communications are rarely 
stationary, so they do not have a power spectral density (PSD) in 
the classical sense. To teach their PSD one needs a definition that is 
both general and useful. The traditional approach is to define the 
PSD via the average autocovariance function. Here I shall describe 
an alternative approach and offer some comparisons.  

1  Introduction

The transmitted waveform in digital communications is usually 
modelled as a stochastic process (SP), because the data it conveys 
are viewed as random. But this SP is typically not wide-sense 
stationary (WSS), so the classical definition of the power spectral 
density (PSD) of a WSS SP as an integrable function whose Inverse 
Fourier Transform (IFT) is the SP’s autocovariance function does 
not apply. 

To overcome this difficulty, teachers often “stationarize” the sig-
nals in various ways. For example, in Pulse Amplitude Modulation 
(PAM), which is typically cyclostationary, they stationarize the ran-
dom signal by introducing a random time offset. For Quadrature 
Amplitude Modulation (QAM) such an offset does not always suf-
fice, and they thus also introduce a random phase. Once the pro-
cess has been stationarized, they then apply the classical definition. 

This approach has two shortcomings. The first is the lack of gen-
erality: different hacks are required to stationarize different trans-
mission schemes. For example, in PAM the distribution of the time 
offset depends on whether or not forward error correction in the 
form of block coding is performed. And in QAM the need to in-
troduce a random phase depends on whether or not the random 
sequence of complex symbols is proper. The second shortcoming 
is that this approach obscures the operational meaning of the PSD. 
Except for enabling them to calculate it on the exam, it is not clear 
to the students why knowing the PSD is useful. And saying that 
the Federal Communications Commission (FCC) places restric-
tions on it only begs the question as to why the FCC does so. 

In the first part of this paper (Sections 1–4) I shall present a dif-
ferent approach, which I believe addresses these shortcomings. 
To avoid confusion with the classical PSD of WSS SPs, I shall  refer 
to the PSD that I define as Operational PSD (OPSD). In the second 
part of the paper (Sections 5–6) I shall relate the OPSD to the aver-
age autocovariance function, which is often used to study nonsta-
tionary SPs [3, Ch. 4, Sec. 26.6]. The paper concludes with a discus-
sion (Section 7) and some additional  resources (Section 8). 

To see the forest for the trees, I shall be somewhat informal and refer 
the interested readers to [2] for the technical details. In particular all 
the functions and SPs I consider are tacitly assumed measurable, 
and all the properties attributed to OPSD should be appended by 
the phrase “outside a set of frequencies of Lebesgue measure zero.” 
Thus, when I write that the OPSD is “unique” I mean that two OPS-
Ds of the same SP must be identical outside a set of  frequencies of 
Lebesgue measure zero. A similar qualification applies when I say 

that the OPSD is “nonnegative.” Also, to avoid unnecessary techni-
cal complications, we shall restrict attention to SPs of bounded vari-
ance, where a SP ( )( )X t  is said to be of bounded variance if there ex-
ists some constant γ such that at every epoch t ∈ � the variance of 
the random variable (RV) X(t) is bounded by γ: 

 Var X t t( ) , .[ ]≤ ∈γ �  (1) 

Finally, we shall restrict ourselves to centered stochastic processes, 
i.e., to SPs of zero mean. The extensions to the general case are 
straightforward. 

2  Power

We begin with the power, which is more intuitive and more 
 fundamental.1 The power in a SP ( )( ),X t t ∈ � , or ( )( )X t  or X for 
short, is P if 
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For example, consider the PAM signal 
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where A T, s > 0 are constants; the pulse-shape g is a deterministic 
real signal that decays sufficiently fast; and where the bi-infinite 
sequence … …−, , , ,X X X1 0 1  is bounded, centered, with 
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In this case a direct calculation [2, Section 14.5] shows that for  
any τ ∈ � , 
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where Rgg denotes the self-similarity function of g(.) 
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From (5) we obtain 
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1 Teaching the power spectral density first and then integrating it to 
obtain the power is pedagogically unappealing and  mathematically 
dubious; see Section 6.
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and, thus, using the Sandwich Theorem, 
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where g� denotes the Fourier Transform (FT) of g(.): 
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(10) 

Computing the power in QAM is a bit trickier: the key is 
to   relate the power in the QAM signal to the power in its 
 baseband representation (which is a complex PAM signal) [2, 
Chapter 18]. 

3  Defining the OPSD

Denoting by L1 the class of real-valued functions from the reals 
whose Lebesgue integral is finite, we propose the following defini-
tion for the OPSD. 

Definition 1 (Operational PSD of a Real SP). We say that the contin-
uous-time real stochastic process ( )( ),X t t ∈ �  is of operational power 
spectral density SXX if ( )( ),X t t ∈ �  is a measurable SP; the mapping 
SXX : � �→  is integrable and symmetric; and for every stable real filter of  
impulse response h ∈ L1 the power at the filter’s output when it is fed 
( )( ),X t t ∈ �  is given by 

 
Power in =  ( ˆ .X h_ SXX f f f

−∞

∞

∫ )|h( )| d2

This functional relationship can be motivated by thinking of the 
power as being the sum of the powers in the infinitesimal nono-
verlapping (and hence orthogonal) frequency slivers that the sig-
nal occupies. The symmetry requirement is only needed if we do 
not allow for complex filters. (The OPSD for complex SPs has the 
same definition except that the symmetry requirement is dropped 
and the filters are allowed to be complex.) 

To put the reader at ease we note that, when it exists, the OPSD 
is “unique” [2, Corollary  15.3.3], and it is “nonnegative” [2, 
Exercise  15.5]. Moreover, for WSS SPs this definition coin-
cides with the standard definition of the PSD as an integrable 
function whose IFT is the autocovariance function [2, Theo-
rem 25.14.3]. 

Our definition makes it clear that knowing the OPSD of the trans-
mitted waveform can be useful. For example, it allows us to cal-
culate the “adjacent channel interference,” i.e., how much of the 
signal’s power “spills over” into the front-end filter of a receiver 
operating at an adjacent channel. Alas, it tells us nothing about 
how to compute the OPSD. This is, of course, the price of a general 
definition that must be applicable to a wide-range of transmission 
schemes. 

As we shall see in Section 5, the OPSD can often be calculated 
from the average autocovariance function when the latter exists. 
However, it turns out that, for some of the transmission schemes 
that are taught in a basic course on digital communications, the 
OPSD can easily be calculated from its definition. Consider, for 
example, the PAM signal (3). Passing ( )( )X t  through a stable fil-
ter of impulse response h ∈ L1  is tantamount to replacing its 
pulse-shape g  by g h_  [2, Section 15.4], so the power in X h_  

can be calculated from (9) by replacing the FT of g with the FT of 
g h_  to yield 
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And since the term in parentheses is a symmetric function of f ,  it 
must coincide with the OPSD, so 
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The calculation of the OPSD for QAM signals can be carried out in 
a similar, albeit a bit more complicated, way [2, Section 18.4]. The 
key is to study the baseband representation of X h_ ; to show that 
it corresponds to the filtering of the baseband representation of X 
(which is a complex PAM signal) by a (different) filter; and to then 
use the relationship between the power in baseband and passband. 

4  The OPSD of a Filtered SP

Starting from the definition of the OPSD, it is rather simple to 
show that feeding a SP ( )( )X t  of a given OPSD SXX  to a stable 
filter of a given impulse response r ∈ L1 results in a SP of OPSD 

 
f f r fXX� S ( ) ˆ( ) .2

 
(12) 

To see this only requires the small leap of faith that the associa-
tivity of the convolution extends to stochastic processes. Indeed, 
to compute the OPSD of X r_  we need to know the power in 
( )X r h_ _  for every h ∈ L1. But, since convolution is (usually) as-
sociative, we expect that the SP ( )X r h_ _  be (usually) identical 
to the SP X r h_ _( ) and hence of equal power. The  power in the 
latter is easily computed from SXX: we view r h_  as an impulse 
response of a filter; we view X r h_ _( ) as the result of passing 
X through this filter; and we recall that X is of OPSD SXX so the 
power in X r_ _( )h —and hence also in ( )X r h_ _ —is 
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Rewriting this as 
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and noting that the term in parentheses is symmetric in f, we con-
clude that the operational PSD of X r_  should be given by (12). 

5  The OPSD and the Average 
Autocovariance Function

We next explore the relationship between the OPSD and the 
 average autocovariance function, which is defined as follows 
[3, Chapter 4, Section 26.6]: 

Definition 2 (Average Autocovariance Function). We say that a SP 
( )( )X t  is of average autocovariance function KXX : � �→  if it is 
measurable, of bounded variance, and if for every τ ∈ � 
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By substituting 0 for τ in (13) and by recalling the definition of 
power (2), we obtain that if ( )( )X t  is a centered SP of power P and 
of average autocovariance function KXX, then 

 P K= XX ( ).0  (14) 

An example of a SP that has an average autocovariance function 
is the PAM signal (3). In fact, the calculation of its  average auto-
covariance function is very similar to the calculation of its power. 

The following theorem provides an operational meaning to the 
average autocovariance function and shows that if it is integrable, 
then its FT is the OPSD. Thus, for stochastic processes having an 
integrable average autocovariance function, our definition of the 
OPSD and the definition in the literature of the operational PSD as 
the FT of KXX  coincide.2 It also provides a method for computing 
the operational PSD: compute KXX  and take its FT. 

Theorem 1 (The OPSD and the Average Autocovariance Func-
tion). Let ( )( )X t  be a centered SP of average autocovariance function KXX . 

1) If h is the impulse response of some stable filter, then 

 
Power in =  ( ) ( ) .X h_ K RXX

−∞

∞

∫ σ σ σhh d
 

(15) 

2) If  KXX  is integrable, then its Fourier Transform is the OPSD  
of ( )( )X t : 

 K S�
XX XX= .  (16)

6  The OPSD and Power

Intuition suggests that the OPSD should integrate to the power. 
To see why, recall that if X is of OPSD SXX, then

 
Power in = d
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Suppose we now substitute for h the impulse response of a fil-
ter whose frequency response resembles that of an ideal unit-gain 
lowpass filter of very large cutoff frequency W� 1. In this case 
the RHS of (17) would resemble the integral of SXX f( ) from –W to  
+W, which is approximately the integral from −∞ to +∞ when W 
is very large. And as to the LHS, if W is very large, then intuition 
suggests that X will hardly be altered by the filter, and the LHS 
would approximately equal the power in X. 

This intuition is excellent, and for most stochastic processes of in-
terest the OPSD indeed integrates to the power. However, as our 
next example shows, there are some pathological counter-exam-
ples. In fact, in the absence of additional assumptions, we are only 
guaranteed that the integral of the OPSD cannot exceed the power. 

Before presenting our example in detail, we begin with the big 
picture. In our example the SP X takes on the values ±1 only, so 
its power is 1. However, X changes between the values +1 and 
−1 progressively faster the further time is from the origin. As we 
next explain, this results in the power in X h_  being zero for every 
stable filter h, so X is of zero OPSD. The integral of the operational 
PSD is thus zero, while the power is one. 

For some intuition as to why the power in X h_  is zero, recall that 
when   h is stable, its frequency response decays to zero. Conse-
quently, above some cutoff frequency, the frequency response of 
the filter is nearly zero. Since our SP varies faster and faster the 
further we are from the origin of time, when we are sufficiently 
far from the origin of time the dynamics of our SP are much faster 
than the filter’s cutoff frequency. Consequently, except for tran-
sients that result from the behavior of our SP near the origin of 
time, in steady state the response of h to X will be nearly zero. 
Since the transients do not influence the power in X h_ , the power 
in X h_  is zero. We next present the example in greater detail. 

Example 1. Consider the SP ( )( ),X t t ∈ �  whose value in the time interval 
[ , )ν ν + 1  is defined for every integer ν as follows: The interval is divided 
into ν + 1 nonoverlapping half-open subintervals of length 1 1/ ( )ν +  
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and in each such subinterval the SP is constant and is equal to the RV 
Xν κ, , which takes on the values ±1 equiprobably with 

 { }, , { , , },Xν κ ν κ ν∈ ∈ …� 0

being IID. Thus, 
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This SP is centered, of power P = 1, and yet its operational PSD is zero 
at all frequencies. The integral of the OPSD of X is thus strictly smaller 
than the power in X. 

Proof. At every epoch t the RV X(t) takes on the values ±1 
equiprobably and is thus centered. Moreover, X2(t) is deterministi-
cally 1, so the power in ( )( )X t  is one. We next show that ( )( )X t  is 
of average autocovariance function 

 

KXX ( )
,

,
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τ=
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For τ equal to zero this follows immediately from our observation 
that X2(t) is deterministically equal to one. By symmetry, it suffices 
to establish (19) for positive τ. When τ is 1 or larger, the epochs t and  
t + τ fall—irrespective of t—in different intervals, so X(t) and  
X(t + τ) are uncorrelated for all t. For such τ’s KXX ( )τ  is thus 
zero,  in agreement with  (19). It thus only remains to estab-
lish (19) for 0 1< <τ . In this case t and t + τ are guaranteed to 
fall in  different subintervals whenever 

 

τ ≥
  +

1
1t

,

 

(20) 

where the RHS is the length of the subintervals to which the in-
terval containing t—namely the interval [ , )ν ν + 1 , where ν is  
t —is subdivided. (If this inequality is not satisfied, then  

X(t) and X(t + τ) may or may not be in different subintervals.) For 
τ ∈ (0,1) Inequality (20) holds whenever t  ≥ −−τ 1 1. Thus, when 
t is  outside the finite interval 

 { }:t t′ ∈ ′  < −−� τ 1 1
2 The FT of the average autocovariance function is called “average 
spectral density” in [3].
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the random variables X(t) and X(t + τ) are uncorrelated. For t in-
side this finite interval the correlation between X(t) and X(t + τ)  
is upper bounded by 1. Consequently, when we average 
E X t X t( ) ( )+[ ]τ  over t, the contribution of t’s inside this interval 
washes out and the result is zero. 

From  (19) we conclude using Theorem  1  (ii) that the OPSD of 
( )( )X t  is zero. 

In Example 1 the power is strictly larger than the integral of the 
OPSD, and the average autocovariance function is discontinuous 
at the origin. This is no coincidence: the integral of the OPSD never 
exceeds the power, and the two are the same whenever the SP has 
an average autocovariance function that is continuous at the origin: 

Theorem 2 (The Power and the Integral of the OPSD). Let ( )( )X t  
be a centered SP of OPSD SXX  and of power P. 

1) The integral of the OPSD never exceeds the power: 

 
P S≥

−∞

∞

∫ XX f f( ) .d
 

(21) 

2)  If, additionally, ( )( )X t  is of some average autocovariance function 
KXX , then equality in (21) holds if, and only if, KXX  is continuous 
at the origin.

7  Discussion

To teach the PSD we must provide the students with a general 
definition, an operational meaning, and some useful examples. 
Definition 1 provides the first two, and the class of PAM signals 
the third. PAM signals are particularly suitable for this purpose 
because filtering a PAM signal is tantamount to filtering its pulse 
shape, so—once we have taught the power in PAM—we can eas-
ily also calculate the power in filtered PAM. Another example is 
provided by QAM signals, but the analysis is a bit more difficult. 
Note, however, that this additional difficulty is already encoun-
tered in the calculation of the power, and, once we have taught the 
power, the OPSD is fairly straightforward. 

A different viable approach is to define the PSD as the FT of the 
average autocovariance function. But if this approach is adopt-
ed, then one must also provide the students with an operational 
meaning such as that of Theorem 1(i). Once again, PAM signals 
can provide the desired example, but QAM might be a bit trickier. 

The drawback of Definition 1 is that it is not immediately obvious 
from the definition that the OPSD is “unique” [2, Corollary 15.3.3]. 
But the added benefit is that it makes it almost obvious how the 
OPSD should behave when the SP is filtered (Section 4). At the end 
of the day it is up to the instructor to decide which definition is 
preferable. I prefer Definition 1 because providing the operational 
meaning to the FT of the average autocovariance function (Theo-
rem 1(i)) requires a significant detour, and because Definition 1 is 
particularly suitable not only for PAM but also for QAM. 

I am not very keen on teaching the OPSD by stationarizing the 
SP and by then using the classical definition for WSS SPs. This 
approach lacks generality and obscures the operational meaning. 
Moreover, in QAM it hides the beautiful result that the OPSD does 
not depend on the pseudo-covariance of the symbols. Indeed, this 
approach introduces a random phase that is tantamount to set-
ting the pseudo-autocovariance function to zero and making the 
symbols proper. 

Some readers who are familiar with the workings of a spectrum ana-
lyzer might contemplate using that as a pedagogical tool for teaching  
the OPSD. I suspect, however, that this might lead to confusion because 
in a spectrum analyzer time-averages and ensemble- averages are in-
tertwined.3  Moreover, different spectrum analyzers work in different 
ways and thus lead to different possible definitions. Some measure the 
power at the output of narrow bandpass filters centered around the 
different frequencies while others use the FFT. Moreover, the order in 
which the different limits are taken when analyzing a nonstationary SP 
using a spectrum analyzer is tricky. A related approach, which some 
teachers use to motivate the PSD of WSS SPs, is to study the limit 
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But relating this limit to the FT of the average autocovariance 
function can be tricky. 

The OPSD is not only important in applications, but also a pleas-
ure to teach. Whether you adopt Definition 1 is immaterial: what 
is important is that you go out and teach it. 

8  Additional Resources

Most of the material on the OPSD can be found in the textbook [2] 
and in the videos of my lectures, which can be found at 

http://www.multimedia.ethz.ch/lectures/ 
itet/2013/spring/227-0104-00L/ 

Chapter 14, which is presented in Lecture 6, defines power and 
computes it for PAM; Chapter 15, which is presented in Lecture 7, 
defines the OPSD and computes it for PAM; and Chapter  18, 
which is presented in Lecture 9, computes the power and OPSD 
for QAM signals and also defines the OPSD for complex SPs. A 
shorter video on the OPSD of QAM can be found at 

http://www.afidc.ethz.ch/A_Foundation_in_ 
Digital_Communication/QAMMovie.html 

The video emphasizes that the OPSD of QAM does not depend on 
the pseudo-covariance of the transmitted symbols. 

An excellent starting point for the literature on the average auto-
covariance function is Note 174 in [4]. And for more on cyclosta-
tionarity see [1]. 
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