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Abstract— The rate-and-state capacity of a state-dependent
channel with a state-cognizant encoder is the highest possible
rate of communication over the channel when the decoder—in
addition to reliably decoding the data—must also reconstruct the
state sequence with some required fidelity. Feedback from the
channel output to the encoder is shown to increase this capacity
even for channels that are memoryless with memoryless states.
This capacity is calculated here for such channels with feedback
when the state reconstruction fidelity is measured using a single-
letter distortion function and the state sequence is revealed to the
encoder in one of two different ways: strictly–causally or causally.
For the noncausal case, we provide bounds on the capacity and
identify a condition under which the bounds coincide. Feedback
does not increase the rate-and-state capacity when the decoder
must reconstruct the state sequence perfectly or, in some settings,
when the channel is Gaussian and fidelity is measured in terms
of mean squared-error.

Index Terms— capacity, causal, distortion, feedback, fidelity,
Gelfand-Pinsker, noncausal, rate, side-information, state.

I. INTRODUCTION

THE Rate-and-State (RnS) capacity of a state-dependent
discrete memoryless channel (SD-DMC) with a state-

cognizant encoder is the highest rate at which data can be
transmitted over the channel when the decoder—in addition
to reliably decoding the data—must also reconstruct the state
sequence with some required fidelity. As we shall see, unlike
the Shannon capacity, it typically increases when a feedback
link is introduced from the channel’s output to the encoder.
Noteworthy exceptions are when the state sequence is to
be reconstructed losslessly or, in some settings, when the
channel is Gaussian and fidelity is measured in terms of mean
squared-error.

Here we compute the RnS capacity in the presence of
feedback in two settings: when the state-information (SI)
is revealed to the encoder strictly-causally and when it
is revealed causally. We shall see that in both cases the
RnS capacity can be achieved using a Block-Markov coding
scheme with backward decoding, where in Block-b the
encoder uses a blockcode to send fresh information and
also a (lossy) description of the state sequence pertaining
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to Block-(b − 1). When forming this description, the describer
is cognizant of the Block-(b − 1) channel outputs (via the
feedback link) as well as of the Block-(b− 1) codeword.
The description is required to be sufficiently detailed so as
to allow a reconstructor that is also cognizant of these outputs
and codeword to estimate the Block-(b− 1) state sequence
with the desired fidelity. In decoding the Block-(b− 1) code-
word, the receiver ignores the description that was sent in
Block-b: it only uses the Block-(b − 1) output sequence.
Once it has decoded the Block-(b − 1) codeword, it is in
possession not only of the Block-(b− 1) channel outputs but
also of the Block-(b− 1) codeword. It then uses these and
the state description that was sent in Block-b to estimate the
Block-(b− 1) state sequence.

We thus send two data streams in Block-b: fresh informa-
tion and a description of the Block-(b− 1) state sequence.
These are decoded based on the Block-b output sequence
only. The sum of their rates is thus upper-bounded by the
achievable rate on the channel (with the given input distribu-
tion and in the absence of state-reconstruction constraints).
This achievable rate is known for all the models we con-
sider: in the strictly-causal case it corresponds to I (X; Y );
in the causal case to I (T ; Y ); and in the noncausal case to
I (T ; Y )− I (T ; S). To achieve the distortion D, the rate of the
data stream describing the Block-(b − 1) state sequence can
be (slightly more than) the conditional rate-distortion function,
i.e., RS|XY (D) in the strictly-causal case; RS|T Y (D) in the
causal case; and RS|T Y (D) in the noncausal case. Subtracting
this rate from the total rate leaves us with an achievable
data rate of I (X; Y ) − RS|XY (D) in the strictly-causal case
(c.f. (16)); I (T ; Y )− RS|T Y (D) in the causal case (c.f. (30));
and I (T ; Y ) − I (T ; S) − RS|T Y (D) in the noncausal case
(c.f. (35)).

For the noncausal case, however, we do not have a matching
upper bound and hence no proof of optimality. The upper
bound that we do present is not always tight. Moreover,
the noncausal case requires some extra care, because the clas-
sical coding scheme for this setting involves subcodes, with
only the subcode corresponding to the transmitted message—
as opposed to the transmitted codeword itself—typically
decoded. In the Appendix we address this issue and show
that the rate I (T ; Y )− I (T ; S) can also be achieved when we
insist on reliably decoding the codeword.1

There is an alternative Block-Markov scheme that we
do not pursue here, because it is more complicated and
yet leads to the same achievable rates. In Block-b of that
scheme, in addition to fresh data, the encoder also transmits

1An analogous result for the “dirty-paper” setting was presented in [2].
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a lossy description of the states and codeword pertaining to
Block-(b − 1). For the purpose of this description, the channel
outputs pertaining to Block-(b− 1) serve as side-information
that is available (before Block-b commences) to both describer
(via the feedback link) and reconstructor. Once the transmis-
sion in Block-b has been decoded, the receiver recovers the
fresh information that was transmitted in that block as well
as the said description pertaining to Block-(b − 1). Using
the latter in combination with the Block-(b− 1) channel out-
puts, it then proceeds to decode the Block-(b − 1) codeword.
(The description must be fine enough to allow this.) Using
the description, the decoded Block-(b − 1) codeword, and the
Block-(b − 1) channel outputs, the receiver then estimates the
Block-(b − 1) state sequence to within the required fidelity.

The literature on the SD-DMC is extensive [9]. Noteworthy
is [10], which considers RnS transmission without feedback
when the reconstruction fidelity is replaced by a list size: in
addition to decoding the data reliably, the decoder must form
a list that with high probability contains the state sequence.
The problem addressed in [10] is thus more of a “guessing”
nature than an “estimation” nature. For this problem [10] char-
acterizes the tension between the data rate and the exponential
growth of the list-size in the blocklength. The converse in [10]
is based on the extension of Fano’s inequality to lists and
is hence inapplicable to our setting. Particularly relevant to
our setting are [19] and [3], which consider data transmission
and state estimation without feedback: the first deals with the
Gaussian channel with noncausal SI and mean squared-error
state-reconstruction fidelity, and the second with a general
SD-DMC with strictly-causal or causal SI and general single-
letter state-reconstruction fidelity.

Although without feedback, [3] presents techniques that are
very relevant to our setting, particularly to the strictly-causal
case. In fact, for this case the with-feedback converse can be
derived using the no-feedback converse of [3] in combination
with the Functional Representation Lemma [20], [12]. But this
does not apply to the causal case.

Related to the noncausal version of our RnS problem is
the source-coding problem with a “vending machine” [14].
Indeed—in the special case where R is zero, i.e., when
we only wish to transmit state information—our problem
of finding the least achievable state-estimation distortion is
nearly identical to the special case of the problem addressed
in [14, Fig. 2, Sec. III] when we substitute zero for the
description rate. In the terminology of the present paper,
the zero-description-rate case in [14, Fig. 2, Sec. III] cor-
responds to R = 0 and no feedback. In the terminology
of [14] our zero-rate problem corresponds to the case where
the description-rate is zero; the encoder observes the side
information strictly causally; and there are no cost constraints.
Issues related to coordination over state-dependent channels
are addressed in [11].

To appreciate the benefits of feedback, it is instructive to
consider a special kind of SD-DMC. Let us denote a generic
SD-DMC by

(
PS, Pc(y|x, s)

)
, where PS is the probability

mass function (PMF) of the state, and where the transition
law Pc(y|x, s) is the PMF induced on the output alphabet Y
when the input to the channel is x ∈ X and the state of the

channel is s ∈ S. The special case to consider is when the
output Y corresponds to a pair (Ỹ , S̃), the state is S of PMF
PS , and the transition law factorizes as

Pc(ỹ, s̃|x, s) = P̃c(ỹ|x) PS̃|S(s̃|s). (1)

In this case the state and input do not interact, and it is intu-
itively clear that this channel’s RnS capacity is the difference
between the Shannon capacity of the channel P̃c

(
ỹ|x)

and
the rate that is needed to describe the state to a reconstructor
observing S̃. While the former is unaffected by feedback,
the latter is: In the absence of feedback the S̃-sequence
is only observed by the decoder, and the encoder is thus
faced with a Wyner-Ziv problem [24] of describing S to a
reconstructor that observes S̃. But in the presence of feedback
the S̃-sequence—being part of the channel output (Ỹ , S̃)—is
revealed also to the encoder, and the encoder is thus faced with
a classical rate-distortion problem with side information S̃ that
is available to both describer and reconstructor. Since this
rate-distortion function is typically lower than the Wyner-Ziv
rate [24, Sec. II], we conclude that—irrespective of whether
the state is revealed to the encoder strictly-causally, causally,
or noncausally—feedback can increase the RnS capacity.

II. THE SET-UP

We are given a SD-DMC
(
PS, Pc(y|x, s)

)
and a nonnegative

distortion function d : S × Ŝ → R+, where R+ denotes the
nonnegative reals; Ŝ is the reconstruction alphabet; and the
alphabets X , S, Y , Ŝ are all finite. The maximum of d is
finite and is denoted dmax:

dmax = max
(s,ŝ)∈S×Ŝ

d(s, ŝ). (2)

The distortion d(s, ŝ) between an n-length source sequence
s = (s1, . . . , sn) ∈ Sn and an n-length reconstruction sequence
ŝ = (ŝ1, . . . , ŝn) ∈ Ŝn is defined as the average of the
component-wise distortions

d(s, ŝ) = 1

n

n∑

k=1

d(sk, ŝk). (3)

Here and throughout we denote n-length sequences with bold
letters, e.g., Y for Y1, . . . , Yn . We use Y j

i for Yi , . . . , Y j , and
we suppress i when it is 1.

Let n denote the blocklength, R the data rate, and W =
{1, . . . , enR} the set of messages.2 In all our settings the
decoder consists of two mappings. The first,

φW : Yn → {
1, . . . , enR}

, (4)

is used to decode the message, and we denote by Ŵ the result
of applying it to the received sequence Y, so Ŵ = φW (Y).
The second,

φS : Yn → Ŝn, (5)

is used to reconstruct the state sequence, and we denote by Ŝ
the result of applying it to Y, so Ŝ = φS(Y).

2Throughout this paper en R stands for �en R�, i.e., for the largest integer
that does not exceed it.
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The form of the encoder depends on the setting. In the
strictly-causal setting with feedback the encoder comprises n
mappings

fk : W × Sk−1 × Yk−1 → X , k = 1, . . . , n (6)

with the understanding that the time-k symbol Xk that the
encoder produces in order to convey Message W after having
observed the states Sk−1 and the outputs Y k−1 is

Xk = fk
(
W, Sk−1, Y k−1), k = 1, . . . , n. (7)

In the causal case the domain in (6) is replaced by W ×Sk ×
Yk−1 and the RHS of (7) is replaced by fk(W, Sk , Y k−1).
And in the noncausal case the domain is W × Sn × Yk−1

and Xk is fk(W, Sn, Y k−1). Each of these cases also has a
no-feedback counterpart, where Yk−1 is removed from the
domain, and Y k−1 is removed from the definition of Xk . The
arithmetic average of the probabilities of error associated with
the different messages is denoted P(n)

e .
A pair (R, D) is achievable if for every ε > 0 we can find

some positive integer n0(ε) such that, for every blocklength n
exceeding n0(ε), there exist an encoder whose rate exceeds
R − ε and decoding mappings φW and φS such that

E
[
d
(
Sn, Ŝn)] ≤ D + ε (8)

and

lim
n→∞ P(n)

e = 0. (9)

Here the allowed encoding functions are determined by the
setting under consideration. We denote by R the set of
achievable (R, D) pairs, and we note that it is a compact subset
of R+ × R+. For every given maximal-allowed distortion D,
we define the RnS capacity as the maximum over all rates R
for which (R, D) is achievable, where throughout the paper
we adopt the convention that the maximum over an empty
set is −∞. The maximum exists because R is compact. The
different settings have RnS capacities

Cs-c(D), Cc(D), Cnc(D), Cs-c
FB(D), Cc

FB(D), Cnc
FB(D)

all of which are denoted C , with the subscript “FB” indicating
feedback, and the superscript indicating how the state infor-
mation is revealed to the encoder.

By the lossless case we refer to the case where the maximal-
allowed distortion D is zero, and the distortion function is
the Hamming distortion function (s, ŝ) �→ �{ŝ 	= s}. Here
and throughout �{statement} is one or zero depending on
whether or not the statement holds.

Remark 1: The lossless case is reminiscent of the case
where � in [10] is H (S). It is not identical because the
latter case corresponds to a subexponential list, and our case
corresponds to an arbitrarily small distortion in the sense of (8)
(with D replaced by zero).

Finally, although not of finite alphabet, the Gaussian channel
is also of interest to us. This is a memoryless channel, where

Y = x + S + Z , (10a)

and where—irrespective of the (real) value of x—the random
variables S and Z are independent centered Gaussians of

respective variances σ 2
s and N . The input is constrained to

satisfy
n∑

k=1

E
[
X2

k

] ≤ n P (10b)

for some given maximal-allowed average power P . Here the
expectation is over the messages (under a uniform prior),
the state sequence, and—in the case of feedback—over the
noise sequence.

III. MAIN RESULTS

Except when we discuss the Gaussian channel, we assume
throughout a SD-DMC

(
PS, Pc(y|x, s)

)
with finite alphabets

and a (finite) nonnegative distortion function d : S× Ŝ → R+.
We begin with results on the case where the state information
is revealed to the encoder strictly-causally.

A. Strictly-Causal State Information

Theorem 1 (Strictly-Causal SI and Feedback):

Cs-c
FB(D) = max

PX , PU |X SY

{
I (X; Y )− I (S;U |XY )

}
, (11)

where the maximum is over all joint PMFs of the form

PS XY U (s, x, y, u) = PS(s) PX (x) Pc(y|x, s)

· PU |X SY (u|x, s, y) (12)

for which there exists a mappings

g : U × X × Y → Ŝ (13)

satisfying

E
[
d
(
S, g(U, X, Y )

)] ≤ D, (14)

where the expectation and the mutual informations are com-
puted with respect to the above PS XY U . The cardinality of the
set U in which the auxiliary chance variable U takes values
can be bounded by that of Ŝ

|U | ≤ |Ŝ|. (15)

Alternatively, Cs-c
FB(D) can be expressed as

Cs-c
FB(D) = max

PX

{
I (X; Y )− RS|XY (D)

}
, (16)

where RS|XY (·) is the rate-distortion function of the
source S with respect to the distortion measure d(s, ŝ) when
both encoder and reconstructor are cognizant of (X, Y ),
and (X, S, Y ) ∼ PX (x) PS(s) Pc(y|x, s) [1, eq. (6.1.21)],
[6, eq. (11.2)].

Proof: The proof of (11) is in Section IV-A. To see
that (11) is equivalent to (16), recall that RS|XY (·) is the
rate-distortion function of the source S when both encoder
and reconstructor are cognizant of (X, Y ). This situation
can also be formulated as an instance of the Wyner-Ziv
problem [6, Th. 11.3] when the side information (X, Y ) is
part of the source but need not be reconstructed. It is thus
the Wyner-Ziv problem for the source

(
S, (X, Y )

)
with the

distortion d(s, ŝ) that depends on the source only via its first
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component. Applying the Wyner-Ziv expression [6, Th. 11.3]
yields (11).

Discussion: With strictly-causal SI and feedback (or without
it), the achievable rate corresponding to the input distribu-
tion PX equals the input-output mutual information I (X; Y ).
If, in addition to sending the message, the encoder must also
provide a reconstructor that is cognizant of X and Y with
a description of the state to within a desired distortion D,
then the achievable rate is penalized by the conditional rate-
distortion function RS|XY (D) for describing S when both the
encoder and the decoder have access to (X, Y ).

In the absence of feedback, the RnS capacity with strictly-
causal SI was computed in [3, Th. 2]:

Theorem 2 (Strictly-Causal SI and No Feedback [3, Th. 2]):

Cs-c(D) = max
PX , PU |X S

{
I (U X; Y ) − I (S;U |X)

}
, (17)

where the maximum is over all joint PMFs of the form

PS XY U (s, x, y, u) = PS(s) PX (x) Pc(y|x, s)

· PU |X S(u|x, s) (18)

for which there exists a mapping

g : U × X × Y → Ŝ (19)

satisfying

E
[
d
(
S, g(U, X, Y )

)] ≤ D, (20)

where the expectation and the mutual informations are com-
puted with respect to the above PS XY U .

Discussion: This theorem—though not dealing with
feedback—can be used to prove the converse part of
Theorem 1 as follows. By the Functional Representation
Lemma [20, eq. (44)], [12] we can represent the output Yk as
a deterministic function of (Xk, Sk ,�k), where {�k} are IID,
and �k is independent of (Xk−1, Sn). The encoder, to whom
the past inputs Xk−1 are known, can thus compute the past
outputs Y k−1 from (Sk−1,�k−1), and, consequently, revealing
the past states and outputs (Sk−1, Y k−1) to the encoder is at
most as informative as revealing (Sk−1,�k−1) without the
past outputs Y k−1, i.e., without feedback. The latter scenario
can be viewed as a no-feedback scenario with state S̃k =
(Sk,�k); with only S̃k−1 being fed to the encoder; and with
the distortion measure

d̃
(
(s, θ), ŝ

) = d(s, ŝ).

It thus falls under the setting addressed in [3, Th. 2], and we
can apply [3, Th. 2], and specifically (17), to obtain the desired
upper bound, because

I (U X; Y ) − I (S̃;U |X) = I (U X; Y )− I (S�;U |X)
(a)= I (U X; Y )− I (S�Y ;U |X)
(b)= I (X; Y )− I (S�;U |XY )

≤ I (X; Y )− I (S;U |XY ), (21)

where (a) holds because Y is a deterministic function of
(X, S,�), and (b) follows from the chain rule.

This approach does not extend to the causal case: we
can still argue that revealing S̃k is at least as informative

as revealing (Y k−1, Sk), but the application of [3, Th. 3] to
the former setting would lead to a loose bound. Fortunately,
the converse for the strictly-causal case that we present in
Section IV-A does extend to the causal case.

In general, Cs-c
FB(D) can exceed Cs-c(D), but in the lossless

case they are equal. This is perhaps not surprising because the
Slepian-Wolf theorem on lossless source coding demonstrates
that the side information is not always needed at the encoder.

Proposition 3 (Lossless Reconstruction: Strictly-Causal
SI): In the lossless case with the state being revealed to the
encoder strictly causally,

Cs-c(0) = Cs-c
FB(0) = max

PX

{
I (X; Y )− H (S|XY )

}
,

where the mutual information and conditional entropy are
computed under the law PX (x) PS(s) Pc(y|x, s).

Proof: See Section IV-B.
Feedback also does not increase the RnS capacity on the

Gaussian channel. This is perhaps not surprising because,
for Gaussian sources with mean squared-error distortion,
the Wyner-Ziv rate-distortion (corresponding to the case where
the side-information is available to the reconstructor only) is
equal to conditional rate-distortion (where the side-information
is available to both encoder and reconstructor).

Proposition 4 (Gaussian Channel: Strictly-Causal SI):
Consider the state-dependent Gaussian channel of noise-
variance N , state-variance σ 2

s , and maximal-allowed average
power P . Let the state-reconstruction distortion function be
(s, ŝ) �→ (s − ŝ)2. If the state is revealed to the encoder
strictly-causally, then Cs-c(D) = Cs-c

FB(D) for every D > 0.
Moreover, if we define for every 0 ≤ γ ≤ 1 the quantities

Rγ = 1− γ

2
log

(
P + σ 2

s + N

σ 2
s + N

)
(22a)

Dγ = σ 2
s

N

σ 2
s + N

(
σ 2

s + N

P + σ 2
s + N

)γ

, (22b)

then Dγ evaluates at γ = 1 to the least achievable distortion;
Rγ evaluates at γ = 0 to the supremum of achievable rates;
and Cs-c

FB (and hence also Cs-c) is given parametrically by

Cs-c
FB(Dγ ) = Rγ , 0 ≤ γ ≤ 1. (23)

A nonnegative tuple (R, D) is thus achievable if, and only if,

R + 1

2
log+

(
σ 2

s N/(σ 2
s + N)

D

)
≤ 1

2
log

(
1+ P

σ 2
s + N

)
,

(24)

where log+(ξ) � max{0, log ξ}.
Proof: See Section IV-C.

B. Causal State Information

Theorem 5 (Causal SI and Feedback):

Cc
FB(D) = max

PT , PU |T SY , f

{
I (T ; Y )− I (S;U |T Y )

}
, (25)

where U and T are auxiliary chance variables taking values
in U and T respectively; the mapping f is from T ×S to X ;
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the mutual informations are computed with respect to the joint
PMF

PST XY U (s, t, x, y, u) = PS(s) PT (t)�{x = f (t, s)}
· Pc(y|x, s) PU |T SY (u|t, s, y); (26)

and it is required that there exist a mapping

g : U × T × Y → Ŝ (27)

satisfying

E
[
d
(
S, g(U, T, Y )

)] ≤ D. (28)

Moreover, in the above maximization we may restrict the
cardinalities to

|U | ≤ |Ŝ| (29a)

and

|T | ≤ min
{|X | · |S|, |Y|}+ 1. (29b)

Alternatively, Cc
FB(D) can be expressed as

Cc
FB(D) = max

PT , f

{
I (T ; Y )− RS|T Y (D)

}
, (30)

where I (T ; Y ) and RS|T Y (D) are computed under the PMF

PST Y (s, t, y) = PS(s) PT (t) Pc
(
y
∣
∣ f (t, s), s

)
. (31)

Proof: The cardinality bound (29a) can be imposed
because, like in (15), the auxiliary chance variable U can be
chosen to take values in Ŝ. As to T , we note that for a fixed
mapping f : T × S → X and for a fixed conditional PMF
PU |ST Y , the conditional PMF

PU SY |T=t (u, s, y) = PS(s) Pc
(
y
∣
∣ f (s, t), s

)
PU |ST Y (u|s, t, y)

(32)

can be viewed as a joint PMF on (U, S, Y ) that is para-
meterized by t , and that the collection of all such PMFs is
a connected compact subset of all the PMFs on (U, S, Y ).
Imposing |Y| − 1 linear constraints as in [6, Appendix C]
fixes the Y -marginal and hence H (Y ). Alternatively, we can
fix the Y -marginal by fixing the (X, S)-marginal by impos-
ing |X ||S| − 1 linear constraints. Additionally imposing an
expectation constraint on

H

(
∑

u,s

PU SY |T=t

)

fixes H (Y |T ), with the result that I (T ; Y ) is fixed. Lastly, an
additional constraint on the expectation of

E
[
d
(
S, g(U, T, Y )

)∣∣T = t
]

fixes the estimation distortion. The number of constraints we
imposed is |Y|+1 or |X ||S|+1, and it thus follows from the
Support Lemma [6, Appendix C] that—irrespective of f , g,
and PU |ST Y —we can restrict the cardinality of T as in (29b).

The rest of the proof is in Section V-A.
Discussion: With causal SI and feedback, the achievable

rate equals the mutual information I (T ; Y ) between the input
“Shannon strategy” and the output. If, in addition to sending
the message, the encoder must also provide a reconstructor

that is cognizant of T and Y with a description of the state
to within a desired distortion D, then the achievable rate is
penalized by the conditional rate-distortion function RS|T Y (D)
for describing S when both the encoder and the decoder have
access to (T, Y ).

As with strictly-causal SI, in the lossless case with causal
SI, feedback does not increase the RnS capacity:

Proposition 6 (Lossless Reconstruction: Causal SI): If the
state is revealed to the encoder causally and we require lossless
reconstruction, then

Cc(0) = Cc
FB(0)

= max
PT , f

{
I (T ; Y )− H (S|T Y )

}
,

where I and H are computed with respect to the joint PMF

PS(s) PT (t)�
{

x = f (t, s)
}

Pc(y|x, s), (33)

and the mapping f is as in Theorem 5.
Proof: See Section V-B.

C. Noncausal State Information

For the noncausal case we only provide bounds on the
feedback RnS capacity. For the purpose of stating the lower
bound, define

R(l) = max
PT X |S, PU |ST Y , g

{
I (T ; Y )− I (T ; S)− I (S;U |T Y )

}
,

(34)

= max
PT X |S, PU |ST Y , g

{
I (T ; Y )− I (T ; S)− RS|T Y (D)

}
,

(35)

where U and T are auxiliary chance variables taking values in
U and T respectively; the mutual informations are computed
with respect to the joint PMF

PST XY U (s, t, x, y, u) = PS(s) PT X |S(t, x |s) Pc(y|x, s)

· PU |ST Y (u|s, t, y); (36)

and it is required that there be a mapping

g : U × T × Y → Ŝ (37)

satisfying

E
[
d
(
S, g(U, T, Y )

)] ≤ D. (38)

Note that in the above maximization we may restrict the
cardinalities of U and T to satisfy

|U | ≤ |Ŝ| (39a)

and

|T | ≤ |X | · |S| + 1. (39b)

Also note that we can also express R(l) as

R(l) = max
PT X |S , PU |ST XY , g

{
I (T ; Y )− I (T ; S)

− I (SX;U |T Y )
}
, (40a)
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where the mutual informations are computed with respect to
the joint PMF

PST XY U (s, t, x, y, u) = PS(s) PT X |S(t, x |s) Pc(y|x, s)

· PU |ST XY (u|s, t, x, y), (40b)

and g(·) is as in (37) and satisfies (38). Indeed, the maximum
in (40a) is achieved when U and X are conditionally inde-
pendent given (S, T, Y ), in which case (40a) reduces to (34).
This form makes it easier to compare the lower bound with
the upper bound that we present next.

To this end, define

R(u) = max
PT X |S , PU |ST XY , g

min
{

I (T ; Y )− I (T ; S),

I (X S; Y ) − I (S;U T Y )
}
, (41)

where the mutual informations are computed w.r.t. (40b) under
the constraint (38).

Theorem 7 (Noncausal SI and Feedback):

R(l) ≤ Cnc
FB(D) ≤ R(u). (42)

Moreover, if R(u) is attained by a law under which X and
(U, Y ) are conditionally independent given (S, T )—e.g., when
X is a deterministic function of (S, T )—then the above
inequalities both hold with equality.

Proof: See Section VI-A.
Remark 2: The upper bound in (42) need not be tight.

Proof: See Section VI-B.
In the lossless case with noncausal SI the bounds in

Theorem 7 coincide:
Proposition 8 (Lossless Reconstruction: Noncausal SI): In

the lossless case with noncausal SI

Cnc(0) = Cnc
FB(0)

= max
PT X |S

{
I (T ; Y )− I (T ; S)− H (S|T Y )

}
,

where I and H are computed with respect to the joint PMF

PST XY (s, t, x, y) = PS(s) PT X |S(t|s) Pc(y|x, s), (43)

and the maximization over PT X |S can be restricted to condi-
tional law PT X |S of the form PT |S PX |T S with PX |T S being
0-1 valued, i.e., with X being a deterministic function
of (S, T ).

Proof: See Section VI-C.
Remark 3 (Gaussian Channel: Noncausal SI): On the

Gaussian channel with mean squared-error reconstruction dis-
tortion and noncausal SI, feedback does not increase the RnS
capacity. The characterization of the achievable (R, D) pairs
in [19, Th. 2] thus also holds in the presence of feedback.

Proof: This can be shown in either of the following ways.

• Modify the converse proof in [19, Sec. III.B] to account
for feedback.

• Study—as we do in Section VI-D—the upper bound R(u)

and show that it coincides with the (R, D) trade-off
characterization of [19, Th. 2].

• Show that R(u) can be achieved with X being a deter-
ministic function of (S, T ), and then invoke Theorem 7
to deduce its tightness.3

IV. PROOFS—STRICTLY-CAUSAL STATE INFORMATION

This section provides the proofs for the results related to
strictly-causal state information. We begin with Theorem 1.

A. Proof of Theorem 1

Before proving Theorem 1, we denote the RHS of (11)
by C̃s-c

FB(D) and study some of its properties. Recall that
the maximum there is unaltered if we restrict, as we shall,
the cardinality of U to that of Ŝ, which is finite. Let CX→Y

denote the channel’s Shannon capacity when the state is
revealed to neither encoder nor decoder, so

CX→Y � max
PX

I (X; Y ). (44)

Proposition 9: The function C̃s-c
FB : R+ → R+ is monoton-

ically nondecreasing and upper bounded by the channel’s
Shannon capacity,

C̃s-c
FB(D) ≤ CX→Y , D ∈ R+, (45)

with equality whenever D ≥ dmax. Moreover, it is concave
and continuous.

Proof: Monotonicity holds because the feasible set in the
maximization defining C̃s-c

FB(D) is enlarged (or is unchanged)
when the maximal-allowed distortion D is increased. When
D is greater-equal dmax the constraint (14) is inactive, and the
maximization in (11) is thus unconstrained. The maximum
is then achieved by choosing U deterministic (so that the
nonnegative term I (S;U |XY ) be zero) and by choosing PX

to maximize I (X; Y ). With this choice I (X; Y )− I (S;U |XY )
is equal to CX→Y , thus demonstrating that C̃s-c

FB(D) is equal
to CX→Y whenever D ≥ dmax. This and the monotonicity
establishes (45) and the sufficient condition for equality.

To establish concavity, let D(1), D(2) ∈ R+ and 0 < λ < 1
be given. For each ν ∈ {1, 2} let P(ν)

X , PU (ν)|X SY , g(ν) achieve
C̃s-c

FB(D(ν)), where U (ν) takes values in the finite set U (ν). Let
Q be a time-sharing random variable that is independent of S
and that takes on the values 1 and 2 with probabilities λ and
1− λ. Define

PX |Q(x |q) = P(q)
X (x) (46a)

Ũ = {
(u(q), q) : q ∈ {1, 2}, u(q) ∈ U (q)

}

(46b)

Ũ = (U (Q), Q) (46c)

PŨ |X SY (u(q), q|x, s, y) = Q(q)PU (q)|X SY (u(q)|x, s, y), (46d)

g(u(q), q, x, y) = g(q)(u(q), x, y). (46e)

3To show that R(u) can be achieved by such an X , one can proceed as
follows: First choose ρ ∈ (0, 1) so that the RHS of (170a) will equal the
RHS of (170b). Next note that (170b) holds with equality when (S, T, X, U)
are jointly Gaussian, with U being equal to Ŝ. When this is the case, we can
express X as αS+βT+W ′, where W ′ is Gaussian and independent of (S, T ).
Conclude the argument by noting that choosing W ′ to be zero renders (163)
tight.
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Note that under the law PS PX Pc(y|x, s) PŨ |X SY

Q �−− (X, Y ) �−− S (47)

(i.e., forms a Markov chain) because integrating U (Q) out
shows that (Q, S, X, Y ) ∼ PQ PS PX |Q Pc(y|x, s), which
factorizes as PX Q(x, q) · (PS(s)Pc(y|x, s)

)
, with PX Q(x, q)

being a function of q and (x, y), and with PS(s)Pc(y|x, s)
being a function of s and (x, y).

Since P(ν)
X , PU (ν)|X SY , g(ν) give rise to a distortion that does

not exceed D(ν), the choice PX , PŨ |X SY , g gives rise to a
distortion that does not exceed λD(1)+(1−λ)D(2) and is thus
feasible for the maximization problem defining C̃s-c

FB

(
λD(1) +

(1 − λ)D(2)
)
. By the concavity of mutual information in the

input law, the mutual information corresponding to PX is
at least the λ-weighted average of the mutual informations
corresponding to P(1)

X and P(2)
X . And as to I (S; Ũ |XY ),

I
(
S; Q, U (Q)

∣
∣XY

) = I (S; Q|XY )+ I
(
S;U (Q)

∣
∣XY Q

)

= I
(
S;U (Q)

∣∣XY Q
)

= λI
(
S;U (1)

∣
∣XY, Q = 1

)

+ (1− λ)I
(
S;U (2)

∣
∣XY, Q = 2

)
, (48)

where the second equality follows from (47).
The above choice of PX , Ũ , PŨ |X SY , g thus satisfies the

λD(1) + (1− λ)D(2) distortion constraint and satisfies

I (X; Y )− I (S; Ũ |XY ) ≥ λC̃s-c
FB

(
D(1)

)+ (1− λ)C̃s-c
FB

(
D(2)

)
.

Since this choice need not be optimal, the LHS of the above
is only a lower bound on C̃s-c

FB

(
λD(1) + (1− λ)D(2)

)
, and

C̃s-c
FB

(
λD(1)+(1−λ)D(2)

)≥λC̃s-c
FB

(
D(1)

)+(1−λ)C̃s-c
FB

(
D(2)

)
,

which establishes concavity.
Continuity on (0,∞) is a consequence of the concavity, so it

remains to prove continuity (from above) at D = 0. By the
definition in [16, Sec. 10, p. 84], R+ is locally simplicial,
hence the concavity of C̃s-c

FB implies its lower-semicontinuity
relative to R+. It thus remains to prove upper-semicontinuity
relative to R+, i.e., that if

D(κ) ↓ 0 as κ →∞
then there exists a subsequence {κν} such that

C̃s-c
FB(0) ≥ lim

ν→∞ C̃s-c
FB(D(κν )).

Let P(κ)
X , P(κ)

U |X SY , and g(κ), achieve C̃s-c
FB(D(κ)) with U =

{1, . . . , |Ŝ|}. Since the number of functions from Y × U × X
to Ŝ is finite, we can choose a subsequence {κν} such that
the mappings g(κν) do not depend on ν and can therefore be
denoted g; the input distributions P(κν )

X converge to some P(0)
X ;

and the conditional laws P(κν )
U |X SY to some P(0)

U |X SY .
The expectation on the LHS of (14)—when evaluated under

PS P(κν )
X Pc P(κν )

U |X SY and g—is sandwiched from below by
zero and from above by D(κν ) and hence converges to zero.
Consequently, zero must also be its evaluation with respect to
PS P(0)

X Pc P(0)
U |X SY and g because the expectation is continuous

with respect to PX and PU |X SY , and P(κν )
X converge to P(0)

X and

P(κν )
U |X SY to P(0)

U |X SY . Consequently, the triple
(
P(0)

X , P(0)
U |X SY , g

)

is in the feasible set defining C̃s-c
FB(0). The continuity of the

mutual information implies that the limit limν→∞ C̃s-c
FB(D(κν ))

is equal to I (X; Y ) − I (S;U |XY ) evaluated with respect
to PS P(0)

X Pc(y|x, s) P(0)
U |X SY . And C̃s-c

FB(0) cannot be smaller

than this limit because
(
P(0)

X , P(0)
U |X SY , g

)
is in the feasible set

defining it.
We are now ready to prove the converse part of Theorem 1.

Proof (Proof of the converse part of Theorem 1): Consider
any achievable pair (R, D), and let ε > 0 be arbitrarily small
but for now fixed. We will show that the achievability of
(R, D) implies that

R − ε ≤ C̃s-c
FB(D + ε). (49)

Since C̃s-c
FB is continuous (Proposition 9), this implies (upon

letting ε tend to zero from above) that

R ≤ C̃s-c
FB(D) (50)

and thus establishes the converse.
To establish (49), let n0 = n0(ε) be sufficiently large

so that for all n ≥ n0 there exists a blocklength-n code({ fk}nk=1, φW , φS
)

of rate

1

n
log |W| ≥ R − ε; (51a)

fidelity

E
[
d
(
Sn , Ŝn)] ≤ D + ε; (51b)

and average probability of error P(n)
e satisfying

lim
n→∞ P(n)

e = 0. (51c)

We will show that

lim sup
n→∞

1

n
log |W| ≤ C̃s-c

FB(D + ε), (52)

from which (49) will follow using (51a).
It thus remains to establish (52). To simplify the typography,

we denote the rate of the code
({ fk}nk=1, φW , φS

)
by R′, so

R′ � 1

n
log |W|. (53)

Draw W uniformly over W , and let the random n-tuples Sn ,
Xn , Y n , and Ŝn be the result of transmitting W over the
channel using the encoder Xk = fk(W, Sk−1, Y k−1) and of
estimating the state sequence using φS . We first address the
reliable transmission of the data by invoking Fano’s inequality
and (51c) to obtain

n(R′ − ηn) ≤ I (W ; Y n), (54)

where

lim
n→∞ ηn = 0. (55)

We next address the state estimation. It is tempting to
account for the computability of Ŝn from Y n using the data
processing inequality

I (Ŝn; Sn) ≤ I (Y n; Sn) (56)
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and to then relate the estimation fidelity to I (Ŝn; Sn). But this
will not do. To see why, consider the example of (1), when
the state S = (S(a), S(b)) has two independent components
and likewise S̃ = (S̃(a), S̃(b)). Assume the factorization

PS̃|S = PS̃(a)|S(a) PS̃(b)|S(b)

and that Ŝ = (Ŝ(a), Ŝ(b)) with d(s, ŝ) depending only on
(s(a), ŝ(a)). In this case it is intuitively clear that S̃(b) can
be ignored by the encoder and that its joint law with S(b)

is immaterial. But this joint law does influence I (Y n; Sn).
Indeed, the latter is maximized when S̃(b) equals S(b), and it is
minimized when the two are independent. The data processing
inequality is in the former case thus too loose. To overcome
this problem, we shall replace it with an identity and have to
deal with the correction term. Additionally (for other reasons),
we shall have to consider a conditional version thereof.

To derive the required identity, we begin by using the chain
rule and the fact that Ŝk is a function of Y n to obtain

I (Y n Ŝk; Sk |W Sk−1)

= I (Y n; Sk |W Sk−1)+ I (Ŝk ; Sk|WY n Sk−1)

= I (Y n; Sk |W Sk−1). (57)

Next, expanding the same term in the other order we obtain

I (Y n Ŝk ; Sk|W Sk−1)

= I (Ŝk ; Sk |W Sk−1)+ I (Y n; Sk |W Ŝk Sk−1). (58)

From the two equally-valid expansions (57) and (58) we obtain
the desired identity

I (Ŝk ; Sk |W Sk−1)

= I (Y n; Sk |W Sk−1)− I (Y n; Sk |Ŝk W Sk−1). (59)

To continue with the converse, define the auxiliary random
variables

Vk � (W, Sk−1), (60a)

Uk � Y n\k = (Y1, . . . , Yk−1, Yk+1, . . . , Yn), (60b)

and note that for every k ∈ [1 : n] the time-k state Sk is
independent of Vk , and that Ŝk is a deterministic function
(which depends on k) of (Uk, Yk).

By (54) and (59),

n(R′ − ηn)+
n∑

k=1

I (Ŝk ; Sk |W Sk−1)

≤ I (W ; Y n)

+
n∑

k=1

[
I (Y n; Sk |W Sk−1)− I (Y n; Sk |W Ŝk Sk−1)

]

= I (W ; Y n)+ I (Y n; Sn |W )−
n∑

k=1

I (Y n; Sk|W Ŝk Sk−1)

= I (W Sn ; Y n)−
n∑

k=1

I (Y n; Sk |W Ŝk Sk−1)

=
n∑

k=1

[
I (Yk ;W Sn |Y k−1)− I (Sk ; Y n|W Ŝk Sk−1)

]

(a)=
n∑

k=1

[
I (Yk ;W Xk Sn |Y k−1)− I (Sk ; Y n|W Ŝk Sk−1)

]

=
n∑

k=1

[
H (Yk|Y k−1)− H (Yk|Xk W SnY k−1)

− I (Sk ; Y n|W Ŝk Sk−1)
]

(b)≤
n∑

k=1

[
H (Yk)− H (Yk|Xk Sk)− I (Sk ; Y n|W Ŝk Sk−1)

]

=
n∑

k=1

[
I (Yk ; Xk Sk)− I (Sk ; YkUk |Vk Ŝk)

]

=
n∑

k=1

[
I (Xk ; Yk)+ I (Sk ; Yk|Xk)− I (Sk ; YkUk|Vk Ŝk)

]

(c)=
n∑

k=1

[
I (Xk ; Yk)+ H (Sk)− H (Sk|Yk Xk)− H (Sk|Vk Ŝk)

+ H (Sk|XkYkUk Vk Ŝk)
]

≤
n∑

k=1

[
I (Xk ; Yk)+ H (Sk)− H (Sk|Yk Xk)− H (Sk|Vk Ŝk)

+ H (Sk|XkYkUk)
]

=
n∑

k=1

[
I (Xk ; Yk)− I (Sk ;Uk|Yk Xk)+ I (Sk ; Vk Ŝk)

]

=
n∑

k=1

[
I (Xk ; Yk)− I (Sk ;Uk|Yk Xk)+ I (Sk ;W Sk−1 Ŝk)

]

(d)=
n∑

k=1

[
I (Xk ; Yk)− I (Sk ;Uk|Yk Xk)+ I (Sk ; Ŝk |W Sk−1)

]
.

(61)

Here
(a) follows since Xk is a function of (W, Sk−1, Y k−1);
(b) follows since (W Sn\kY k−1) �−− (Xk Sk) �−− Yk

forms a Markov chain, and conditioning cannot increase
entropy;

(c) follows since Sk and Xk are independent, and Xk is a
function of (W, Sk−1, Y k−1); and

(d) follows because Sk is independent of (W, Sk−1).
Subtracting the sum that appears on both sides of (61), we
obtain

n(R′ − ηn) ≤
n∑

k=1

[
I (Xk ; Yk)− I (Sk ;Uk |Yk Xk)

]
. (62)

Draw J uniformly from {1, . . . , n} independently of
{(Xk, Yk, Sk , Uk, Ŝk), k = 1, . . . , n}, and define the chance
variables U � (UJ , J ), S � SJ , Y � YJ , X � X J , and
Ŝ � ŜJ . Further define the function

g
(
(u j , j), x, y

) = φ
( j )
S

(
yn)

so

Ŝ = g(U, X, Y ), (63)

where φ
( j )
S

(
yn

)
—being the j -th component of the result of

applying φS to yn—is computable from φS and the tuple
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(
(u j , j), x, y j

)
, because the tuple fully specifies both j and yn .

The value of g
(
(u j , j), x, y

)
does not depend on x , but we

have added x as an argument so that the mapping have the
form (13) that appears in the direct part.

Using J we may express (62) as

R′ − ηn ≤ 1

n

n∑

k=1

[
I (Xk ; Yk)− I (Sk ;Uk |Yk Xk)

]

= I (X J ; YJ |J )− I (SJ ;UJ |YJ , X J , J )

= I (X J ; YJ |J )− I (SJ ;UJ , J |YJ , X J )

+ I (SJ ; J |YJ , X J )
(e)≤ I (X; Y )− I (S;U |XY ). (64)

Here (e) follows because I (X; Y ) = I (PX ;WY |X ) is concave
in PX , and because the factorization

PJ SJ X J YJ ( j, s, x, y) = PJ ( j) PSJ X J YJ |J (s, x, y| j)
= PJ ( j) PX j (x) PS(s) Pc(y|x, s) (65)

shows that J �−− (X J , YJ ) �−− SJ and hence that
I (SJ ; J |YJ , X J ) = 0.

Notice that the factorization (65) also implies (upon substi-
tuting 1/n for PJ ( j) and summing over j ) that

PS XY (s, x, y) = PS(s)

(
1

n

n∑

j=1

PX j (x)

)
Pc(y|x, s) (66)

as in (12).
As to the expected distortion, starting from (51b),

D + ε ≥ E
[
d
(
Sn, Ŝn)]

= 1

n

n∑

k=1

E
[
d
(
Sk, Ŝk

)]

= E
[
d
(
SJ , ŜJ

)]

= E
[
d
(
S, Ŝ

)]

= E
[
d
(
S, g(U, X, Y )

)]
, (67)

where the second line follows from (3); the third by condi-
tioning on J and then averaging over it; the fourth from the
definition of the chance variables S and Ŝ; and the last by (63).

It now follows from (64), (67), and the fact that by (66) the
joint law of S, X, Y, U factorizes as in (12) that

R′ − ηn ≤ C̃s-c
FB(D + ε), (68)

which, in view of (55), establishes (52) and hence concludes
the proof of (50). �

Having established the converse part of Theorem 1, we now
prove its direct part.

Proof of the direct part of Theorem 1: A sketch of the
proof of the direct part was presented in the introduction. Here
we provide some of the missing technical details.

Our coding scheme comprises B blocks, each of n channel
uses. No attempt is made to estimate the state sequence
pertaining to the last block. This may contribute up to dmax/B
to our overall average reconstruction distortion. We choose B
sufficiently large so that this penalty be negligible.

In Block-b we generate a blocklength-n, rate-(R + Rs)
random codebook whose codewords are chosen IID, with the
components of each codeword being drawn IID according
to the PMF PX . This codebook, in combination with joint-
typicality decoding, is used to send rate-R fresh information
and a rate-Rs description of the Block-(b − 1) state sequence.
The description is designed so that, based on this description,
a reconstructor cognizant of the Block-(b− 1) codeword and
output sequence will be able to reconstruct the Block-(b− 1)
state sequence with average distortion that does not exceed D.
When forming this description as Block-b is about to begin,
the describer is cognizant of the Block-(b− 1) channel out-
puts (via the feedback link) and of the Block-(b − 1) codeword
it sent in Block-(b − 1).

After observing the Block-b output sequence, the decoder
can recover the fresh information and the state-description
information as in the classical (stateless) channel coding
theorem provided that R + Rs is smaller than I (X; Y ) (and
the blocklength is large enough).

The decoder then proceeds to guess the codeword that
was sent in Block-(b− 1). Having done so, it assumes that
its guess is correct and uses this guess, the Block-(b− 1)
output sequence, and the state-description information that
it decoded in Block-b to estimate the Block-(b− 1) state
sequence.

Roughly speaking, the decoding and the state estimation
steps should be successful if R + Rs is smaller than I (X; Y )
and Rs exceeds RS|XY (D). There is, however, a delicate
dependence issue that needs to be addressed: conditional
on the Block-(b − 1) codeword being correctly decoded,
the Block’s state sequence is no longer IID PS , so the
application of the (conditional) rate-distortion theorem to this
setting is tricky. This can be addressed by resorting to a
“genie-aided decoder” [21, p. 419], [15]. The genie-aided
decoder decodes the Block-(b− 1) codeword like we do and
hence has the same probability of error in decoding the fresh
information. However—unlike our decoder, which feeds this
guess (and the Block-(b − 1) output sequence) to the estimator
of the Block-(b− 1) state sequence—it feeds the correct
Block-(b− 1) codeword to the state-estimation circuitry. The
two decoders thus produce the same estimate of the state
sequence whenever our decoder does not err. The difference in
the distortions they incur is thus upper bounded by the product
of the maximal distortion dmax and the maximal probability
of decoding error. It thus tends to zero. �

B. Proof of Proposition 3

The converse, which we prove with feedback, follows from
Theorem 1: when the maximal-allowed Hamming distortion
is zero, the distortion constraint (14) translates to H (S|U XY )
being zero and hence to I (S;U |XY ) being H (S|XY ), in
which case (11) yields R ≤ I (X; Y )− H (S|XY ).

For the direct part we use the RnS capacity expression
in Theorem 2, which does not utilize feedback, wherein the
choice U = S in (19) yields D = 0 and hence by (17) the
rate R = I (X; Y )− H (S|XY ) is achievable.
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C. Proof of Proposition 4

We prove the proposition by proving the converse with
feedback and the achievability without it. For the converse
we sketch two proofs. The first is based on (16) of Theo-
rem 14. The second is based on the data processing inequality
I (Ŝn; Sn) ≤ I (Y n; Sn), which here—unlike in the general
case—is tight. Both allow for feedback, i.e., allow Xk to be
of the form Xk = Xk(W, Sk−1, Y k−1).

Proof 1 of the converse part of Proposition 4:
To derive the converse from (16) we note that there is
a one-to-one correspondence between the pairs (X, Y ) and
(X, Y − X), so

RS|XY (D) = RS|X,Y−X(D)

= RS|S+Z(D)

= 1

2
log+

(
σ 2

S|S+Z

D

)

= 1

2
log+

(
σ 2

s N

(σ 2
s + N)D

)
, (69)

where the second equality holds because X is independent of
(S, Z); the third because S and Z are independent Gaussians,
so the conditional distribution of S given S + Z is Gaussian;
and the fourth equality holds because the conditional vari-
ance is

σ 2
S|S+Z =

σ 2
s N

σ 2
s + N

. (70)

As to the term I (X; Y ) on the RHS of (16), we note that
it is maximized by the Gaussian distribution, so

(
E
[
X2] ≤ P

)
�⇒

(
I (X; Y ) ≤ 1

2
log

(
1+ P

σ 2
s + N

))
.

(71)

Combining (71), (69) and (16) yields the desired
converse. �

Proof 2 of the converse part of Proposition 4: Our second
proof is based on the data processing inequality. Let R(·)
be the Rate-Distortion function for describing Sk in mean
squared-error.

R(D) � min
PŜ|S : E[d(S,Ŝ)]≤D

I (S; Ŝ). (72)

Since the state sequence is IID, it follows as in [4, eqs.
(10.61)–(10.70)] that

(
E
[
d
(
Sn, Ŝn)] ≤ D

)
�⇒

(
n R(D) ≤ I (Sn; Ŝn)

)
. (73)

4The use of (16) requires some justification, because Theorem 1 assumes
finite alphabets and no cost constraints. Nevertheless, the converse does go
through when we restrict D to be strictly positive (with continuity hence
following from convexity).

By (54), (73) and the data processing inequality (56)

n(R′ − ηn)+ n R(D)

≤ I (W ; Y n)+ I (Sn; Y n)
(a)≤ I (W ; Y n |Sn)+ I (Y n; Sn)

= I (W Sn ; Y n)

=
n∑

k=1

I
(
Yk ;W Sn |Y k−1)

=
n∑

k=1

[
h(Yk |Y k−1)− h(Yk |W SnY k−1)

]

(b)=
n∑

k=1

[
h
(
Yk |Y k−1)− h

(
Yk |Xk W SnY k−1)

]

(c)=
n∑

k=1

[
h
(
Yk |Y k−1)− h

(
Yk |Xk Sk

)]

(d)≤
n∑

k=1

[
h(Yk)− h(Yk |Xk Sk)

]

=
n∑

k=1

I (Yk; Xk Sk)

(e)≤ n

2
log

(
P + σ 2

s + N

N

)
. (74)

Here
(a) holds because Sn is independent of W , and conditioning

cannot increase entropy;
(b) holds because Xk = Xk(W, Sk−1, Y k−1) by (7);
(c) holds because (W, Sn\k , Y k−1) �−− (Xk, Sk) �−− Yk is

a Markov chain;
(d) holds because conditioning cannot increase entropy; and
(e) holds because X , S, and Z are independent, so the second

moment of X + S + Z cannot exceed P + σ 2
s + N .

For the Gaussian memoryless source {Sk}∞k=1 the rate-
distortion function is

R(D) = 1

2
log+

(
σ 2

s

D

)
, (75)

and (74) therefore yields the desired converse

Rγ + 1

2
log+

(
σ 2

s

Dγ

)
≤ 1

2
log

(
P + σ 2

s + N

N

)
. (76)

�
Proof of the direct part of Proposition 4: We prove

achievability using a scheme that does not utilize the feedback,
so Xk = Xk(W, Sk−1). As in the direct part of Theorem 1,
we use a Block-Markov scheme of B blocks. In Block b
the transmitter uses a Gaussian codebook to transmit fresh
information W (b) at rate R as well as a description W (b)

s
at rate Rs of the Block-(b− 1) state sequence S(b−1). The
description is à la Wyner-Ziv: the transmitter describes S(b−1)

to a reconstructor that is cognizant of the difference between
the Block-(b − 1) outputs Y(b−1) and the Block-(b− 1) inputs
X(b−1). (Since we do not utilize feedback, the transmitter is
incognizant of these outputs, and though it is cognizant of
the inputs, it ignores this knowledge.) The difference between
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the Block-(b− 1) outputs Y(b−1) and the Block-(b− 1) inputs
X(b−1) thus serves as side information that is available to
the reconstructor (once the transmitted symbols have been
decoded) but not to the describer. And since the codebooks
are Gaussian, this side-information is jointly Gaussian with
the state S(b−1). The Wyner-Ziv setting at hand is thus the
Gaussian setting where performance is as good as if the side-
information were also available to the describer.

In decoding the Block-(b − 1) transmission, the Wyner-Ziv
description of S(b−1) that was sent in Block-b is ignored.
Reliable decoding can thus be achieved whenever

R + Rs < I (X; Y ) = 1

2
log

(
P + σ 2

s + N

σ 2
s + N

)
. (77)

Once the receiver decodes X(b−1), it can subtract it from
Y(b−1) to obtain the side information. It then uses this side
information and the Wyner-Ziv description W (b)

s of S(b−1) that
was sent in Block-b to estimate S(b−1). The resulting expected
distortion is then

E

[(
S(b−1) − E

[
S(b−1)

∣
∣W (b)

s , S(b−1) + Z(b−1)
])2

]

= σ 2
s N

σ 2
s + N

e−2Rs . (78)

The achievability of (Rγ , Dγ ) now follows by choosing

R = 1− γ

2
log

(
P + σ 2

s + N

σ 2
s + N

)
− ε (79)

and

Rs = γ

2
log

(
P + σ 2

s + N

σ 2
s + N

)
+ ε

2
. (80)

�

D. Converse for Strictly-Causal SI without Feedback

We next show how the technique that we employed to
prove the converse part of Theorem 1 can be used in order
to provide an alternative proof for the converse in the absence
of feedback, i.e., the converse part of Theorem 2. Define the
auxiliary random variable Vk � (W, Sk−1) as in (60a), and
define

Uk � (W, Sk−1, Y n
k+1). (81)

Note that, for every k ∈ [1 : n], the time-k state Sk

is independent of Vk and that in the absence of feedback
Uk �−− (Xk, Sk) �−− Yk forms a Markov chain. Further-
more, because Xk = Xk(W, Sk−1) (no-feedback), it follows—
as noted in [3, Sec. II.B]—that

Sk �−− (W, Sk−1, Yk , Y n
k+1) �−− Y k−1 (82)

forms a Markov chain. Indeed, Xk−1 is a deterministic
function of (W, Sk−2), and conditioned on (Xk−1, Sk−1) the
random vector Y k−1 is independent of the other variables
including Y n

k+1.

As a result,

Ŝk
(a)= Ŝk(Y

n)
(b)= Ŝk

(
W, Sk−1, Y n

k+1, Yk , Y k−1)

= Ŝk(Uk, Yk, Y k−1).

Here
(a) follows since the reconstruction function is defined by

(5); and
(b) follows since one can ignore (W, Sk−1) and take Ŝk to

be a function of Y n .
Moreover the Markov chain (82) and Lemma 1 in [3, Sec. II.B]
ensure the existence of a reconstruction Ŝ∗k (Uk, Yk) which
dominates Ŝk in the sense that

E
[
d
(
Sk, Ŝ∗k (Uk, Yk)

)] ≤ E
[
d
(
Sk, Ŝk(Uk, Yk, Y k−1)

)]
. (83)

Thus, replacing Ŝk by Ŝ∗k , which is a deterministic function
of (Uk, Yk), does not increase the expected distortion. This
observation interpreted as the “data processing inequality”
for estimation has already been made in [3, Lemma 1].
Furthermore, the identity (59) continues to hold when we
replace Ŝk by Ŝ∗k because it builds on (58) (which is just the
chain rule) and on (57), which continues to hold when we
replace Ŝk by Ŝ∗k because

I (Y n Ŝ∗k ; Sk |W Sk−1)

= I (Y n; Sk |W Sk−1)+ I (Ŝ∗k ; Sk |WY n Sk−1)

(a)= I (Y n; Sk |W Sk−1), (84)

where (a) follows since Ŝ∗k is a function of
(W, Sk−1, Yk, Y n

k+1).
Consequently, by (54) and (59) (with Ŝk replaced by Ŝ∗k ),

n(R′ − ηn)+
n∑

k=1

I (Ŝ∗k ; Sk |W Sk−1)

≤ I (W ; Y n)

+
n∑

k=1

[
I
(
Y n; Sk

∣
∣W Sk−1)− I

(
Y n; Sk

∣
∣W Ŝ∗k Sk−1)

]

= I (W ; Y n)+ I (Y n; Sn |W )−
n∑

k=1

I
(
Y n; Sk

∣
∣W Ŝ∗k Sk−1)

= I (W Sn ; Y n)−
n∑

k=1

I
(
Y n; Sk

∣
∣W Ŝ∗k Sk−1)

=
n∑

k=1

[
I (Yk ;W Sn |Y k−1)− I (Sk ; Y n|W Ŝ∗k Sk−1)

]

(a)=
n∑

k=1

[
I
(
Yk;W Xk Sn

∣∣Y k−1)− I
(
Sk; Y n

∣∣W Ŝ∗k Sk−1)
]

=
n∑

k=1

[
H (Yk|Y k−1)− H (Yk|XkW SnY k−1)

− I
(
Sk; Y n

∣
∣W Ŝ∗k Sk−1)

]

(b)≤
n∑

k=1

[
H (Yk)− H (Yk|Xk SkUk)− I

(
Sk; Y n

∣
∣W Ŝ∗k Sk−1)

]
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=
n∑

k=1

[
I (Yk ; Xk SkUk)− I

(
Sk ; Y n

∣∣W Ŝ∗k Sk−1)
]

=
n∑

k=1

[
I (Yk ; Xk SkUk)− H

(
Sk

∣
∣W Ŝ∗k Sk−1)

+ H
(
Sk

∣
∣WY n Ŝ∗k Sk−1)

]

(c)=
n∑

k=1

[
I (Yk ; Xk SkUk)− H

(
Sk

∣
∣W Ŝ∗k Sk−1)

+ H
(
Sk

∣
∣W XkY n Sk−1)

]

(d)=
n∑

k=1

[
I (Yk ; Xk SkUk)− H

(
Sk

∣∣W Ŝ∗k Sk−1)

+ H
(
Sk

∣
∣W XkYkY n

k+1 Sk−1)
]

=
n∑

k=1

[
I (Yk ; Xk SkUk)− H

(
Sk

∣
∣Vk Ŝ∗k

)+ H (Sk|XkYkUk)
]

=
n∑

k=1

[
I (Yk ; Xk SkUk)+ I

(
Sk ; Vk Ŝ∗k

)− I (Sk ; XkYkUk)
]

(e)=
n∑

k=1

[
I (Yk ; Xk SkUk)+ I

(
Sk ; Ŝ∗k

∣
∣Vk

)− I (Sk ; XkYkUk)
]

=
n∑

k=1

[
I (Yk ; XkUk)+ I

(
Sk; Ŝ∗k

∣∣Vk
)− I (Sk ; XkUk)

]

( f )=
n∑

k=1

[
I (Yk ; XkUk)+ I

(
Sk; Ŝ∗k

∣
∣Vk

)− I (Sk ;Uk|Xk)
]
. (85)

Here

(a) follows since Xk is a function of (W, Sk−1);
(b) follows since (W Sn\kY n\k) �−− (Xk Sk) �−− Yk forms

a Markov chain hence

H (Yk|W Xk SnY k−1) = H (Yk|W Sk−1Y n
k+1 Xk Sk)

= H (Yk|Xk SkUk),

and since conditioning cannot increase entropy;
(c) follows since Ŝ∗k is a deterministic function of

(W, Sk−1, Yk , Y n
k+1), and Xk is a function of (W, Sk−1);

(d) follows since Sk �−− (W, Sk−1, Xk , Yk, Y n
k+1) �−−

Y k−1 forms a Markov chain as per (82);
(e) follows because Sk is independent of (W, Sk−1); and
( f ) follows because Xk is independent of Sk .

Subtracting the sum that appears on both sides of (85),
we obtain

n(R′ − ηn) ≤
n∑

k=1

[
I (XkUk; Yk)− I (Sk ;Uk|Xk)

]
. (86)

Define now Ŝ∗ � Ŝ∗J , and S � SJ , and consider the
expected distortion:

D + ε ≥ E
[
d
(
Sn, Ŝn)]

= 1

n

n∑

k=1

E
[
d
(
Sk, Ŝk

)]

≥ 1

n

n∑

k=1

E
[
d
(
Sk , Ŝ∗k

)]

= E
[
d
(
SJ , Ŝ∗J

)]

= E
[
d
(
S, Ŝ∗

)]

= E
[
d
(
S, g(U, X, Y )

)]
,

where the second line follows from (3); the third by (83),
the fourth by conditioning on J and then averaging over it; the
fifth from the definition of the chance variables S and Ŝ∗; and
the last by the fact that Ŝ∗k is computable from (Uk, Xk , Yk).
The translation of (86) into a single-letter form completes the
proof.

V. PROOFS—CAUSAL STATE INFORMATION

This section provides the proofs for the results related to
causal state information. We begin with Theorem 5.

A. Proof of Theorem 5

Before proving Theorem 5, we denote the RHS of (25) by
C̃c

FB(D) and record some of its properties. Recall that the RHS
of (25) is not altered if, as we do, we impose the cardinality
bounds (29). We denote the capacity of the channel when the
state is revealed causally to the encoder by Cc

X→Y , so [17]

Cc
X→Y � max

PT , f
I (T ; Y ), (87)

where T is an auxiliary chance variable taking values in T , the
mapping f is from T × S to X , and the mutual information
is computed with respect to the joint distribution

PST XY (s, t, x, y) = PS(s) PT (t)�{x = f (t, s)} Pc(y|x, s).

Proposition 10: The function C̃c
FB : R+ → R+ is monoton-

ically nondecreasing and upper bounded by Cc
X→Y ,

C̃c
FB(D) ≤ Cc

X→Y , D ∈ R+, (88)

with equality whenever D ≥ dmax. Moreover, it is concave
and continuous.

Proof: The proof is similar to the proof of Proposition 9
and is thus omitted. The main difference is in replacing (46)
with

T̃ = (
T (Q), Q

)
(89a)

Ũ = U (Q) (89b)

PT̃ (t(q), q) = PQ(q) PT (q)

(
t(q)

)
(89c)

PX |T̃ S

(
x
∣
∣(t(q), q), s

) = �

{
x = f (q)

(
t(q), s

)}
(89d)

PŨ |T̃ SY

(
u(q)

∣∣(t(q), q), s, y
) = PU (q)|T (q)SY

(
u(q)|t(q), s, y

)
,

(89e)

g
(
u(q), (t(q), q), y

) = g(q)
(
u(q), t(q), y

)
. (89f)

(89g)

We are now ready to prove the converse part of Theorem 5.
Proof of the converse part of Theorem 5: Consider any

achievable pair (R, D), and let ε > 0 be arbitrarily small but
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for now fixed. We will show that the achievability of (R, D)
implies that

R − ε ≤ C̃c
FB(D + ε). (90)

Since C̃c
FB is continuous (Proposition 10), this implies (upon

letting ε tend to zero from above) that

R ≤ C̃c
FB(D) (91)

and thus establishes the converse.
To establish (90), let n0 = n0(ε) be sufficiently large

so that for all n ≥ n0 there exists a blocklength-n code({ fk}nk=1, φW , φS
)

of rate

1

n
log |W| ≥ R − ε, (92a)

fidelity

E
[
d
(
Sn, Ŝn)] ≤ D + ε, (92b)

and average probability of error P(n)
e satisfying

lim
n→∞ P(n)

e = 0. (92c)

We will show that

lim sup
n→∞

1

n
log |W| ≤ C̃c

FB(D + ε), (93)

from which (90) will follow using (92a). It thus remains to
establish (93).

Denote the code rate by R′, so

R′ � 1

n
log |W|. (94)

Draw W uniformly over W , and let the random n-tuples
Sn , Xn , Y n , and Ŝn be the result of transmitting W over
the channel using the encoder Xk = fk(W, Sk , Y k−1) and
of estimating the state sequence using φS . Using Fano’s
inequality and (92c),

n(R′ − ηn) ≤ I (W ; Y n), (95)

where

lim
n→∞ ηn = 0. (96)

We now turn to the state estimation. Once again we use (59)
instead of the data processing inequality. We also use the
definitions in (60) and additionally define

Tk � (W, Y k−1, Sk−1). (97)

As before, Vk and Sk are independent, and Ŝk is a deterministic
function of (Uk, Yk).

By (95) and (59)

n(R′ − ηn)+
n∑

k=1

I
(
Ŝk ; Sk

∣
∣W Sk−1)

≤ I (W ; Y n)+
n∑

k=1

[
I (Y n; Sk |W Sk−1)

− I
(
Y n; Sk

∣
∣W Ŝk Sk−1)

]

= I (W ; Y n)+ I (Sn; Y n|W )−
n∑

k=1

I
(
Y n; Sk

∣∣W Ŝk Sk−1)

= I (W Sn ; Y n)−
n∑

k=1

I
(
Y n; Sk

∣
∣W Ŝk Sk−1)

=
n∑

k=1

[
I (Yk ;W Sn |Y k−1)− I

(
Sk; Y n

∣
∣W Ŝk Sk−1)

]
(98)

(a)=
n∑

k=1

[
I (Yk ; TkW Sn |Y k−1)− I

(
Sk ; Y n|W Ŝk Sk−1)

]

=
n∑

k=1

[
H (Yk|Y k−1)− H (Yk|Tk W SnY k−1)

− I
(
Sk; Y n

∣
∣W Ŝk Sk−1)

]

(b)≤
n∑

k=1

[
H (Yk)− H (Yk|Tk Sk)− I

(
Sk; Y n

∣
∣W Ŝk Sk−1)

]

=
n∑

k=1

[
I (Yk ; Tk Sk)− I

(
Sk; YkUk

∣
∣Vk Ŝk

)]

=
n∑

k=1

[
I (Tk; Yk)+ I (Sk ; Yk|Tk)− I

(
Sk ; YkUk

∣
∣Vk Ŝk

)]

(c)=
n∑

k=1

[
I (Tk; Yk)+ H (Sk)− H (Sk|Yk Tk)− H

(
Sk

∣
∣Vk Ŝk

)

+ H
(
Sk

∣
∣YkUk Tk Vk Ŝk

)]

≤
n∑

k=1

[
I (Tk; Yk)+ H (Sk)− H (Sk|Yk Tk)− H

(
Sk |Vk Ŝk

)

+ H (Sk|YkUk Tk)
]

=
n∑

k=1

[
I (Tk; Yk)− I (Sk ;Uk|Yk Tk)+ I

(
Sk ; Vk Ŝk

)]

(d)=
n∑

k=1

[
I (Tk; Yk)− I (Sk ;Uk|Yk Tk)+ I

(
Sk ; Ŝk

∣
∣Vk

)]
. (99)

Here

(a) holds because Tk is a function of (W, Sk−1, Y k−1);
(b) holds because (W Sn\kY k−1) �−− (Xk Sk) �−− Yk forms

a Markov chain and hence, since Xk is a function of
(Tk, Sk), also (W Sn\kY k−1) �−− (Tk Sk) �−− Yk forms a
Markov chain (and because conditioning cannot increase
entropy);

(c) holds because Sk and Tk are independent, and because Tk

is a function of (W, Sk−1, Y k−1); and
(d) holds because Sk is independent of Vk .

Subtracting the sum that appears on both sides of (99), we
obtain

n(R′ − ηn) ≤
n∑

k=1

[
I (Tk ; Yk)− I (Sk ;Uk |Yk Tk)

]
. (100)

It can be verified that

1) Tk is independent of Sk ;
2) Ŝk is a deterministic function of (Uk, Yk); and
3) Xk is a deterministic function of (Tk, Sk).
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Consequently, the joint law of (Sk , Xk, Tk, Yk , Uk, Ŝk) can be
expressed as

PSkTk Xk YkUk Ŝk
(s, t, x, y, u, ŝ)

= PS(s) PTk (t)�
{

x = fk(t, s)
}

Pc(y|x, s)

· PUk |SkTkYk (u|s, t, y)�
{
ŝ = gk(u, y)

}
.

Here gk(u, y) is the k-component of the result of applying φS

to the n-vector obtained upon inserting y after the first k − 1
components of the (n − 1)-vector u.

Draw J uniformly from {1, . . . , n} independently of {(Xk ,
Yk , Sk , Tk , Uk , Ŝk), k = 1, . . . , n}, and define the chance
variables U = (UJ , J ), T = TJ , S = SJ , Y = YJ , X = X J ,
and Ŝ = ŜJ . The chance variable Tj , which is defined in (97),
specifies not only W , Y j−1, and S j−1 but also (implicitly)
j (via the length of Y j−1 and S j−1). Consequently, we can
define the function f

(
t j , s

)
as

f
(
t j , s

) = f j (t j , s),

i.e., as the time- j channel input X j , so

X = f (T, S).

We further define the function

g
(
(u j , j), t j , y

) = φ
( j )
S

(
yn)

so

Ŝ = g(U, T, Y ), (101)

where φ
( j )
S

(
yn

)
—being the j -th component of the result of

applying φS to yn—is computable from φS and the tuple(
(u j , j), t j , y j

)
, because the tuple specifies both j and yn .

The value of g
(
(u j , j), t j , y

)
does not depend on t j , but we

have added t j as an argument so that the mapping have the
form (27) that appears in the direct part.

Using J we may express (100) as

R′ − ηn ≤ 1

n

n∑

k=1

[
I (Tk ; Yk)− I (Sk ;Uk |Yk Tk)

]

= I (TJ ; YJ |J )− I (SJ ;UJ |YJ , TJ , J )

= H (TJ |J )− H (TJ |J, YJ )− H (SJ |YJ , TJ , J )

+ H (SJ |UJ , YJ , TJ , J )
(e)≤ H (TJ )− H (TJ |YJ )− H (SJ |YJ , TJ )

+ H (SJ |UJ , YJ , TJ , J )

= I (TJ ; YJ )− I (SJ ;UJ , J |YJ , TJ )

= I (T ; Y )− I (S;U |T Y ). (102)

Here (e) holds because the factorization

PJ SJ TJ X J YJ UJ ( j, s, t, x, y, u)

= PJ ( j) PSJ TJ X J YJ |J (s, t, x, y| j)
· PUJ |SJ TJ X J YJ J (u|s, t, x, y, j)

= PJ ( j) PTj (t) PS(s)�{x = f j (t, s)} Pc(y|x, s)

· PU j |S j Tj Y j j (u|s, t, y, j)

= PTJ (t) PS(s)�{x = f J (t, s)} Pc(y|x, s)

· PUJ J |SJ TJ YJ (u, j |s, t, y) (103)

shows that J �−− YJ �−− TJ and J �−− (TJ , YJ ) �−− SJ

are Markov chains. Furthermore, based on the definition of
the chance variables (S, T, X, Y, U) the factorization (103) is
in accordance with (26).

As to the expected distortion, starting from (92b),

D + ε ≥ E
[
d
(
Sn, Ŝn)]

= 1

n

n∑

k=1

E
[
d
(
Sk, Ŝk

)]

= E
[
d
(
SJ , ŜJ

)]

= E
[
d
(
S, Ŝ

)]

= E
[
d
(
S, g(U, T, Y )

)]
, (104)

where the last line follows by (101).
It now follows from (102), (104), and the fact that the joint

law of S, T, X, Y, U factorizes as in (26) that

R′ − ηn ≤ C̃c
FB(D + ε), (105)

which, in view of (96), establishes (93) and hence concludes
the proof of (91).

Having established the converse part of Theorem 5, we now
prove its direct part.

Proof of the direct part of Theorem 5: The proof is very
similar to the proof of the direct part of Theorem 1. The main
difference is that the codebook (which we use in Block-b
to send the Block-b fresh information and the description
information related to the Block-(b − 1) state sequence) must
utilize the state information. To this end we follow [17] and,
instead of having the components of the codewords be input
symbols, we use Shannon strategies.

B. Proof of Proposition 6

For the direct part we use Shannon’s code construction
for a SD-DMC with causal receiver SI [17] in combination
with Slepian and Wolf [18] lossless source coding of the state
sequence conditioned on the decoded codeword T and with
reconstructor-SI Y . Since the Slepian-Wolf encoding rate is
RSW = H (S|T Y ) the rate I (T ; Y ) − RSW = I (T ; Y ) −
H (S|T Y ) is achievable.

The converse, which we prove with feedback, follows from
Theorem 5: when the maximal-allowed Hamming distortion
is zero, the distortion constraint (28) translates to H (S|U T Y )
being zero and hence to I (S;U |T Y ) being H (S|T Y ), in which
case (25) yields R ≤ I (T ; Y )− H (S|T Y ).

C. Converse for Causal SI without Feedback

We next show how the technique that we employed to prove
the converse part of Theorem 5 can be used in order to provide
an alternative proof of the converse in the absence of feedback,
namely, the converse part of [3, Th. 3], a theorem that we recall
below.

Theorem 11 (Causal SI and No Feedback [3, Th. 3]):

Cc(D) = max
PT , PU |T S, f

{
I (U T ; Y )− I (U T ; S)

}
, (106)

where the maximum is over all joint PMFs of the form

PST XY U (s, t, x, y, u) = PS(s) PT (t)�{x = f (t, s)}
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·Pc(y|x, s)PU |T S(u|t, s) (107)

for which there exists a mapping

g : U × T × Y → Ŝ (108)

satisfying

E
[
d
(
S, g(U, T, Y )

)] ≤ D, (109)

where the expectation and the mutual informations are com-
puted with respect to the above PST XY U .

To prove the converse, we use the definitions in (60)
and additionally define Tk � Vk = (W, Sk−1). As before,
we note that Vk (and hence also Tk) is independent
of Sk , and that Ŝk is a deterministic function of (Uk, Yk).
Furthermore, since Xk = Xk(Tk, Sk) and there is no
feedback,

Uk �−− (Tk, Sk) �−− Yk (110)

forms a Markov chain. By (98),

n(R′ − ηn)+
n∑

k=1

I
(
Ŝk ; Sk

∣∣W Sk−1)

≤
n∑

k=1

[
I (Yk ;W Sn |Y k−1)− I

(
Sk; Y n

∣∣W Ŝk Sk−1)
]

(a)=
n∑

k=1

[
I (Yk ; TkW Sn |Y k−1)− I

(
Sk; Y n|W Ŝk Sk−1)

]

=
n∑

k=1

[
H (Yk|Y k−1)− H (Yk|TkW SnY k−1)

− I
(
Sk; Y n

∣
∣W Ŝk Sk−1)

]

(b)≤
n∑

k=1

[
H (Yk)− H (Yk|Tk Sk)− I

(
Sk; Y n

∣
∣W Ŝk Sk−1)

]

=
n∑

k=1

[
I (Yk ; Tk Sk)− I

(
Sk; YkUk

∣
∣Vk Ŝk

)]

=
n∑

k=1

[
I (Tk; Yk)+ I (Sk ; Yk|Tk)− I

(
Sk ; YkUk

∣
∣Tk Ŝk

)]

(c)=
n∑

k=1

[
I (Tk; Yk)+ H (Sk)− H (Sk|Yk Tk)− H

(
Sk

∣
∣Tk Ŝk

)

+ H
(
Sk

∣
∣YkUk Tk Ŝk

)]

=
n∑

k=1

[
I (Tk; Yk)+ H (Sk)− H (Sk|Yk Tk)− H

(
Sk |Tk Ŝk

)

+ H (Sk|YkUk Tk)
]

=
n∑

k=1

[
I (Tk; Yk)− I (Sk ;Uk|Yk Tk)+ I

(
Sk ; Tk Ŝk

)]

(d)=
n∑

k=1

[
I (Tk; Yk)− I (Sk ;Uk|Yk Tk)+ I

(
Sk ; Ŝk

∣
∣Tk

)]
. (111)

Here

(a) holds because Tk = (W, Sk−1);
(b) holds because (W, Sn

k+1, Y k−1) �−− (Tk, Sk) �−− Yk

forms a Markov chain (and because conditioning cannot
increase entropy);

(c) holds because Sk and Tk are independent; and
(d) holds because Sk is independent of Tk .

Subtracting the sum that appears on both sides of (111), we
obtain

n(R′ − ηn) ≤
n∑

k=1

[
I (Tk ; Yk)− I (Sk ;Uk |Yk Tk)

]
. (112)

The joint law of (Sk , Xk, Tk, Yk , Uk, Ŝk) factorizes as

PSkTk Xk YkUk Ŝk
(s, t, x, y, u, ŝ)

= PS(s) PTk (t)�{x = fk(t, s)} Pc(y|x, s)

· PUk |SkTk (u|s, t)�{ŝ = gk(u, y)}, (113)

where gk(u, y)—as in the case with feedback—is the k-th
component of the reconstruction mapping when applied to
the n-vector obtained upon inserting y after the first k − 1
components of the (n − 1)-vector u.

Draw J uniformly from {1, . . . , n} independently of {(Xk ,
Yk , Sk , Tk , Uk, Ŝk), k = 1, . . . , n}, and define the chance
variables U = (UJ , J ), T = TJ , S = SJ , Y = YJ , X = X J ,
and Ŝ = ŜJ . As before, the chance variable Tj , which is
defined as (W, S j−1), specifies also j , and we can thus define
the function f

(
t j , s

)
as

f
(
t j , s

) = f j (t j , s),

i.e., as the time- j channel input X j , so

X = f (T, S).

We further define the function

g
(
(u j , j), t j , y

) = φ
( j )
S

(
yn)

so

Ŝ = g(U, T, Y ), (114)

where φ
( j )
S

(
yn

)
—being the j -th component of the result

of applying the state-reconstruction mapping φS to yn—is
computable from φS and the tuple

(
(u j , j), t j , y j

)
, because

the tuple specifies both j and yn .
Using J , we express (112) as

R′ − ηn ≤ 1

n

n∑

k=1

[
I (Tk ; Yk)− I (Sk ;Uk|Yk Tk)

]

= I (TJ ; YJ |J )− I (SJ ;UJ |YJ , TJ , J )

= H (TJ |J )− H (TJ |J, YJ )− H (SJ |YJ , TJ , J )

+ H (SJ |UJ , YJ , TJ , J )
(e)≤ H (TJ )− H (TJ |YJ )− H (SJ |YJ , TJ )

+ H (SJ |UJ , YJ , TJ , J )

= I (TJ ; YJ )− I (SJ ;UJ , J |YJ , TJ )

= I (T ; Y )− I (S;U |T Y ). (115)
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Here (e) holds because the factorization

PJ SJ TJ X J YJ UJ ( j, s, t, x, y, u)

= PJ ( j) PSJ TJ X J YJ |J (s, t, x, y| j)
· PUJ |SJ TJ X J YJ J (u|s, t, x, y, j)

= PJ ( j) PTj (t) PS(s)�{x = f j (t, s)} Pc(y|x, s)

· PU j |S j Tj j (u|s, t, j)

= PTJ (t) PS(s)�{x = f J (t, s)} Pc(y|x, s)

· PUJ J |SJ TJ (u, j |s, t) (116)

shows that J �−− YJ �−− TJ and J �−− (TJ , YJ ) �−− SJ

are Markov chains. Furthermore, based on the definition of
the chance variables (S, T, X, Y, U) the factorization (116) is
in accordance with (107).

Finally, to establish the equivalence of (115) and (106) note
that, under the law (107), the functional on the RHS of (106)
may be expressed as follows

I (U T ; Y )− I (U T ; S)
(a)= I (U T ; Y )− I (U ; S|T )

= I (T ; Y )+ I (U ; Y |T )− I (U ; S|T )

= I (T ; Y )− H (U |T Y )+ H (U |ST )
(b)= I (T ; Y )− H (U |T Y )+ H (U |ST Y )

= I (T ; Y )− I (S;U |T Y ).

Here (a) holds because T is independent of S, and (b) holds
because U �−− (S, T ) �−− Y forms a Markov chain.

VI. PROOFS—NONCAUSAL STATE INFORMATION

In this section we provide the proofs for the results related
to strictly-causal state information. We begin with a proof
of Theorem 7.

A. Proof of Theorem 7

Before proving Theorem 7, we denote the RHS of (41) by
R̃(u)(D) and record some of its properties. Recall that the RHS
of (41) is not altered if, as we do, we impose the cardinality
bounds (39).

We denote the Gel’fand-Pinsker capacity of the channel
when the state is revealed to the encoder noncausally by
CG-P

X→Y , so [7]

CG-P
X→Y � max

PT |S, f

{
I (T ; Y )− I (T ; S)

}
, (117)

where T is auxiliary chance variable taking values in T ; the
mapping f is from T × S to X , and the mutual information
is computed with respect to the joint distribution PST XY that
is given by

PST XY (s, t, x, y) = PS(s) PT |S(t|s)�
{

x = f (t, s)
}

· Pc(y|x, s).

Proposition 12: The function R̃(u) : R+ → R+ is monoton-
ically nondecreasing and upper bounded by CG-P

X→Y , so

R̃(u)(D) ≤ CG-P
X→Y , D ∈ R+, (118)

with equality whenever D ≥ dmax. Moreover, it is concave
and continuous.

Proof: The proof is similar to the proof of Proposition 9
and is thus omitted. The main difference is in replacing (46)
with

T̃ = (
T (Q), Q

)
(119a)

Ũ = U (Q) (119b)

PT̃ X |S
(
(t(q), q), x

∣
∣s

) = PQ(q) PT (q) X |S
(
t(q), x |s) (119c)

g
(
u(q), (t(q), q), y

) = g(q)
(
u(q), t(q), y

)
, (119d)

and

PŨ |T̃ S XY

(
u(q)

∣
∣(t(q), q), s, x, y

)

= PU (q)|T (q)S XY

(
u(q)|t(q), s, x, y

)
. (119e)

Proof of the upper bound in Theorem 7: Consider any
achievable pair (R, D), and let ε > 0 be arbitrarily small but
for now fixed. We will show that the achievability of (R, D)
implies that

R − ε ≤ R̃(u)(D + ε). (120)

Since R̃(u) is continuous (Proposition 12), this implies (upon
letting ε tend to zero from above) that

R ≤ R̃(u)(D) (121)

and thus establishes the upper bound.
To establish (120), let n0 = n0(ε) be sufficiently large

so that for all n ≥ n0 there exists a blocklength-n code({ fk}nk=1, φW , φS
)

of rate

1

n
log |W| ≥ R − ε; (122a)

fidelity

E
[
d
(
Sn , Ŝn)] ≤ D + ε; (122b)

and average probability of error P(n)
e satisfying

lim
n→∞ P(n)

e = 0. (122c)

We will show that

lim sup
n→∞

1

n
log |W| ≤ R̃(u)(D + ε), (123)

from which (120) will follow using (122a).
Define R′ as in (53), namely, as n−1 log |W|; draw W

uniformly over W ; and let the random n-tuples Sn , Xn , Y n ,
and Ŝn be the result of transmitting W over the channel using
the encoder Xk = fk(W, Sn , Y k−1) and of estimating the state
sequence using φS . Using Fano’s inequality and (122c),

n(R′ − ηn) ≤ I (W ; Y n), (124)

where

lim
n→∞ ηn = 0. (125)

We next turn to the estimation. Instead of (59), we shall
use the identity

I (Y n; Sk|W Sn
k+1)

= I (Ŝk ; Sk |W Sn
k+1)+ I (Y n; Sk |W Ŝk Sn

k+1), (126)
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which can be proved as follows. Using the chain rule and the
fact Ŝk is a function of Y n ,

I (Y n Ŝk ; Sk |W Sn
k+1)

= I (Y n; Sk |W Sn
k+1)+ I (Ŝk ; Sk|WY n Sn

k+1)

= I (Y n; Sk |W Sn
k+1). (127)

And expanding in the other order,

I (Y n Ŝk; Sk |W Sn
k+1)

= I (Ŝk ; Sk |W Sn
k+1)+ I (Y n; Sk |W Ŝk Sn

k+1). (128)

The identity (126) now follows from (127) and (128).
Having established (126), we now define the auxiliary

chance variables

Tk � (W, Sn
k+1, Y k−1), Uk � Y n

k+1, (129)

and note that

Tk �−− (Xk, Sk) �−− Yk (130a)

is a Markov chain, and that

Ŝk = Ŝk(Uk, Tk, Yk). (130b)

By (124) and (126)

n(R′ − ηn)+
n∑

k=1

I
(
Ŝk; Sk

∣
∣W Sn

k+1

)

≤ I (W ; Y n)

+
n∑

k=1

[
I
(
Y n; Sk

∣
∣W Sn

k+1

)− I
(
Y n; Sk

∣
∣W Ŝk Sn

k+1

)]

= I (W ; Y n)+ I (Sn; Y n|W )−
n∑

k=1

I
(
Y n; Sk

∣
∣W Ŝk Sn

k+1

)

= I (W Sn ; Y n)−
n∑

k=1

I
(
Y n; Sk

∣∣W Ŝk Sn
k+1

)

=
n∑

k=1

[
I
(
Yk ;W Sn

∣
∣Y k−1)− I

(
Sk ; Y n

∣
∣W Ŝk Sn

k+1

)]

(a)=
n∑

k=1

[
I
(
Yk ;W Xk Sn

∣
∣Y k−1)− I

(
Sk; Y n

∣
∣W Ŝk Sn

k+1

)]

=
n∑

k=1

[
H

(
Yk

∣
∣Y k−1)− H

(
Yk

∣
∣Xk W SnY k−1)

− I
(
Sk ; Y n

∣
∣W Ŝk Sn

k+1

)]

(b)≤
n∑

k=1

[
H (Yk)− H

(
Yk

∣∣Xk Sk
)− I

(
Sk; Y n

∣∣W Ŝk Sn
k+1

)]

=
n∑

k=1

[
I (Yk ; Xk Sk)− I

(
Sk; Y n

∣
∣W Ŝk Sn

k+1

)]

=
n∑

k=1

[
I (Yk ; Xk Sk)+ H (Sk)− H

(
Sk

∣
∣W Ŝk Sn

k+1

)

− H (Sk)+ H
(
Sk

∣∣WY n Ŝk Sn
k+1

)]

(c)=
n∑

k=1

[
I (Yk ; Xk Sk)+ I (Sk ;W Ŝk Sn

k+1)− I (Sk ; TkUkYk)
]

(d)=
n∑

k=1

[
I (Yk ; Xk Sk)+ I

(
Sk; Ŝk

∣
∣W Sn

k+1

)

− I (Sk ; TkUkYk)
]
. (131)

Here
(a) holds because Xk is a function of (W, Sn , Y k−1);
(b) holds because (W Sn\kY k−1) �−− (Xk Sk) �−− Yk forms

a Markov chain, and because conditioning cannot increase
entropy;

(c) holds because Ŝk is a function of Y n , and by (129); and
(d) follows because Sk is independent of (W, Sn

k+1).
Subtracting the sum that appears on both sides of (131), we
obtain

n(R′ − ηn) ≤
n∑

k=1

[
I (Xk Sk; Yk)− I (Sk ;UkTkYk)

]
. (132)

Note that, by (130), the joint law of (Sk, Xk, Tk, Yk , Uk, Ŝk)
factorizes as

PSkTk Xk YkUk Ŝk
(s, t, x, y, u, ŝ)

= PS(s) PTk |Sk (t|s) PXk |SkTk (x |s, t) Pc(y|x, s)

· PUk |Sk Tk XkYk (u|s, t, x, y)�{ŝ = gk(u, t, y)}.
Here gk(u, t, y) is the k-th component of the result of apply-
ing φS to the n-vector yn that is obtained from (u, t, y) by
appending y followed by the (n− k)-vector u to the last k−1
components of the vector t .

Draw J uniformly from {1, . . . , n} independently of
{(Xk, Yk, Sk , Tk, Uk, Ŝk), k = 1, . . . , n}, and define the
chance variables U = (UJ , J ), T = TJ , S = SJ , Y = YJ ,
X = X J , and Ŝ = ŜJ . Define also the function

g
(
(u j , j), t j , y

) = φ
( j )
S

(
yn)

so

Ŝ = g(U, T, Y ), (133)

where φ
( j )
S

(
yn

)
, being the j -th component of the result of

applying φS to yn , is computable from φS and the tuple(
(u j , j), t j , y j

)
because the tuple fully specifies both j and yn .

Using J we may express (132) as

R′ − ηn ≤ 1

n

n∑

k=1

[
I (Xk Sk ; Yk)− I (Sk ;UkYk Tk)

]

= I (X J SJ ; YJ |J )− I (SJ ;UJ YJ TJ |J )

= H (YJ |J )− H (YJ |X J SJ J )− H (SJ |J )

+ H (SJ |UJ YJ TJ J )
(e)= H (YJ |J )− H (YJ |X J SJ )− H (SJ )

+ H (SJ |UJ YJ TJ J )

≤ H (YJ )− H (YJ |X J SJ )− H (SJ )

+ H (SJ |UJ YJ TJ J )

= I (X J SJ ; YJ )− I (SJ ;UJ YJ TJ , J )

= I (X S; Y )− I (S;U T Y ). (134)
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Here (e) holds because SJ is independent of J (since the
channel states are drawn IID), and the factorization

PJ SJ TJ X J YJ UJ ( j, s, t, x, y, u)

= PJ ( j) PSJ TJ X J YJ |J (s, t, x, y| j)
· PUJ |SJ TJ X J YJ J (u|s, t, x, y, j)

= PJ ( j) PS(s) PTj |S(t|s) PX j |STj (x |s, t) Pc(y|x, s)

· PU j |STj X j Y j j (u|s, t, x, y, j)

= PS(s) PTJ |S(t|s) PX J |STJ (x |s, t) Pc(y|x, s)

· PUJ J |STJ X J YJ (u, j |s, t, x, y) (135)

shows that J �−− (X J , SJ ) �−− YJ forms a Markov chain
and hence that H (YJ |SJ , X J , J ) = H (YJ |SJ , X J ).

The factorization (135) also shows that the PMF of
(S, T, X, Y, U) has the required form (40b).

The RHS of (134) is the second term in the minimum
in (41). We next turn to the first term in that minimum, a term
which is “Gel’fand-Pinsker like.” The converse proof of the
capacity formula for the ordinary Gel’fand-Pinsker channel,
which also holds with feedback, establishes that [7]

n(R′ − ηn) ≤
n∑

k=1

[
I (Tk; Yk)− I (Tk ; Sk)

]
, (136)

where Tk is defined in (129). The single-letter form of (136)
in terms of S, T, Y is

R′ − ηn ≤ I (T ; Y )− I (T ; S). (137)

The combination of (134) and (137) yields

R′ − ηn ≤ min
{

I (T ; Y )− I (T ; S),

I (X S; Y ) − I (S;U T Y )
}
. (138)

As to the expected distortion, we proceed from (122b) as
in (104):

D + ε ≥ E
[
d
(
Sn, Ŝn)]

= E
[
d
(
S, g(U, T, Y )

)]
, (139)

where the last equality follows by (133). It now follows
from (138), (139), and the fact that the joint law of
S, X, T, Y, U factorizes as in (40b) that

R′ − ηn ≤ R̃(u)(D + ε), (140)

which, in view of (125), establishes (123) and hence concludes
the proof of the upper bound (121).

To simplify the comparison between the upper and lower
bounds, we note that since T �−− (X, S) �−− Y forms a
Markov chain

I (X S; Y ) − I (S; T Y )− I (S;U |T Y )

= I (X ST ; Y )− I (S; T Y )− I (S;U |T Y )

= I (ST ; Y )+ I (X; Y |ST )− I (S; T Y )− I (S;U |T Y )

= I (T ; Y )− I (T ; S)+ I (X; Y |ST )− I (S;U |T Y )

= I (T ; Y )− I (T ; S)+ H (X |ST )− H (X |ST Y )

− I (S;U |T Y )

= I (T ; Y )− I (T ; S)+ H (X |ST )− H (X |ST UY )

+ H (X |STUY )− H (X |ST Y )− I (S;U |T Y )

= I (T ; Y )− I (T ; S)+ I (X;UY |ST )− I (X;U |ST Y )

− I (S;U |T Y )

= I (T ; Y )− I (T ; S)+ I (X;UY |ST )

− I (SX;U |T Y ). (141)

The upper bound (138) can thus also be expressed as follows

R′ − ηn ≤ min
{

I (T ; Y )− I (T ; S), I (T ; Y )− I (T ; S)

+ I (X;UY |ST )− I (SX;U |T Y )
}
. (142)

Consequently, R(l) and R(u) coincide whenever R(u) is attained
by a law under which X �−− (S, T ) �−− UY forms a
Markov chain.

Proof of the lower bound in Theorem 7: The proof of
the lower bound as expressed in (35) is very similar to
the proof in Section IV-A of the direct part of Theorem 1.
The main difference is that the codebook we use to send
the fresh information and the state-description information is
based on the Gel’fand-Pinsker codebook (for sending fresh
information only). As shown in the Appendix, this codebook
can yield not only the message but also the transmitted
codeword in the form of T . This and the output sequence
then serve as side-information for the description of the state
sequence.5

B. Proof of Remark 2

For our example of a scenario where the upper bound is not
tight, we shall need the following proposition.

Proposition 13: Let the state S of a SD-DMC have the
form S = (Sa, Sb), where Sa and Sb are independent; the
decoder wishes to recover Sb losslessly; and only Sa influences
the channel’s behavior. Suppose the state S is revealed to
the encoder noncausally, and denote the resulting Gel’fand-
Pinsker capacity by CG-P

a . Then the RnS capacity, with
or without feedback, of the channel is given by

Cnc(0) = Cnc
FB(0) = CG-P

a − H (Sb), (143)

whenever the RHS is positive. Moreover, for this scenario the
lower bound R(l) in (34) is tight.

Proof: We begin with the converse, which we derive with
feedback. By replacing the message in the standard converse to
the Gel’fand-Pinsker problem with the pair

(
W, Sn

b

)
, we obtain

the upper bound

I
(
W, Sn

b ; Y n) ≤ n CG-P
a . (144)

Using the chain-rule we then obtain

n CG-P
a ≥ I

(
W, Sn

b ; Y n) (145)

= I
(
W ; Y n)+ I

(
Sn

b ; Y n
∣∣W

)
(146)

= I
(
W ; Y n)+ I

(
Sn

b ;W, Y n)
(147)

5There is a minor technicality in analyzing the resulting lossy source-coding
problem and in claiming that the required description rate can be arbitrarily
close to RS|T Y (D): by the nature of Gel’fand-Pinsker coding, even under
random coding, the triple comprising the state sequence, the codeword, and
the output sequence is not drawn IID [6, Remark 7.8]. This issue can be
resolved by noting that, by the Conditional Typicality Lemma [6, Sec. 2.5],
this triple is with high probability in T (n)

ε and by then employing the Type
Covering Lemma [5, Lemma 9.1].
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≥ I
(
W ; Y n)+ I

(
Sn

b ; Y n) (148)

≥ I (
(
W ; Y n)+ I

(
Sn

b ; Ŝn) (149)

≥ n R − P(n)
e n R + n RH(D), (150)

where P(n)
e is the average probability of error (which tends to

zero), and RH(D) is the Hamming rate-distortion function of
the source {Sb} (which tends to H

(
Sb

)
in the lossless limit).

Dividing both sides by n and letting n tend to infinity, proves
that the RnS capacity with feedback is upper-bounded by the
RHS of (143).

As to the direct part, we note that to achieve the RHS
of (143) without feedback, we can losslessly describe Sn

b and
then send the binary description together with n R message
bits reliably over the Gel’fand-Pinsker channel.

The lower bound R(l) of (34) is tight because we can choose
U as Sb and choose T to be the auxiliary chance variable that
achieves the Gel’fand-Pinsker capacity and that is independent
of Sb.

We can now construct an example where the upper bound
is not tight as follows. Consider a SD-DMC with state
S = (Sa, Sb), where Sa and Sb are independent; the decoder
wishes to recover Sb losslessly; and only Sa influences the
channel’s behavior. The channel comprises two parallel sub-
channels. The first—whose input is x ′ and whose output y ′
is equal to x ′—is a noiseless “bit pipe” of capacity Cpipe.
The second, Wa(y ′′|x ′′, sa), is a state-dependent channel whose
Gel’fand-Pinsker capacity is denoted CG-P

a and whose capacity
when Sa is revealed to both encoder and decoder is C |Sa

a , with
the latter being strictly larger than CG-P

a

CG-P
a < C |Sa

a . (151)

The Gel’fand-Pinsker capacity of the aggregate chan-
nel CG-P is

CG-P = Cpipe + CG-P
a .

And since we must reconstruct Sb losslessly, the optimal
choice of U in both the lower bound and the upper bound
is Sb. The lower bound is thus

R(l) = Cpipe + CG-P
a − H (Sb).

For the upper bound, let PX ′′|Sa achieve C |Sa
a , and let PX ′

achieve Cpipe (i.e., be uniform on the input alphabet of the
bit-pipe subchannel). Consider the joint distribution according
to which T = X ′ ∼ PX ′ ; the pair (T, X ′) is independent of
(X ′′, S); and X ′′ is drawn conditionally on S according to
PX ′′|Sa , i.e., the conditional input distribution achieving C |Sa

a .
For this distribution

I (T ; Y ′, Y ′′)− I (T ; S) = Cpipe,

and (upon substituting Sb for U )

I (X, S; Y )− I (S;U T Y ) ≥ Cpipe + C |Sa
a − H (Sb).

The upper bound is thus (at least)

min
{
Cpipe, Cpipe + C |Sa

a − H (Sb)
}
.

If

CG-P
a < H (Sb) ≤ C |Sa

a ,

then the upper bound is (at least) Cpipe; the lower bound—
which is tight by Proposition 13—is smaller than Cpipe; and
the upper bound is thus loose.

C. Proof of Proposition 8

The converse is based on the upper bound in (42). We first
note that if PXT |S , PU |ST XY , and g are valid choices in the
maximization (41) defining R(u), then—because D is zero and
d(·, ·) is the Hamming distortion—H (S|U TY ) must be zero.
In fact, in this maximization we can choose U to equal S and
g(u, t, y) to equal u. For zero Hamming distortion we can
therefore rewrite (41) as

R(u) = max
PT X |S

min
{

I (T ; Y )− I (T ; S), I (X S; Y ) − H (S)
}
.

(152)

Consequently, if R is achievable with lossless reconstruction
of the state sequence, then—for some joint law of the form
PS PT X |S PY |X,S—R is upper bounded by the RHS of (152) or,
equivalently, R must satisfy the following two inequalities:

R ≤ I (T ; Y )− I (T ; S) (153)

R + H (S) ≤ I (X S; Y ). (154)

By [10, Lemma 2], these two inequalities can be replaced by
the single inequality

R ≤ max
PT X |S

I (ST ; Y )− H (S). (155)

The proof of the converse is now completed by noting that

I (T S; Y )− H (S) = I (T ; Y )+ I (S; Y |T )− H (S)

= I (T ; Y )− I (T ; S)− H (S|T Y ). (156)

To show that I (T ; Y )− I (T ; S)− H (S|T Y ) is maximized
by a law in which X is a deterministic function of (S, T ), note
that

I (T ; Y )− I (T ; S)− H (S|T Y )

= [I (T ; Y )+ I (S; T Y )]− I (T ; S)− H (S).

For a fixed PT S , the functional inside the squared brackets
is convex in PX |ST (and hence maximized when X is a
deterministic function of (S, T )) while I (T ; S) + H (S) is
fixed.

The direct part does not utilize the feedback link. We use the
Gel’fand-Pinsker code construction to transmit two streams:
a data stream and a state-description stream. The state descrip-
tion is at rate H (S|T Y ) + ε, and is based on Slepian-Wolf
source coding [18] where the state sequence is described to a
decoder that is furnished with Y and T . The decoder decodes
the Gel’fand-Pinsker codeword to decode the data stream and
the state description. Using the latter, the channel outputs, and
T it then reconstructs the state sequence.6

6Here too we encounter a technicality similar to the one we addressed in
Footnote 5: the triple comprising the state sequence, the codeword, and the
output sequence is not drawn IID. But, as in that footnote, it is with high
probability typical, and this suffices for the binning argument to go through.
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D. On R(u) for the Gaussian Channel

We next determine the smallest mean squared-error with
which we can estimate the state of a Gaussian channel while
still communicating at a positive rate, i.e., the infimum of the
D’s for which Cnc

FB(D) is positive. Later we shall study the
distortions for which Cnc

FB(D) exceeds some positive rate R.
Our focus will be on our upper bound R(u) (41), which implies
a lower bound on the reconstruction distortion. In treating the
zero-rate case we shall, in fact, consider a slightly looser bound
that results from dropping the term I (T ; Y ) − I (T ; S) from
the RHS of (41) to obtain

Cnc
FB(D) ≤ max

PT X |S, PU |ST XY
I (X S; Y ) − I (S;U T Y ). (157)

For the LHS to be positive, the distortion D must be suffi-
ciently large for the RHS to be positive. To derive a lower
bound on D we shall thus upper-bound I (X S; Y ) and lower-
bound I (S;U T Y ). We begin with the latter:

I (S;U T Y ) = h(S) − h(S|U T Y )
(a)= h(S) − h(S|ŜU T Y )
(b)≥ h(S) − h(S|Ŝ)

= h(S) − h(S − Ŝ|Ŝ)
(c)≥ h(S) − h(S − Ŝ)
(d)≥ h(S) − 1

2
log 2πeσ 2

S|U T Y

= 1

2
log

σ 2
s

σ 2
S|U T Y

≥ 1

2
log

σ 2
s

D
, (158)

where
(a) holds because Ŝ is a function of (U, T, Y );
(b) and (c) hold because conditioning cannot increase differ-

ential entropy; and
(d) holds because the Gaussian distribution maximizes the

differential entropy for a given variance.
As to the term I (X S; Y ),

I (X S; Y ) = h(Y )− h(Y |X S)

= h(Y )− h(Z)
(e)≤ 1

2
log

E[Y 2]
N

( f )≤ 1

2
log

(
σs +
√

P
)2 + N

N
, (159)

where
(e) holds because the Gaussian distribution maximizes the

entropy for a given variance; and
( f ) holds because E[Y 2] ≤ (

σs +
√

P
)2 + N whenever

E[X2] ≤ P , and Z is independent of (X, S).
It follows from (158) and (159) that, for the RHS of (157) to
be positive, the distortion D must satisfy

D > σ 2
s

N
(
σs +
√

P
)2 + N

(160)

as reported in [19, Sec. II] for the no-feedback case.

We next turn to the case where the required communication
rate is some positive rate R > 0. For this to be possible, D
must surely satisfy (160), which is what we now assume.

To derive necessary conditions on (R, D) to be achievable,
we shall use the upper bound R(u) of (41) by replacing the
maximization on the LHS of (41) by two maximizations:
the first over ρ ∈ [−1, 1], and the second—as in (41)—but
with the additional constraint that under PS PT X |S the second
moment of X be P and the correlation ρ(X, S) between X
and S be ρ.

In fact, in the first maximization we may exclude ρ from
being ±1, because, as we next argue, if ρ is ±1, then
I (T ; Y ) − I (T ; S) must be zero. Indeed, if ρ(X, S) is ±1,
then X equals βS (almost surely) for some β ∈ R, and—
since Y = X + S + Z—we then have

I (T ; Y )− I (T ; S) = I (T ; (β + 1)S + Z)− I (T ; S)

≤ I
(
T ; (β + 1)S + Z , Z

)− I (T ; S)

= I
(
T ; (β + 1)S, Z

)− I (T ; S)

= I
(
T ; (β + 1)S

)− I (T ; S)

= 0, (161)

where the fourth line follows from the independence between
Z and (T, S).

Having established that ±1 can be excluded,

R(u) = max
ρ∈(−1,1)

max
PT X |S , ρ(X,S)=ρ, PU |ST XY

min
{

I (T ; Y )

− I (T ; S), I (X S; Y )− I (S;U T Y )
}
. (162)

For a fixed ρ ∈ (−1, 1), we now upper-bound I (T ; Y )−
I (T ; S) as follows:

max
PT X |S , ρ(X,S)=ρ

I (T ; Y )− I (T ; S)

≤ max
PT X |S, ρ(X,S)=ρ

I (T ; Y S)− I (T ; S)

= max
PT X |S, ρ(X,S)=ρ

h(Y |S)− h(Y |T, S)

≤ max
PT X |S, ρ(X,S)=ρ

h(Y |S)− h(Y |T, S, X)

= max
PX |S, ρ(X,S)=ρ

h(Y |S)− h(Z). (163)

Fixing ρ(X, S) and the second moment of X fixes E[X S], and
consequently [19, Appendix, Lemma 1],

max
PX |S, ρ(X,S)=ρ

h(Y |S)

≤ 1

2
log

(
2πe

(
E[Y 2] − (E[SY ])2

E[S2]
))

= 1

2
log

(
2πe

(
P + σ 2

s + 2ρσs
√

P + N − (
ρ
√

P + σs
)2

))

= 1

2
log

(
2πe

(
(1− ρ2)P + N

))
. (164)

It now follows from (163) and (164) that for any fixed
ρ ∈ (−1, 1)

max
PT X |S , ρ(X,S)=ρ

I (T ; Y )− I (T ; S) ≤ 1

2
log

(1− ρ2)P + N

N
.

(165)
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We next study the second term in the minimum in (162),
namely I (X S; Y ) − I (S;U T Y ). Since,

E
[
Y 2] = P + σ 2

s + 2ρσs
√

P + N, (166)

it follows that

h(Y ) ≤ 1

2
log

(
2πe

(
P + σ 2

s + 2ρσs
√

P + N
))

, (167)

and hence

I (X S; Y ) ≤ 1

2
log

(
P + σ 2

s + 2ρσs
√

P + N
) − 1

2
log N,

(168)

which combines with (158) to yield

max
PT X |S, ρ(X,S)=ρ, PU |ST XY

I (X S; Y ) − I (S;U T Y )

≤ 1

2
log

P + σ 2
s + 2ρσs

√
P + N

N
− 1

2
log

σ 2
s

D
. (169)

From (169), (165), and our upper bound (41) we con-
clude that if a pair (R, D) is achievable, then for some
ρ ∈ (−1, 1)

R ≤ 1

2
log

(1− ρ2)P + N

N
(170a)

R ≤ 1

2
log

P + σ 2
s + 2ρσs

√
P + N

N
− 1

2
log

σ 2
s

D
, (170b)

i.e.,

R ≤ 1

2
log

(1− ρ2)P + N

N
(171a)

D ≥ Nσ 2
s

P + σ 2
s + 2ρσs

√
P + N

22R. (171b)

For a fixed R, the RHS of (171b) is monotonically decreasing
in ρ. This RHS is thus minimal when ρ is chosen to be
as large as possible. Choosing ρ to be too large would
violate (171a). The RHS of (171b) is thus minimal when ρ is
chosen to be the largest that still satisfies (171a), i.e., when ρ
is chosen to be the nonnegative solution to the equation that
results when the inequality sign in (171a) is replaced by an
equality.

Given ρ� ∈ [0, 1), define

Rρ� =
1

2
log

(1− ρ2
� )P + N

N
. (172a)

If the required rate R is equal to Rρ� , then the largest ρ
for which (171a) holds is ρ� and consequently the distortion
achievable cannot be below Dρ� , which results when we
substitute ρ� for ρ and Rρ� for R in (171b)

Dρ� =
Nσ 2

s

P + σ 2
s + 2ρ�σs

√
P + N

22Rρ� . (172b)

For any ρ� ∈ [0, 1), the least distortion that is achievable
with communication rate R� is thus lower bounded by Dρ� .
Conversely,

Cnc
FB(Dρ�) ≤ Rρ� , 0 ≤ ρ� < 1. (173)

An alternative form for (172) is obtained by defining
γ = 1− ρ2

� ∈ (0, 1]. This leads to

Rγ = 1

2
log

γ P + N

N

Dγ = σ 2
s (γ P + N)

γ P + (
σs +√(1− γ )P

)2 + N

as reported in [19, Th. 2, Sec. III] in the absence of feedback.

VII. DEFECTIVE MEMORIES

Consider binary memory cells whose state S ∈ {d, w}
indicates whether they are defective or working. When a cell is
defective, it is “stuck-at-one” irrespective of what is written to
it. Denoting the content of the cell by x ∈ {0, 1}; its output by
Y ∈ {0, 1}; and its transition law when defective by W (d)(y|x),

W (d)(y|x) = �{y = 1}, x, y ∈ {0, 1}. (174)

We model a working cell as a Z-channel with a zero always
being read as a zero, and with a one being read as a one with
probability 1− ε, for some 0 ≤ ε < 1:

W (w)(0|0) = 1, W (w)(1|1) = 1− ε. (175)

The different cells behave independently, with the probability
that a cell is defective being p,

Pr[S = d] = p. (176)

The writer, in addition to storing data, also wishes to describe
the state of the cells to within some average Hamming
distortion D. By not sending any data and simply writing zero
to all the cells, the writer can convey the state of the cells
perfectly: the reader can then declare that a cell is defective
whenever the cell’s output is one, and it can declare that the
cell is working otherwise. We thus conclude that, by setting
the transmission rate to zero, we can achieve zero state-
reconstruction distortion, and hence

Cnc
FB(0) ≥ Cc

FB(0) ≥ Cs-c
FB(0) ≥ 0. (177)

(To achieve zero distortion it need not be necessary to commu-
nicate at zero rate. For example, if p is zero—and hence none
of the memories defective—we can communicate at chan-
nel capacity while still maintaining zero state-reconstruction
distortion.)

Denoting the capacity of the Z-channel corresponding to a
working cell by C(w),

C(w) = max
0<q<1

Hb(q(1− ε))− q Hb(ε)

= − ln [1− q(1− ε)]
∣
∣
q=q�

= ln
(

1+ (1− ε)ε
ε

1−ε

)
nats/cell, (178)

where q stands for the probability of the input one;

q� =
(

1− ε + ε−
ε

1−ε

)−1 ;
and Hb(ξ) = −ξ ln ξ − (1− ξ) ln(1− ξ) is the binary entropy
function of ξ ∈ [0, 1].



1914 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

In the absence of any state information, the channel behaves
like the mixture channel

WY |X = pW (d) + (1− p)W (w) (179)

whose law is

WY |X (0|0) = 1− p

WY |X (1|1) = p + (1− p)(1− ε). (180)

Denoting this channel’s capacity CNo-SI(p, ε),

CNo-SI(p, ε) = max
0<q<1

Hb [(1− q)(1− p)+ q(1− p)ε]

− (1− q)Hb(p)− q Hb((1− p)ε)

= εHb(p)−Hb((1− p)ε)

1−ε
+ln

(
1+et) nats/cell,

(181)

where the capacity-achieving law assigns the input one the
probability

q∗No-SI =
e−t (1− p)− p

(1− p)(1− ε)(1+ e−t )

and where we define

t � Hb((1− p)ε)− Hb(p)

(1− p)(1− ε)
.

The capacity of this channel when the state is known to
both encoder and decoder is the same as when it is only
known to the decoder. We may therefore denote both capacities
CPSI(p, ε), where

CPSI(p, ε) = max
pX |S

I (X; Y |S) = max
pX

I (X; Y |S)

= (1− p) ln
(

1+ (1− ε)ε
ε

1−ε

)
nats/cell.

(182)

A. Strictly-Causal and Causal SI with Feedback

We next use (16) to compute the feedback RnS capacity
of a memory cell with strictly-causal state-information under
the Hamming distortion measure. We denote by D ∈ [0, 1]
the maximal-allowed state-reconstruction distortion. We begin
by computing the conditional rate-distortion function RS|XY (·)
when X is Bernoulli with probability of success q

X ∼ Ber(q). (183)

The event to consider is (X = 1, Y = 1), because all
other outcomes fully determine the state S. We denote the
probability of this event p11,

p11 = q p + q (1− p) (1− ε). (184)

Since all other outcomes fully determine the state, RS|XY (D)
is the product of p11 by the rate-distortion function evaluated
at D/p11 of a source whose law is the conditional law of S
given the event [1, eq. (6.1.21)]. Conditional on this event, the
state is Ber(pd|11), i.e., is defective with probability

pd|11 � Pr[S = d|X = 1, Y = 1]
= p

p + (1− p)(1− ε)
. (185)

Denoting the Rate-Distortion function of a Ber(π)
source with maximal-allowed Hamming distortion δH by
RHam

Ber

(
π; δH

)
[4, eq. (10.23)],

RHam
Ber

(
π; δH

)

=
{

Hb
(
π

)− Hb
(
δH

)
if 0 ≤ δH ≤ min{π, 1− π}

0 if δH > min{π, 1− π}, (186)

we obtain

RS|XY (D; q) = p11 RHam
Ber

(
pd|11; D/p11

)
, (187)

where we have added the parameter q to remind us that this
conditional rate-distortion function depends on the probabil-
ity q with which X equals one. For a fixed D, this function
is monotonically non-decreasing in q .

As to the mutual information Iq (X; Y ) (again with the
dependence on q made explicit), a direct computation yields,

Iq (X; Y ) = Hb
(
(1−q)(1− p)+ q(1− p)ε

)− (1− q)Hb(p)

−q Hb
(
(1− p)ε

)
. (188)

It thus follows from (16) that

Cs-c
FB(D) = max

0≤q≤1

{
Iq(X; Y )− RS|XY (D; q)

}
. (189)

In fact, we can limit the optimization to values of q that are
no larger than the value q∗No-SI of q that maximizes Iq(X; Y ),
because RS|XY (D; q) is non-decreasing in q .

We can communicate at channel capacity provided that the
allowed distortion D is such that RS|XY (D; q∗No-SI) is zero,
i.e., as long as D is at least

(
q∗No-SI p + q∗No-SI (1− p) (1− ε)

)
min{pd|11, 1− pd|11}.

(190)

The case of causal state information requires hardly any
extra work. In fact, in this example, causal SI affords no rate
gains over the strictly-causal one, so Cs-c

FB(D) and Cc
FB(D)

are the same. To show this, we shall consult (30) and argue
that how a strategy maps a defective state influences neither
I (T ; Y ) nor RS|T Y (D). More formally, since there are only
two states, a strategy T is in a one-to-one relationship with
the pair of random variables T (d), T (w) ∈ {0, 1}. We will
argue that only the distribution of T (w) influences the above
two terms, and that there is therefore no loss of optimality
in setting T (d) to equal T (w) and in this way limiting
ourselves to constant strategies, i.e., to schemes where the
input to the channel does not depend on the state. Those
can be implemented with strictly-causal SI by setting X to
equal T (w).

That I
(
T (d), T (w); Y ) = I

(
T (w); Y )

(and that hence only
the distribution of T (w) influences I (T ; Y )) follows from

T (d) �−− T (w) �−− Y. (191)

We next turn to RS|T Y (D). When Y is zero, the state is
guaranteed to be working. And when Y is one and T (w)
is zero, the state is guaranteed to be defective. The case to
watch for is thus when Y is one and T (w) is one. This
corresponds to two events:

(
T (w) = 1, T (d) = 0, Y = 1

)
and
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(
T (w) = 1, T (d) = 1, Y = 1

)
. However, a straightforward

calculation shows that the conditional distribution of S given
these different events is the same. Consequently, for the pur-
pose of calculating RS|T Y (D), there is no need to distinguish
between the two cases, and setting T (d) to equal T (w) does
not influence RS|T Y (D).

B. Noncausal SI

We next consider the noncausal RnS feedback capacity
of our memory cells. Again we focus on the Hamming
metric, and denote the maximally-allowed expected distortion
0 ≤ D ≤ 1.

We begin by lower bounding R(l) of (34) by considering a
specific joint distribution under which

PT |S(0|d) = 1

PT |S(0|w) = β, (192)

with X being the deterministic function of (S, T ) bellow:

x(d, t) = 1, t ∈ {0, 1} (193a)

x(w, 0) = 1 (193b)

x(w, 1) = 0. (193c)

The salient features of this choice are:

T = 1− X (194a)

(any one-to-one relationship will do);

Pr[X = 1|Y = 1, S = d] = 1 (194b)

(compatible input [8]: when defective, store one);

Pr[X = 1|Y = 1, S = w] = 1 (194c)

(guaranteed because when the cell is working it behaves like
a Z-channel that maps zero to zero); and

Pr[X = 1|S = w] = β. (194d)

As we shall see, this choice will result in I (T ; Y )− I (T ; S)
being equal to I (X; Y |S). (Our approach is based on compu-
tation, but this result can be derived alternatively by writing
I (T ; Y )− I (T ; S) as H (T |S)− H (T |Y ) and using the above
properties of the joint distribution.7)

For this joint distribution

H (T ) = Hb
(

p + (1− p)β
)

H (T |S) = (1− p)Hb(β)

H (Y ) = Hb
(
(1− p)(1− β)+ (1− p)βε

)

H (Y |T ) = (
p + (1− p)β

)
Hb

( (1− p)βε

p + (1− p)β

)
.

7From (194) it follows that H (T |Y = 1) is zero and likewise H (T |Y =
1, S = d). Consequently, H (T |Y ) = Pr[Y = 0] H (T |Y = 0) = Pr[S =
w] Pr[Y = 0 |S = w] H (T |Y = 0, S = w) = Pr[S = w] H (T |Y, S = w),
where the second equality holds because the cell must be working if its
output is not one. As to H (T |S), we note that H (T |S = d) must be
zero (because (194b) implies that Pr[X = 1|S = d] is one, which combines
with (194a)) to prove that Pr[H = 1|S = d] is zero), so H (T |S) = Pr[S =
w] H (T |S = w), or, in view of (194a), H (T |S) = Pr[S = w] H (X |S = w).
Thus, H (T |S)− H (T |Y ) = Pr[S = w] I (X; Y |S = w) = I (X; Y |S).

Defining

RGP(p, ε, β) = I (T ; Y )− I (T ; S), (195)

we have

I (T ; Y )− I (T ; S)

= (1− p)
(
βε ln βε − β ln β

− (
1− β(1− ε)

)
ln

(
1− β(1− ε)

))

= RGP(p, ε, β). (196)

It can be verified that

max
0<β<1

RGP(p, ε, β)

= CGP(p, ε) = CPSI(p, ε)

= (1− p) ln
(

1+ (1− ε)ε
ε

1−ε

)
nats/cell, (197)

where, regardless of p, the Gel’fand-Pinsker capacity
CGP(p, ε) is achieved by

β∗ = (
1− ε + ε−

ε
1−ε

)−1
.

Thus, for this memory model, noncausal encoder SI is as
beneficial as that when both encoder and decoder have SI. This
is in agreement with the observations in [8, Sec. I] regarding
similar models of defective memories.

From (34) we obtain

R(l) ≥ I (T ; Y )− I (T ; S)− RS|T Y (D)

= RGP(p, ε, β)− RS|T Y (D). (198)

We now calculate RS|T Y (D). Our model implies that

(Y = 0) �⇒ (S = w). (199)

And it also implies, in view of (193), that

(T = 1, Y = 1) �⇒ (S = d) (200)

(because if the cell were working and T were one, we would
write zero and hence read a zero).

The event to focus on is thus (T = 0, Y = 1): in all
other cases the decoder can recover the state from T and Y .
Denoting the probability of this event by π01,

π01 = p + (1− p)(1− ε)β. (201)

Conditional on this event, the state is defective with prob-
ability πd|01, where

πd|01 = Pr[S = d|T = 0, Y = 1]
= p

p + (1− p)(1− ε)β
. (202)

Since all other outcomes of (T, Y ) yield zero reconstruction
distortion,

RS|T Y (D; β) = π01 RHam
Ber

(
πd|01 ; D/π01

)
, (203)

where we have made the dependence on β explicit. Combin-
ing (203) with (198) yields,

R(l)(d) ≥ max
0≤β≤1

{
RGP(p, ε, β)− π01 RHam

Ber

(
πd|01; D/π01

)}
.

(204)
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We next upper-bound R(u) of (41) by I (X S; Y ) −
I (S;U T Y ) and proceed to upper-bound the latter. We fix
some joint distribution in the admissible set over which the
maximum in (41) is taken, and we define

β̃ = Pr[X = 1|S = w] (205a)

D̃ = E
[
d(S, Ŝ)|Y = 1

]
(205b)

π̃1 = Pr[Y = 1] (205c)

π̃d|1 = Pr[S = d|Y = 1], (205d)

so

π̃1 = p + (1− p)(1− ε)β̃ (206a)

π̃d|1 = p

p + (1− p)(1− ε) β̃
(206b)

and

D̃ ≤ D

π̃1
. (207)

We next express I (X S; Y ) − I (S;U T Y ) as I (X; Y |S) −
I (S;U T |Y ) and proceed to calculate I (X; Y |S) and to lower-
bound I (S;U T |Y ). Starting with I (S;U T |Y ),

I (S;U T |Y ) = Pr[Y = 1] I (S;U T |Y = 1)

= Pr[Y = 1] I (S;U T Ŝ|Y = 1
)

≥ π̃1 I
(
S; Ŝ|Y = 1

)

≥ π̃1 RHam
Ber

(
π̃d|1; D̃

)

≥ π̃1 RHam
Ber

(
π̃d|1; D/π̃1

)
, (208)

where the first line follows because, conditional on Y = 0,
the state S is deterministic; the second because Ŝ is a deter-
ministic function of (U, T, Y ); the third by dropping (U, T )
and recalling (205c); the fourth from (205b) and because the
rate-distortion function minimizes mutual information subject
to a distortion constraint; and the last line follows from (207).

As to I (X; Y |S), since Y is deterministically one when the
cell is defective,

I (X; Y |S)

= Pr[S = w] I (X; Y |S = w)

= Pr[S = w] (H (Y |S = w)− H (Y |S = w, X)
)

= Pr[S = w]
(

H (Y |S = w)

− Pr[X = 0 |S = w] H (Y |S = w, X = 0)

− Pr[X = 1|S = w] H (Y |S = w, X = 1)
)

= Pr[S = w]
(

H (Y |S = w)

− Pr[X = 1|S = w] H (Y |S = w, X = 1)
)
,

where the last equality holds because when the state is working
and the input is zero the output is deterministically zero.

In terms of β̃,

H (Y |S = w) = Hb
([1− β̃(1− ε)]) (209)

and

Pr[X = 1|S = w] H (Y |S = w, X = 1) = β̃Hb(ε), (210)

so

I (X; Y |S) = (1− p)
(

Hb
([1− β̃(1− ε)])− β̃ Hb(ε)

)

= RGP(p, ε, β̃). (211)

The lower bound on I (S;U T |Y ) in (208) and the calcu-
lation of I (X; Y |S) in (211) combine with the trivial bound
R(u) ≤ I (X S; Y )− I (S;U T Y ) to yield

R(u) ≤ max
0≤β̃≤1

{
RGP(p, ε, β̃)− π̃1 RHam

Ber

(
π̃d|1; D/π̃1

)}
.

(212)

Since the RHS of (212) coincides with the RHS of (204)
(because the functional dependence of π̃1 and π̃d|1 on β̃ is
that same as that of π01 and πd|01 on β), we conclude that
R(u) and R(l) coincide, and consequently,

Cnc
FB(D)= max

0≤β≤1

{
RGP(p, ε, β)−π01 RHam

Ber

(
πd|01; D/π01

)}
,

(213)

where π01 and πd|01 are given as functions of β in (201)
and (202).

APPENDIX

RECOVERING THE CODEWORD IN

GEL’FAND-PINSKER CODING

We show here that the Gel’fand-Pinsker rate is also achiev-
able if, in addition to the message, we also wish to recover the
codeword. The notation we adopt in this appendix is that of
[6, Sec. 7.6.1, pp. 180–181]. The auxiliary chance variable is
thus denoted U and not—as in the body of the paper—T .
The standard texts on this problem show that the rate
I (U ; Y )− I (U ; S) is achievable in the sense that it allows for
the reliable recovery of the message. Here we show that this
rate is achievable even under the more stringent requirement
that the decoder recover the transmitted codeword (and not
only the subcode to which it belongs).

The coding scheme is essentially that of
[6, Sec. 7.6.1, pp. 180–181] but we are a bit more particular
about how the index l� of the transmitted codeword is chosen
among the indices of the codewords in the subcode C(m) that
are jointly typical with the state sequence sn . Our encoder
considers the indices of the codewords in C(m) in increasing
order until it hits the first index of a codeword in C(m) that is
jointly typical with the state sequence sn . It does not look at
the codewords in C(m) of higher index. If no such codeword
exists in C(m), it sets l� to be the largest index of a codeword
in the subcode, i.e., m 2n(R̃−R).

We assume that p(u|s) differs from p(u), i.e., that U and S
are not independent:

I (U ; S) > 0. (214)

Otherwise, I (U ; Y ) − I (U ; S) is achievable using Shannon
strategies, which can yield the codeword without the need for
subcodes (or bins).

We fix ε > ε′ > 0 with ε′ small enough so that

lim
n→∞max

sn
Pr

[
Un ∈ T (n)

ε′ (U |sn)
] = 0, (215)
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i.e., so that drawing Un IID ∼ p(u) will rarely result in
(un, sn) being in T (n)

ε′ . (Every sufficiently small ε′ will do
thanks to (214) and the Joint Typicality Lemma [6, Sec. 2.5.1,
p. 29] with ε← ε′, X ← ∅, ỹn ← sn , Z̃ n ← Un .)

After observing yn , the receiver forms the list

L(yn) = {
l ∈ [1 : 2nR̃ ] : (un(l), yn) ∈ T (n)

ε

}
. (216)

If this list is empty or contains indices from two different
subcodes, then the receiver in [6] declares an error. To the
error events in [6] we add the event

E4 =
{|L(yn)| > 1

}
,

(which is implied by Ec
2 ∩ E3) and we declare a failure if

E1 ∪ E2 ∪ E4. (Recall that E1 is the event that no codeword in
the subcode C(m) is jointly typical with the state sequence sn ,
and E2 is the event that the transmitted codeword is not jointly
typical with the received sequence yn [6].) The conditions that
guarantee that the probabilities of E1 and E2 vanish are studied
in [6]. Here we focus on the probability of E4 and study it
when the codewords are generated at random.

We assume without loss of generality that M = 1, and
we denote the set L(yn), which is now random, by L(yn).
We begin by conditioning on

Sn = sn, Y n = yn, L� = l�, M = 1, (217)

and study the conditional probability of E4

Pr(E4 |Sn = sn, Y n = yn, L� = l�, M = 1). (218)

Under this conditioning, the codewords {Un(l), 1 ≤ l < l�}
are drawn IID according to the conditional distribution of Un

given (Un, sn) /∈ T (n)
ε′ (c.f. [13, Lemma 1]). For each

1 ≤ l < l�, the probability that the corresponding codeword
Un(l) is in L(yn) is thus

Pr
[
(Un, yn) ∈ T (n)

ε

∣
∣(Un, sn) /∈ T (n)

ε′
]

≤ Pr
[
(Un, yn) ∈ T (n)

ε

]

Pr
[
(Un, sn) /∈ T (n)

ε′
] (219)

≤ 2−n(I (U ;Y )−δ(ε))

αn
, (220)

where we have denoted the denominator by αn , which tends
to 1 by (215); and we have used the Joint Typicality Lemma
with X ← ∅, ỹn ← yn, Z̃ n ← Un . Since there are l�−1 such
indices, the conditional probability that at least one of them
will be in L(yn) is upper bounded by

(l� − 1) 2−n(I (U ;Y )−δ(ε)) α−1
n . (221)

As to indices larger than l�, their corresponding codewords
are drawn IID pU also under the conditioning in (217)
because, once l� has been found, the codewords in the sub-
code C(m) of index larger than l� are no longer considered
by the encoder, and nor are codewords in other subcodes.
Consequently, for each l� < l ≤ 2nR̃ , the (conditional as
well as unconditional) probability that it is in L(yn) is upper
bounded by

2−n(I (U ;Y )−δ(ε)). (222)

Since there are 2nR̃ − l� such indices, the conditional prob-
ability that at least one of them will be in L(yn) is upper
bounded by

(
2nR̃ − l�

)
2−n(I (U ;Y )−δ(ε)). (223)

It now follows from (221) and (223) that the conditional
probability of some l ∈ [1 : 2nR̃] \ {l�} being in L(yn) is
upper bounded by

2nR̃ 2−n(I (U ;Y )−δ(ε)) α−1
n , (224)

so

Pr(E4 |Sn = sn, Y n = yn, L� = l�, M = 1)

≤ 2nR̃ 2−n(I (U ;Y )−δ(ε)) α−1
n . (225)

When R̃ is smaller than I (U ; Y )−δ(ε) (as it is chosen in [6]),
this converges to zero. This establishes that Pr(E4) tends to
zero as n tends to infinity.
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