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Abstract—The Rate-and-State capacity of a state-dependent
channel with a state-cognizant encoder is the highest possible
rate of communication over the channel when the decoder—in
addition to reliably decoding the data—must also reconstruct the
state sequence with some required fidelity. Feedback from the
channel output to the encoder is shown to increase this capacity
even for channels that are memoryless with memoryless states.
This capacity is calculated here for such channels with feedback
when the state reconstruction fidelity is measured using a single-
letter distortion function and the state sequence is revealed to the
encoder in one of two different ways: strictly-causally or causally.

I. INTRODUCTION

The Rate-and-State (RnS) capacity of a state-dependent dis-
crete memoryless channel (SD-DMC) with a state-cognizant
encoder is the highest rate at which data can be transmitted
over the channel when the decoder—in addition to reliably
decoding the data—must also reconstruct the state sequence
with some required fidelity. As we shall see, unlike the
Shannon capacity, it is typically increased when a feedback
link is introduced from the channel’s output to the encoder.
Noteworthy exceptions are when the state sequence is to be
reconstructed losslessly or, in some settings, when the channel
is Gaussian and fidelity is measured in terms of mean squared-
error.

Here we compute the RnS capacity in the presence of feed-
back in two cases depending on whether the state-information
(SI) is revealed to the encoder strictly-causally or causally.
We shall see that in both cases the RnS capacity can be
achieved using a block-Markov coding scheme with backward
decoding, where in Block-b, in addition to fresh data, the
encoder also transmits a lossy description of the states and
codeword pertaining to Block-(b — 1). For the purpose of this
description, the channel outputs pertaining to Block-(b — 1)
serve as side-information that is available (before Block-b
commences) to both describer (via the feedback link) and
reconstructor. Once the transmission in Block-b has been
decoded, the receiver recovers the fresh information that was
transmitted in that block as well as the description pertaining
to Block-(b — 1) that was transmitted in Block-b. Using the
latter in combination with the Block-(b — 1) channel outputs,
it then proceeds to decode the Block-(b — 1) codeword. The
description must be fine enough to allows this. Using the
description, the decoded Block-(b — 1) codeword, and the
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Block-(b — 1) channel outputs, the receiver then estimates the
Block-(b — 1) state sequence to within the required fidelity.

The literature on the SD-DMC is extensive [2]. Particularly
relevant to our setting is [4], which deals with the Gaussian
channel with noncausal SI and mean squared-error state-
reconstruction fidelity. Also relevant to us is [3], where the
reconstruction fidelity is replaced by a list size: in addition
to decoding the data reliably, the decoder must form a list
that with high probability contains the state sequence. The
problem addressed in [3] is thus more of a “guessing” nature
than an “estimation” nature. For this problem [3] characterizes
the tension between the data rate and the exponential growth of
the list-size in the blocklength. The converse in [3] is based
on the extension of Fano’s inequality to lists and is hence
inapplicable to our setting.

To appreciate the benefits of feedback, it is instructive to
consider a special kind of SD-DMC. Let us denote a generic
SD-DMC by (P.(y|z,s), Ps). where Ps is the probability
mass function (PMF) of the state, and where the transition
law P.(y|z,s) is the PMF induced on the output alphabet )
when the input to the channel is © € A and the state of the
channel is s € &. The special case to consider is when the
output Y is a pair (Y, 5’), the state is .S of PMF Pg, and the
transition law factorizes as

P.(3,5

x,5) = Pe(ij|z) Py 5(3]s). )

In this case the state and input do not interact, and it is intu-
itively clear that this channel’s RnS capacity is the difference
between the Shannon capacity of the channel P.(j|z) and
the rate that is needed to describe the state to a reconstructor
that observes S. While the former is unaffected by feedback,
the latter is: In the absence of feedback the .§—scqucncc
is only observed by the decoder, and the encoder is thus
faced with a Wyner-Ziv problem [5] of describing S to a
reconstructor that observes S. But in the presence of feedback
the g-sequence—being part of the channel output (}N’, 5‘)—is
revealed also to the encoder, and the encoder is thus faced with
a classical rate-distortion problem with side information S that
is available to both describer and reconstructor. Since this
rate-distortion function is typically lower than the Wyner-Ziv
rate [5, Section II], we conclude that—irrespective of whether
the state is revealed to the encoder strictly-causally, causally,
or noncausally—feedback can increase the RnS capacity. (For
more on the no-feedback case see [1].)
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II. THE SET-UP

We are given a SD-DMC (Pc(y|;r, s), Pg) and a nonnega-
tive distortion function d: S x & — [0,00), where S is the
reconstruction alphabet, and where the alphabets X', S, ), S
are all finite, The maximum of d is finite and is denoted day:

nax = max d(S, b) 2)

The distortion between the n-length sequences s € 8™ and
§ € 8" is defined as the average distortion between the
corresponding components

N _
d(s,8) = — ;d(sk_,sk). (3)
We are also given some allowed distortion D. Let n denote
the blocklength, R the data rate, and W = {1,...e""} the
set of messages. In all our settings the decoder consists of two
mapping. The first mapping

ow: Y —={1,..., (-’-nR} @

is used to decode the message, and we denote by W the result
of applying it to the received sequence Y. The second

bs: Y — S, 5)

is used to reconstruct the state sequence, and we denote by
S the result of applying ¢¢ to Y. (Throughout we denote n-
length sequences with bold letters, so Y stands for Y7,. .., Y.

We use Y/ for Y;,...,Y; and suppress i when it is 1.)
The form of the encoder depends on the setting. In the
strictly-causal setting with feedback the encoder comprises n

mapping

feeWx Syt L x k=1,....,n (6

with the understanding that the time-k£ symbol X that the
encoder produces in order to convey Message W after having
observed the states S*~! and the outputs Y*~! is

X = fu(W,S*LyHh k=1,...,n (7

In the causal case the domain in (6) is replaced by W x SF x
V=1 and the RHS of (7) is replaced by fi(W, 8%, YF-1),
And in the noncausal case the domain is W x 8™ x k-1
and X is fi(W, S"",Y*‘_'). Each of these cases also has
a no-feedback counterpart where Y*~! is removed from the
domain and Y*~1 is removed from the definition of X. The
arithmetic average of the probabilities of error associated with
the different messages is denoted Pe('”').

A pair (R, D) is achievable if for every £ > 0 there exists
some positive integer ng(e) such that for every blocklength n
exceeding ng(e) there exists an encoder, whose rate exceeds
R — &, and decoding mappings ¢w and ¢s such that

E[d(S".S")] <D+« (®)
and _
lim P =0. ©

Here the allowed encoding functions are determined by
the setting under consideration. We denote by % the set of
achievable (R, D) pairs, and for every given maximal allowed
distortion D we define the RnS capacity as the maximum
over all rates R for which (R, D) is achievable, where the
maximum exists since # is closed. The different settings have
different RnS capacities,

C™(D), C*(D), C™(D), Cgg (D), Cig (D), Cry (D)

all of which are denoted by C with the subscript “FB”
indicating feedback and the superscript indicating how the
state information is revealed to the encoder.

By the “lossless case” we refer to the case where the
allowed distortion D is zero, and the distortion function is
the Hamming distortion function (s,3) — 1{§ # s}, which
is zero when § equals s, and is one otherwise. (Here and
throughout 1{statement} is one or zero depending on whether
or not the statement holds).

Remark 1: This case is reminiscent of the case where A
in [3] is H(S). It is not identical because the latter case
corresponds to a subexponential list and our case corresponds
to an e-ball.

Finally, although not of finite alphabet, the Gaussian channel
is also of interest to us. This is a memoryless channel, where
Y =2+ 5+ Z, and where—irrespective of the (real) value
of x—the random variables S and Z are independent centered
Gaussians of respective variances o2 and N. The input is
constrained to satisfy Y E[X?] < nP for some given
maximal-allowed average power P.

IIT. MAIN RESULTS

Except when we discuss the Gaussian channel, we assume
throughout a SD-DMC (P.(ylx, s), Ps) with finite alphabets
and a (finite) nonnegative distortion function d: & x S —
[0,00). We begin with results on the case where the state
information is revealed to the encoder strictly-causally.

A. Strictly-Causal State Information

Theorem 1 (Strictly-Causal SI and Feedback): For
D = dyin,

every

Ciis(D) =

max
Px,Puxsy.g

{I(X; Y) - I(S; U|XY}},(10)

where U is an auxiliary chance variable taking values in a
set {; the mutual informations are computed w.r.t. the joint
PMF

Poxyy(s,x,y,u) = Ps(s) Px(x) Pe(y|z,s)

Py x sy (ulz, s,y); (11)
the mapping g is of the form
g:MxXxy—hé; (12)
and we require that
E[d(S,9(U, X,Y))] < D, (13)
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where diin = max{D: Cig(D) = 0}. The cardinality of the
set U in which U takes values can be bounded by |[U| < |S|.
Alternatively, Ci5(D) can be expressed for D > dyn as
Ci§(D) = max {I(X; Y)- Ropxy(D)},  (14)
X
where Rg|yy (+) is the rate-distortion function of the source S
when both encoder and reconstructor are cognizant of (X,Y)
and the joint law of X,Y, S is Px(x) Ps(s) Pe(y|x, s).
In general, Ci§(D) can exceed C*°(D), but in the lossless
case they are equal:

Proposition 1 (Lossless Reconstruction.: Strictly-Causal SI):

Suppose S equals S, and d(s, §) is the Hamming distortion
function. When the maximal allowed distortion D is zero and
the state is revealed to the encoder strictly causally,
C™(0) = Ci5(0) = max {I(X; Y) — H(S|XY) }
X

whenever the RHS is nonnegative. Here the mutual infor-
mation and conditional entropy are computed under the law
Px(x) Ps(s) Pe(ylz.s).

Another example where feedback does not increase the RnS
capacity is the Gaussian channel:

Proposition 2 (Gaussian Channel: Strictly-Causal SI):
Consider the state-dependent Gaussian channel of noise
variance N, state-variance o'g, and maximal allowed average
power P. Let the state be revealed to the encoder strictly-
causally, and let the distortion measure be (s, 8) + (s — §)°.
In this setting C*¢(D) = C3§(D) for every D > 0. Moreover,
if we define for every 0 <~ <1 the quantities

1—7 P+o2+ N
R, = g} $ 15
- 2 Og( o2+ N ) (152)
5 N o2+ N '
D, =a?— s . 15b
T I N (P+03+N> ! (15)

then D., evaluates at v = 1 to the least achievable distortion;
R, evaluates at v = 0 to the supremum of achievable rates;
and Cfg (and hence also C*°) is given parametrically by

me(Dy)=R,, 0<~<L. (16)

B. Causal State Information
Theorem 2 (Causal SI and Feedback): For D = d iy,

*‘FB(D) =

max 1Y)~ [(S;U1TY)} (17
P‘I',Pr.'rr.u:v,f_.g{ ( ' ) ( ' | ) an
where U and T are auxiliary chance variables taking values
in U and T respectively; the mapping f is from 7 x S to X;
the mutual informations are computed w.r.t. the joint PMF

Psrxyu(s,t,x,y,u) = Ps(s) Pr(t) 1{z = f(t,s)}

Pe(ylz, s) Pyrirsy (ult, s, y); (18)
the mapping g is of the form
GUXT xY = S; (19)
and we require that
E[d(S,g(U,T.Y))] <D, (20)

where diin = min{D: Ciz(D) = 0}. Moreover, in the above
maximization we may restrict the cardinalities to || < |S|
and |7| < min {|X]-|S|, Y|} + 1.
Alternatively, Cfg(D) can be expressed for D > dyy, as
Cia(D) = max {I(T:Y) ~ Rgpy (D)} @)
where I(T;Y) and Rgpy (D) are computed under the PMF
Psry (s,t.y) = Ps(s) Pr(t) Pe(y|f(t.s),s). (22)
As in the strictly-causal case, when the reconstruction of
the state must be lossless, feedback is not needed:

Proposition 3 (Lossless Reconstruction: Causal SI): If the
state is revealed to the encoder causally and we require lossless
reconstruction, then

C*(0) = Ci(0)
— max {I(T; Y)— H(S|TY)},
Pr, f
whenever the RHS of the above is nonnegative . Here I and
H are computed with respect to the joint PMF
Ps(s) Pr(t) 1{z = f(t,s)} Pe(ylz,s),

and the mapping f is as in Theorem 2.

(23)

C. Noncausal State Information
For the noncausal case we only provide bounds. Define

RV — I(T:Y) — I(T;S) — I(SX;U|TY).

max
Prxs, Puisrxy.g

where U and T' are auxiliary chance variables taking values
in { and T respectively; where the mutual informations are
computed w.r.t. the joint PMF

Psrxuy = Ps(s) Prxs(t, z|s) Pe(ylz, s)

Puisrxy (uls, t,z,y); (24)

the mapping g is from U x T x Y to S: and we require that
E[d(S,g(U.T,Y))] <D. (25)
Define

RW = max

Prxis, Purjsarxy. g

I(XS:Y)—I(S;UTY)},

where the mutual informations are computed w.r.t. (24) under
the constraint (25).
Theorem 3 (Noncausal SI and Feedback):

RY < CJ5(D) < R 26)

If RW is attained by a law under which X is a deterministic
function of (S, T), then Ci (D) = RV = RW,

Remark 2 (Gaussian Channel: Noncausal SI): If the chan-
nel is Gaussian and fidelity is measured in terms of mean
squared-error, the (R, D) tradeoff is characterized in [4, The-
orem 2]. The converse proof in [4, Section IIL.LB] can be
modified to account for output feedback and to yield the same
bound. Consequently, output feedback does not increase the
(R, D) wradeoff region also in this case.

min {I(T;Y) — I(T; S),
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IV. PROOF OF THEOREM 1: SKETCH

The proofs can be found in [1]. Here we only outline the
proof of Theorem 1.

1) Converse: Before proving the converse we denote the
rh.s. of (10) by C35(D) and study some of its properties. In
the following we denote the nonnegative reals by R...

Proposition 4: The function C3S: R, — R, is mono-
tonically nondecreasing and upper bounded by the channel
capacity Cx .y

Cis(D) < Cx Ly 27)

with equality whenever D > d,. Moreover, it is concave
and continuous.
Proof: See [1]. | |

We can now prove the converse. Let ({fi}7_,, o\, 60")
define an achievable (R, D) pair, so n~ " log|W| > R—¢ and
E[d(S™,S™)] < D + . We will show that

1 ~
~log [W| < Crs(D + <), (28)

which will thus imply that
R—e<Cy(D +¢).

The inequality R < CgS(D) will then follow from the
continuity of é;ﬁ by letting £ tend to zero.

Expanding the following conditional mutual information in
two ways and noting that S'k is a function of Y™, we obtain

I(Y™Sy; i |[W Sk
= I(Y"; Sp|[WS*1) 4 I(Sy: Sp|[Wymsk—1)
— I(Yn; 1k|'[)1,rsrk—1)

= I(Sk; Sp[WSF1) 4 I(Y™; S [WS,S* 1), (29)
Since S is independent of (W, S¥—1),
S ISk S WSE) =Y T I(WSSF LS. (30)
k=1 k=1
Define the auxiliary random variables
Vi & (W, 851, U 2 Y™\, 31)

and note that V}, is independent of Sy, and that S"k is a deter-
ministic function of (Uy, Y}). By Fano’s inequality and (29)

n(R=mn)+ Y I(Sk; Sx|Ws*1)
k=1

T
ST(W5Y™) 4+ ) [TV S Wsh)
k=1
—I(Y™; S| WSps*1))

=I(W;Y™) + 1Y S W) = Y I(Y™; 8, |W S 8%1)
k=1

= I(WS™Y™) = 3 I(Y": Sp|WSps* 1)
k=1

n

= YUY WS YR — (S YW S8+ )
1

M-

a

(Y WX S™ Y1) = I(Sp; YW S, 81

Eol
I

[H(Y;|YF1) — H(Y,| X Wsny*—1)

I
M=

=~
Il
-

—I(Sp; YW 851

NS

[H(Yk) - H(YHXL,SL) — I(Sk;YnH{/"S\'kSk—l)]

(I(Yi; X1Sk) — I(Sk; YiUk Vi Sk)]

1104

o
Il

[I(Xk- Y;,) + I(Sk. YHX_:‘) - I(S;“ YkUdVMSA‘L)]

I
M=

=~
Il
-

Iz
(]

(I(Xg; Yi) + H(Sk) — H(Sk|Yi Xi)

o
Il
—

—H(Sk|VieSk) + H(Sk| X1 ViU Vi S|

M=

[I(Xk; Yk) -+ H(Sk) - H(Sk|Yka)

£
]
-

—H(Sk|VieSk) + H(Sp| XY Uy)]

=

=N [I(Xp: Vi) — I(Sk; Ur| Ve Xp) + I(Sk; VaSe)]. (32)

(a) follows since Xy is a function of (W, Sk—1 yk-1);

(b) follows since (WS™FY*-1)e (X, S.)e Yy forms a
Markov chain, and conditioning cannot increase entropy;
and

(¢) follows since S}, and X, are independent, and X, is a
function of (W, SF~1, Yk-1),

Substituting (30) into the Lh.s. of (32) we obtain

n(R —nn) <Y [1(Xk; Vi) = I(Sks Ug [ Ve Xi)]. - (33)
k=1

Let J be a r.v. uniformly distributed over {1,...,n} and
independent of {(Xk,Yk:Sk,Uk,Qk)},k = 1,...,n, and
define U = (U;,J),S=8,,Y =Y;, X =X, and S = S.
Using .J we may express (33) as

1 T _
R <~ E[f(xk;m — I(Sk; Uk |V X))
= I(X5;Y5|J) = I(S5:Us|Y;, X5, J)
=X Y5J) = I(SnUy, JIY5, X))+ 1Sy J|Y5, X )
(d)
< I(X;Y) - I(S;U|XY). (34)

Here, step (d) follows since Je (X;,Y;)e S; is a Markov
chain hence I(S;;J|Y;, X ;) = 0, and since I(X;Y) =
I(Px; Wy x) is concave in Py.
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We consider now the expected distortion, for a given dis-
tortion constraint D,

E[d(Sk, Sk)]

;Ir—‘
=

D +¢ > E[d(S",5")] =

ol
Il

1

= Y R[Sk Si(v™)] =}1 SOB[d(Sk Sy V)]
k=1 k=1

= E[d(S;,85(U;. Yy, J)| = E[d(S,S(U,Y)]. (35)

Finally, it can be verified that (34) and (35) hold for a law of
the form (11).

2) Direct part: We propose a coding scheme that is based
on Block-Markov superposition encoding and backward de-
coding.

We consider B blocks, each of n symbols. A sequence
of B — 1 messages W), for b = 1,...,B — 1, will be
transmitted during B transmission blocks. Here the sequence
{W®1 is an i.i.d. sequence of uniform random variables over

L....,e"™} . As B — oo, for fixed n, the message rate,
R = R(B —1)/B, is arbitrarily close to R.

We assume a tuple of random variables S € S, U e U, X €
A,Y € Y, of joint law (11), and fix a sufficiently small £ > 0.
We will demonstrate that if R < C3$(D) for a reconstruction
mapping of the form (12) such that E[d(S, ¢(U, X,Y)] < D
then (R, D) € %.

Let X be a chance variable with PMF Py on a finite set
A’ then denote by ’}';(n)(X) the set of all 2™ € A™ which are
strongly d-typical w.r.t. X (for the formal definition see [6]).

Random coding: In each block b,b = 1,2,..., B, we use
the following construction.

o Generate e HH) sequences @ = (z1,...,2,), each
with probability Pr(z) = [[;_, px(z;). Label them
x (w,wy) where w € { By “R} and wy €
{1,... B 1.

« For each typical sequence y generate e sequences
u = (uy,us,...,u,), each with probability Pr (u|y) =
[1ii pojy (uklyx). Label them wu(j) where j €
{1,..‘,8‘”"’%’}

nk.

Encoding : We denote the realization of the messages
sequence {W "’)} b {w "’)g and the realization of the state
sequence (51" ') by s®.

Let j® be the 'index such that, conditioned on y'®,
the sequence wu(j®) is jointly typical with the pair
(s(b),m(w(b),wéb)))‘ The code builds upon a Block-Markov
structure in which a quantized description of both the state
sequence and the input sequence (s, z(w® w(”)) is en-
coded over the successive blocks b and (b + 1) such that
Wit = i® forb=1,...,B—1.

The sequence of messages {w'®}, b =1,2,...,B —1is
encoded as follows:

In Block 1 the encoder sends =V = z(w'V,1) —.e.
w,gl) = 1. Upon observing s®~Y b = 2,3,....B, the
encoder computes j*~1) by finding the index j(*~ such

(b—1) b-1))

that, conditioned on y , the sequence u(j' is jointly
typical with (s~ 2(w®=1 w""1)). Then, in Block b =
2,3,...,B —1, the encoder sends

20 — ;;t‘:(w(b).j(b_l)},

and in Block B it sends zP) = x(1, j(F~-1),

Decoding at the receiver: After the reception of Block B
the receiver uses backward decoding starting from Block B
to Block 1 and decodes the messages as well as the sequence
{u(G*®},b=1,...,B — 1, as follows.

In Block B the receiver looks for 7%~ such that

(21377, y'P) e T Y).
Next, assume that, decoding backwards up to
(and including) Block & + 1, the receiver decoded
GB-D (p(B-1 5(B- 3) ..... (u;r("""l 7). To  decode
Block bb= B—l, ,2 the receiver looks for (™, 70=1))
such that
(@(@®, 5070, u(G?),y®) € T (X,U,Y),

while in Block 1 the receiver looks for (1) such that

(z(@™,1),u(;V),yM) € (X, U,Y).

State estimation at the receiver: The receiver forms its
estimate of s®) symbol-wise as follows:

5 = g(u( ), a(@®. V), y")

where g is defined by (12).

When a decoding step either fails to recover a unique index
(or index pair) which satisfies the decoding rule, or there is
more than one index (or index pair), then an index (or an index
pair) is chosen at random.

The error probability analysis for our code construction
establishes that, if
R+ R, <I(X;UY)

R, > I(U: SX|Y), (36)

— 0 and E[d(S™, S")] <
(D) then

there exists a code satisfying Pc(n) 1
D + e, for sufficiently large n —ie. if R < Cpg
(R, D) € . The details can be found in [1].
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