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Abstract-The Rate-and-State capacity of a state-dependent 

channel with a state-cognizant encoder is the highest possible 

rate of communication over the channel when the decoder-in 
addition to reliably decoding the data-must also reconstruct the 
state sequence with some required fidelity. Feedback from the 

channel output to the encoder is shown to increase this capacity 
even for channels that are memoryless with memoryless states. 

This capacity is calculated here for such channels with feedback 
when the state reconstruction fidelity is measured using a single

letter distortion function and the state sequence is revealed to the 
encoder in one of two different ways: strictly-causally or causally. 

I. INTRODUCTlON 

The Rate-and-State (RnS) capacity of a state-dependent dis

crete memoryless channel (SD-DMC) with a state-cognizant 

encoder is the highest rate at which data can be transmitted 

over the channel when the decoder-in addition to reliably 

decoding the data-must also reconstruct the state sequence 

with some required fidelity. As we shall see, unlike the 

Shannon capacity, it is typically increased when a feedback 

link is introduced from the channel's output to the encoder. 

Noteworthy exceptions are when the state sequence is to be 

reconstructed losslessly or, in some settings, when the channel 

is Gaussian and fidelity is measured in terms of mean squared

error. 

Here we compute the RnS capacity in the presence of feed

back in two cases depending on whether the state-information 

(SI) is revealed to the encoder strictly-causaIly or causaIly. 

We shaIl see that in both cases the RnS capacity can be 

achieved using a block-Markov coding scheme with backward 

decoding, where in Block-b, in addition to fresh data, the 

encoder also transmits a lossy description of the states and 

codeword pertaining to Block-(b -1). For the purpose of this 

description, the channel outputs pertaining to Block-(b - 1) 

serve as side-information that is available (before Block-b 

commences) to both describer (via the feedback link) and 

reconstructor. Once the transmission in Block-b has been 

decoded, the receiver recovers the fresh information that was 

transmitted in that block as weIl as the description pertaining 

to Block-(b - 1) that was transmitted in Block-b. Using the 

latter in combination with the Block-(b - 1) channel outputs, 

it then proceeds to decode the Block-(b - 1) codeword. The 

description must be fine enough to allows this. Using the 

description, the decoded Block-(b - 1) codeword, and the 
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Block-(b - 1) channel outputs, the receiver then estimates the 

Block-(b - 1) state sequence to within the required fidelity. 

The literature on the SD-DMC is extensive [2]. Particularly 

relevant to our setting is [4], which deals with the Gaussian 

channel with none aus al SI and mean squared-error state

reconstruction fidelity. Also relevant to us is [3], where the 

reconstruction fidelity is replaced by a list size: in addition 

to decoding the data reliably, the decoder must form a list 

that with high probability contains the state sequence. The 

problem addressed in [3] is thus more of a "guessing" nature 

than an "estimation" nature. For this problem [3] characterizes 

the tension between the data rate and the exponential growth of 

the list-size in the blocklength. The converse in [3] is based 

on the extension of Fano's inequality to lists and is hence 

inapplicable to our setting. 

To appreciate the benefits of feedback, it is instructive to 

consider a special kind of SD-DMC. Let us denote a generic 

SD-DMC by (pc(ylx,s),ps ), where Ps is the probability 

mass function (PMF) of the state, and where the transition 

law Pc(ylx, s) is the PMF induced on the output alphabet Y 

when the input to the channel is x E X and the state of the 

channel is SES. The special case to consider is when the 

output Y is a pair (Y, S), the state is S of PMF Ps, and the 

transition law factorizes as 

(1) 

In this case the state and input do not interact, and it is intu

itively clear that this channel's RnS capacity is the difference 

between the Shannon capacity of the channel Pe (Ylx) and 

the rate that is needed to describe the state to a reconstructor 

that observes S. While the former is unaffected by feedback, 

the latter is: In the absence of feedback the S-sequence 

is only observed by the decoder, and the encoder is thus 

faced with a Wyner-Ziv problem [5] of describing S to a 

ｲ･｣ｯｾｳｴｲｵ｣ｴｯｲ＠ that observes S. But in the presence of feedback 

the S-sequence-being part of the channel output (Y, S)-is 

revealed also to the encoder, and the encoder is thus faced with 

a classical rate-distortion problem with side information S that 

is available to both describer and reconstructor. Since this 

rate-distortion function is typically lower than the Wyner-Ziv 

rate [5, Seetion 11], we conclude that-irrespective of whether 

the state is revealed to the encoder strictly-causaIly, causaIly, 

or noncausaIly-feedback can increase the RnS capacity. (For 

more on the no-feedback case see [I].) 
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11. THE SET-UP 

We are given a SD-DMC (pc(ylx,s), ps) and a nonnega

tive distortion function d: S x S ---+ [0, 00 ), where S is the 

reconstruction alphabet, and where the alphabets X, S, y, S 
are all finite. The maximum of dis finite and is denoted drnax : 

dmax = maxd(s, 8). (2) 
s,s 

The distortion between the n-Iength sequences S E sn and 

S E sn is defined as the average distortion between the 

corresponding components 

1 n 

d(s,s) = - Ld(sk,Sk)' 
71, 

k=l 

(3) 

We are also given some allowed distortion D. Let 71, denote 

the blocklength, R the data rate, and W = {I, ... enR } the 

set of messages. In all our settings the decoder consists of two 

mapping. The first mapping 

(4) 

is used to decode the message, and we denote by W the result 

of applying it to the received sequence Y. The second 

rP s: yn ---+ Sn, (5) 

is used to reconstruct the state sequence, and we denote by 

S the result of applying rPs to Y. (Throughout we denote 71,

length sequences with bold letters, so Y stands for Y1 , ... , Yn . 

We use Y/ for Y'i, ... , Yj and suppress i when it is 1.) 

The form of the encoder depends on the setting. In the 

strictly-causal setting with feedback the encoder comprises 71, 

mapping 

fk: W x Sk-l X yk-l ---+ X, k = 1, ... ,71, (6) 

with the understanding that the time-k symbol X k that the 

encoder produces in order to convey Message W after having 

observed the states Sk-l and the outputs y k- 1 is 

x = f (W Sk-l y k- 1 ) k k, , , k = 1, ... ,71,. (7) 

In the causal case the domain in (6) is replaced by W x Sk X 

yk-l and the RHS of (7) is replaced by h(W, Sk, yk-l). 

And in the noncausal case the domain is W x sn X yk-l 

and X k is fk(W, sn, yk-l). Each of these cases also has 

a no-feedback counterpart where yk-l is removed trom the 

domain and yk-l is removed from the definition of X k. The 

arithmetic average of the probabilities of error associated with 

the different messages is denoted Pe(n) 

A pair (R, D) is achievable if for every c > 0 there exists 

some positive integer 71,0 (c) such that for every blocklength 71, 

exceeding 71,0 (c) there exists an encoder, whose rate exceeds 

R - c, and decoding mappings rPw and rPs such that 

(8) 

and 

\im Pe(n) = O. 
n--+= 

(9) 

Here the allowed encoding functions are determined by 

the setting under consideration. We denote by :!4: the set of 

achievable (R, D) pairs, and for every given maximal allowed 

distortion D we define the RnS capacity as the maximum 

over all rates R for which (R, D) is achievable, where the 

maximum exists since :!4: is cIosed. The different settings have 

different RnS capacities, 

all of which are denoted by C with the subscript "FB" 

indicating feedback and the superscript indicating how the 

state information is revealed to the encoder. 

By the "lossless case" we refer to the case where the 

allowed distortion D is zero, and the distortion function is 

the Hamming distortion function (s, s) f--+ Jl {s cF s}, which 

is zero when 8 equals s, and is one otherwise. (Here and 

throughout Jl {statement} is one or zero depending on whether 

or not the statement holds). 

Remark 1: This case is reminiscent of the case where ｾ＠

in [3] is H (S). It is not identical because the latter case 

corresponds to a subexponential list and our case corresponds 

to an c-ball. 

Finally, aIthough not of finite alphabet, the Gaussian channel 

is also of interest to uso This is a memoryless channel, where 

y = x + S + Z, and where-irrespective of the (real) value 

of x-the random variables Sand Z are independent centered 

Gaussians of respective variances 0'; and N. The input is 

constrained to satisfy ｌｾ］ｬ＠ lE ｛ｘｾ｝＠ :::; nP for some given 

maximal-allowed average power P. 

111. MAIN RESULTS 

Except when we discuss the Gaussian channel, we assurne 

throughout a SD-DMC (pc(ylx,s), ps) with finite alphabets 

and a (finite) nonnegative distortion function d: S x S ---+ 

[0, (0). We begin with results on the case where the state 

information is revealed to the encoder strictIy-causally. 

A. Strictly-Causal State Information 

Theorem 1 (Strictly-Causal SI and Feedback): For every 

D::;:, dmin , 

q:;i(D) = max {1(X; Y) - 1(S; UIXY)}, (10) 
PX,PUIXSy,g 

where U is an auxiliary chance variable taking values in a 

set U; the mutual informations are computed W.r.t. the joint 

PMF 

PSXYU(s, x, y, u) = Ps(s) Px(x) Pc(ylx, s) 

'Pulxsy(ulx, s, y); 

the mapping g is of the form 

g:UxXxy---+S; 

and we require that 

lE[d(S,g(U,X, Y))] :::; D, 

(11 ) 

(12) 

(13) 
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where dmin = max{D: q1i(D) = O}. The cardinality of the 

set U in which U takes values can be bounded by IUI -s: 151. 
Alternatively, ｇｾＱｩＨｄＩ＠ can be expressed for D ::;:, dmin as 

q1i(D) = IrJ,,;x {1(X; Y) - RS1Xy(D)}, (14) 

where RSIXY (.) is the rate-distortion function of the source S 

when both encoder and reconstructor are cognizant of (X, Y) 

and the joint law of X, Y, S is Px(x) Ps(s) Pc(ylx, s). 
In general, ｇｾＱｩＨｄＩ＠ can exceed GS-C(D), but in the lossless 

case they are equal: 

Proposition I (Lossless Reconstruction: Strictly-Causal SI): 

Suppose S equals S, and d(s, ii) is the Hamming distortion 

function. When the maximal allowed distortion D is zero and 

the state is revealed to the encoder strictly causally, 

GS-C(O) = ｇｾｾＨｏＩ＠ = IrJ,,;x {1(X; Y) - H(SIXY)}, 

whenever the RHS is nonnegative. Here the mutual infor

mation and conditional entropy are computed under the law 

Px(x) Ps(s) Pc(ylx, s). 
Another example where feedback does not increase the RnS 

capacity is the Gaussian channel: 

Proposition 2 (Gaussian Channel: Strictly-Causal SI): 

Consider the state-dependent Gaussian channel of noise 

variance N, state-variance (T;, and maximal allowed average 

power P. Let the state be revealed to the encoder strictly

causally, and let the distortion measure be (S,8) f--+ (s _ 8)2. 

In this setting GSC(D) = ｱｾＨｄＩ＠ for every D > O. Moreover, 

if we define for every 0 -s: I -s: 1 the quantities 

R = 1 - I I (P + (T; + N) 
, 2 og (T2 + N 

s 

(15a) 

2 N ( (T; + N )' 
D, = (Ts (T; + N P + (T; + N ' 

(15b) 

then D, evaluates at I = 1 to the least achievable distortion; 

R, evaluates at I = 0 to the supremum of achievable rates; 

and ｇｾｾ＠ (and hence also GSC) is given parametrically by 

where dmin = min{D: ｇｾｂＨｄＩ＠ = O}. Moreover, in the above 

maximization we may restrict the cardinalities to IUI -s: 151 
and 171 -s: min {lXI· ISI, IYI} + 1. 

Alternatively, ｇｾｂＨｄＩ＠ can be expressed for D ::;:, dmin as 

qB(D) = max {1(T; Y) - RSITy(D)}, (21) 
Pr, f 

where 1(T; Y) and RSITy(D) are computed under the PMF 

PSTY(s, t, y) = Ps(s) PT(t) Pc (ylf(t, s), s). (22) 

As in the strictly-causal case, when the reconstruction of 

the state must be lossless, feedback is not needed: 

Proposition 3 (Lossless Reconstruction: Causal SI): If the 

state is revealed to the encoder causally and we require lossless 

reconstruction, then 

GC(O) = qB(O) 

= max {1(T; Y) - H(SITY)}, 
Pr,f 

whenever the RHS of the above is non negative . Here I and 

H are computed with respect to the joint PMF 

Ps(s) PT(t) li{ x = f(t, s)} Pc(ylx, s), (23) 

and the mapping f is as in Theorem 2. 

C. Noncausal State Information 

For the noncausal case we only provide bounds. Define 

R(I) = max 1(T; Y) - 1(T; S) - 1(SX; UITY), 
P rxls , PUISTXY, 9 

where U and T are auxiliary chance variables taking values 

in U and 7 respectively; where the mutual informations are 

computed w.r.t. the joint PMF 

PsTXUY = Ps(s) PTxls(t, xis) Pc(ylx, s) 

'PulsTXy(uls, t, x, y); (24) 

the mapping g is trom U x 7 x Y to 5; and we require that 

lE[d(S,g(U, T, Y))] -s: D. (25) 

(16) Define 

B. Causal State Information 

Theorem 2 (Causal SI and Feedback): For D ::;:, dmin , 

qB(D) = Pr, ｐｾ［［ｹＬ＠ f, 9 {1(T; Y) - 1(S; UITY) } (17) 

where U and T are auxiliary chance variables taking values 

in U and 7 respectively; the mapping f is trom 7 x S to X; 

the mutual informations are computed w.r.t. the joint PMF 

PSTXYU(S, t, x, y, u) = Ps(s) PT(t) li{x = f(t, s)} 

'Pc(Ylx, s) PUITSy(ult, s, y); (18) 

the mapping g is of the form 

g: U x 7 x Y --+ 5; (19) 

and we require that 

lE[d(S, g(U, T, Y))] -s: D, (20) 

Reu) = max min {1(T; Y) - 1(T; S), 
P rxls , PUISTXY, 9 

1(X S; Y) - 1(S; UTY)}, 

where the mutual informations are computed w.r.t. (24) under 

the constraint (25). 

Theorem 3 (Noncausal SI and Feedback): 

R(l) -s: ｇｾＨｄＩ＠ -s: R(u). (26) 

If Reu) is attained by a law under which X is a deterministic 

function of (S, T), then qt(D) = R(I) = Reu). 

Remark 2 (Gaussian Channel: Noncausal SI): If the chan

nel is Gaussian and fidelity is measured in terms of mean 

squared-error, the (R, D) tradeoff is characterized in [4, The

orem 2]. The converse proof in [4, Section IILB] can be 

modified to account for output feedback and to yield the same 

bound. Consequently, output feedback does not increase the 

(R, D) tradeotl region also in this case. 

1279 



2016 IEEE International Symposium on Information Theory 

IV. PROOF OF THEOREM 1: SKETCH 

The proofs can be found in [1]. Here we only outline the 

proof of Theorem 1. 

I) Converse: Before proving the converse we denote the 

r.h.s. of (10) by ｃｾＷｩＨｄＩ＠ and study some of its properties. In 

the following we denote the nonnegative reals by ｾＫＮ＠

Proposition 4: The function ｃｾＷｩＺ＠ ｾＫ＠ ---+ ｾＫ＠ is mono

tonically nondecreasing and upper bounded by the channel 

capaci ty Cx --+ Y 

(27) 

with equality whenever D :::.: dmax . Moreover, it is concave 

and continuous. 

Proo!" See [1]. • 

We can now prove the converse. Let Ｈｻｪｫｽｫ］ｬＬ｣ｐｾＩＬ｣ｐｾｮＩＩ＠
define an achievable (R, D) pair, so n -1 log I W I :::.: R - c and 

IE[d(sn, sn)] ｾ＠ D + c. We will show that 

1 -
-log IWI ｾ＠ Ct(j(D + c), (28) 
n 

which will thus imply that 

R - c ｾ＠ ｃｾＷｩＨｄ＠ + c). 

The inequality R ｾ＠ ｃｾＷｩＨｄＩ＠ will then follow from the 

continuity of ｃｾＷｩ＠ by letting c tend to zero. 

Expanding the following conditional mutual information in 

two ways and noting that Sk is a function of yn, we obtain 

1(ynSk; SkI WSk - 1) 

= 1(yn; SkI WSk- 1) + 1(Sk; Sklwynsk-1) 

= 1(yn; SkI WSk - 1) 

= 1(Sk; SkIWSk-1) + 1(yn; SkIWSkSk-1). 

Since Sk is independent of (W, Sk-1), 

n n 

k=l k=l 

Define the auxiliary random variables 

Vk ｾ＠ (W, Sk-1), Uk ｾ＠ yn\k, 

(29) 

(30) 

(31 ) 

and note that Vk is independent of Sb and that Sk is a deter

ministic function of (Uk, Yk). By Fano's inequality and (29) 

n 

k=l 
n 

k=l 

n 

k=l 
n 

= 1(wsn;yn) - L1(yn;SkIWSkSk-1) 

k=l 

n 

k=l 
n 

(cL) L[1(Yk; WXkSn!yk-1) - 1(Sk; ynIWSkSk- 1)] 

k=l 
n 

k=l 

k=l 
n 

k=l 
n 

= L[1(Xk; Yk) + 1(Sk; YklXk) - 1(Sk; YkUklVkSk)] 

k=l 

k=l 

n 

k=l 

n 

= L[1(Xk; Yd - 1(Sk; Uk!YkXk) + 1(Sk; VkSd]. (32) 

k=l 

Here 

(a) follows since Xk is a function of (W, Sk-1, y k- 1); 

(b) follows since (WSn\kyk-1)-e- (XkSd-e- Yk fonns a 

Markov chain, and conditioning cannot increase entropy; 

and 

(c) follows since Sk and X k are independent, and X k is a 

function of (W, Sk-1, yk-1). 

Substituting (30) into the I.h.s. of (32) we obtain 

n 

n(R - Tin) ｾ＠ L[1(Xk; Yk) - 1(Sk; Uk!YkXk)]. (33) 

k=l 

Let J be a LV. uniformly distributed over {I, ... , n} and 

independent of {(Xk, Yk, Sb Ub Sk)}' k = 1, ... , n, and 

define U = (UJ , J), S = SJ, Y = YJ, X = X J, and S = SJ. 

Using J we may express (33) as 

1 n 

R - Tin ｾ＠ - L[1(Xk; Yk) - 1(Sk; Uk!YkXk)] 
n 

k=l 

= 1(XJ ; YJIJ) - 1(SJ; UJ!YJ, X J , J) 

= 1(XJ ; YJIJ) - 1(SJ; UJ, J!YJ,XJ) + 1(SJ; J!YJ, X J ) 

(d) 

ｾ＠ 1(X; Y) - 1(S; UIXY). (34) 

Here, step (d) follows since J -e- (X J , YJ) -e- S J is a Markov 

chain hence 1(SJ; J!YJ, X J) = 0, and since 1(X; Y) = 

1(Px ; WYlx) is concave in Px . 
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We consider now the expected distortion, for a given dis

tortion constraint D, 

D + c 2lE[d(sn, sn)] = ｾ＠ tlE[d(Sk, Sd] 
k=l 

1 ｾ＠ ｾ＠ 1 ｾ＠ ｾ＠ \k 
= ｾ＠ ｌＮＮＮｬｅ｛､ＨｓｫＬｓｫＨｹｮＩＩ｝］ｾ＠ L...lE[d(Sk,Sk(yn , Yk)] 

k=l k=l 

=lE[d(SJ,SJ(UJ,YJ,J)] =lE[d(S,S(U,Y)]. (35) 

Finally, it can be verified that (34) and (35) hold for a law of 

the form (11). 

2) Direct part: We propose a coding scheme that is based 

on Block-Markov superposition encoding and backward de

coding. 

We consider B blocks, each of n symbols. A sequence 

of B - 1 messages W Cb), for b = 1, ... , B - 1, will be 

transmitted during B transmission blocks. Here the sequence 

{W(b)} is an i.i.d. sequence of uniform random variables over 

{I, ... , enR }. As B ---+ 00, for fixed n, the message rate, 

R = R(B - 1)/ B, is arbitrarily close to R. 

We assurne a tuple of random variables SES, U EU, X E 

X, Y E Y, of joint law (11), and fix a sufficiently small c > O. 

We will demonstrate that if R .-::: Ctfi(D) for a reconstruction 

mapping of the form (12) such that lE[d(S,g(U,X, Y)] .-::: D 

then (R, D) E !!J!. 

Let X be a chance variable with PMF Fx on a finite set 

X then denote by ｾＨｮＩ＠ (X) the set of all x n E X n which are 

strongly 5-typical w.r.t. X (for the formal definition see [6]). 

Random coding: In each block b, b = 1,2, ... , B, we use 

the following construction. 

• Generate enCR+R ,) sequences x = (X1,""Xn), each 

with probability Pr (x) = ｲｲｾ］ｬ＠ PX(Xk). Label them 

x(w,wo) where w E {l, ... ,enR } and Wo E 

{ 1, ... , enR, }. 

• For each typical sequence y generate enR, sequences 

u = (U1,U2,""Un ), each with probability Pr(uIY) = 

ｲｲｾ］ｬ＠ PUIY (Uk IYk). Label them u(j) where j E 

{ 1, ... , enR, }. 

Encoding : We denote the realization of the messages 

sequence {W(b)} by {w(b)}, and the realization of the state 

(S (b) SCb) S(b)) b (b) sequence l' 2 , ... , n y S . 

Let j(b) be the index such that, conditioned on y(b) , 

the sequence u(j(b)) is jointly typical with the pair 

(sCb), x( w(b), w6b))). The code builds upon a Block-Markov 

structure in which a quantized description of both the state 

sequence and the input sequence (s(b),x(w(b),w6b))) is en

coded over the successive blocks band (b + 1) such that 
(H1) _ '(b) f' b - 1 B - 1 Wo - J , or - , ... , . 

The sequence of messages {w(b)}, b = 1,2, ... , B - 1 is 

encoded as folIows: 

In Block 1 the encoder sends x(l) = x( w(l), 1) -i.e. 

Cl) - 1 U b ' (b-1) b - 2 3 B h Wo - . pon 0 servmg s , - " ... , , t e 

encoder computes jCb-1) by finding the index j(b-1) such 

that, conditioned on yCb-1), the sequence u(jCb-1)) is jointly 

typical with (s(b-1),x(w(b-1),w6b- 1))). Then, in Block b = 

2,3, ... , B - 1, the encoder sends 

x(b) = x(wCb) jb-1)), 

and in Block B it sends X(B) = X(1,j(B-1)). 

Decoding at the receiver: After the reception of Block B 

the receiver uses backward decoding starting trom Block B 

to Block 1 and decodes the messages as weil as the sequence 

{u(j(b))}, b = 1, ... , B - 1, as folIows. 

In Block B the receiver looks for j(B-1) such that 

(x(1,iB- 1)),y(B)) E 'rc(n) (X, Y). 

Next, assurne that, decoding backwards up to 

(and including) Block b + 1, the receiver decoded 

/B-l), (tuCB-l) ,jCB-2)), ... , (1UCb+1) ,jCb)). To decode 

Block b, b = B - 1, ... ,2 the receiver looks for (w(b), j(b-1)) 

such that 

(x(u/b) ,jCb-1)), u(ib)), y(b)) E 'rcCn) (X, U, Y), 

while in Block 1 the receiver looks for w(l) such that 

State estimation at the receiver: The receiver forms its 

estimate of s(b) symbol-wise as folIows: 

s(b) = g(u(]Cb)),X(1U(b),jCb-1)),y(b)) 

where 9 is defined by (12). 

When a decoding step either fails to recover a unique index 

(or index pair) which satisfies the decoding rule, or there is 

more than one index (or index pair), then an index (or an index 

pair) is chosen at random. 

The error probability analysis for our code construction 

establishes that, if 

R+Rs < I(X;UY) 

R s > I(U; SX!Y), (36) 

there exists a code satisfying FeCn) ---+ 0 and lE[d( sn, sn)] .-::: 
D + c, for sufficiently large n -i.e. if R .-::: ｃｾＭ［［ＧＨｄＩ＠ then 

(R,D) E!!J!. The details can be found in [1]. 

REFERENCES 

[1] S. 1. Bross and A. Lapidoth."The rate-and-state capacity with feedback." 

In preparation. 

[2] G. Keshet, Y. Steinberg and N. Merhav, "Channel coding in the presence 

of side information", Foundations and Trends in Communications and 

Information Theory, 4(6), pp. 445-586, 2007. 

[3] Y. H. Kim, A. Sutivong and T. M. Cover, "State amplification", IEEE 

Trans. Inform. Theory, vol. lT-54, no. 5, pp. 1850-1859, May 2008. 

[4] A. Sutivong, M. Chiang, T. M. Cover and Y. H. Kim, "Channel capacity 

and state estimation for state-dependent Gaussian channels", IEEE Trans. 

Inform. Theory, vol. IT-51, no. 4, pp. 1486-1495, April 2005. 

[5] A. D. Wyner and J. Ziv, "The rate-distortion function for source coding 

with side information at the receiver," IEEE Trans. Inform. Theory, vol. 

lT-22, no. I, pp. 1-11, January 1976. 

[6] 1. Csiszar and J. Körner, Information Theory: Coding Theorems for 

Discrete Memoryless Systems. New York: Academic, 1981. 

1281 


