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The Gaussian Source-and-Data-Streams Problem
Shraga I. Bross , Senior Member, IEEE, and Amos Lapidoth , Fellow, IEEE

Abstract— A Gaussian source and two data streams are to be
transmitted over a Gaussian broadcast channel: the first stream,
the “common stream,” is to be decoded by both receivers, and the
second, the “private stream,” only by the strong receiver. Both
receivers wish to estimate the source sequence, though with possi-
bly different mean squared-errors. The quadruples of achievable
rates and estimation errors are characterized, and it is shown
that—once the data rates have been fixed—there is no tension
between the estimation errors. Only the “equal bandwidth” case
is treated, where the rate at which the source emits symbols is
also the rate at which the channel is used.

Index Terms— Gaussian broadcast channel, Gaussian source,
mean squared-error, source-channel coding.

I. INTRODUCTION

AMemoryless Gaussian source and two independent data
streams are to be transmitted over an average-power

limited one-to-two Gaussian Broadcast Channel (BC): one
data stream, the “common stream,” is to be decoded reliably
by both receivers, and the second, the “private stream,” only
by the strong receiver. Both receivers wish to estimate the
source sequence, with possibly different maximally-allowed
mean squared-error (MSE) distortions. Here we characterize
the achievable quadruples of data rates and distortions as a
function of the allocated transmit power P and the noise
variances N1 and N2 experienced by the two receivers.

When the maximally-allowed distortions at both receivers
exceed the source’s variance, the all-zero estimator is admis-
sible, and our problem reduces to that of finding the capac-
ity region CG-BC of the Gaussian BC, a problem which is
solved, for example, in [9, Sec. 15.1.3] or [10, Sec. 5.5].
Denoting the rate of the common-stream Rc and the rate of
the private-stream R1, this region comprises the rate pairs
(Rc, R1) that simultaneously satisfy

R1 ≤ 1
2

log
(

1 +
αP

N1

)
(1a)

Rc ≤ 1
2

log
(

1 +
(1 − α)P
αP + N2

)
(1b)
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for some 0 ≤ α ≤ 1. Here N1 > 0 is the variance of the noise
experienced by the stronger receiver, and N2 is the variance
of the noise experienced by the weaker receiver, so

N2 ≥ N1 > 0. (2)

At the other extreme, if no data are to be transmitted whence
both data rates are zero, then the problem reduces to deter-
mining the least MSE distortions that can be achieved when
sending a Gaussian source over an average-power limited
Gaussian BC. These distortions were found by Goblick [11],
who showed that the least distortions are achieved by uncoded
transmission. Our result can thus be viewed as unifying Gob-
lick’s result [11] and the Cover-Bergmans [2], [8] capacity
region.

We emphasize that we only treat the “equal bandwidth
case,” where the rate at which the source emits symbols
(in source-symbols per second) is equal to the rate at which the
BC is used (in channel-uses per second). The problem under
the “bandwidth expansion setting,” i.e., when the number
of channel uses per source-sample exceeds one, is more
complicated and is as yet not fully solved; see [13] and [17].

We also emphasize that we only treat scalar sources. The
bivariate version of our problem with zero-rate data streams,
i.e., the bivariate version of Goblick’s setting, is discussed
in [4], [21]. There it is shown that uncoded transmission is
optimal only for some values of the power and noise variances.
This makes the treatment of our problem in the bivariate
setting more elaborate.

Our interest in the source-and-data-streams problem is
related to recent explorations into the feasibility of upgrad-
ing existing communications systems that currently broadcast
analog signals (such as television or radio signals) to allow
them to also downstream digital data without significantly
degrading the reception of the analog content. Our results can
be viewed as information-theoretic limits on the performance
of such systems. This setting has previously been studied by
Zhao and Chen [23]. In fact, our converse is very similar to
theirs, and our plausibility argument of Section IV-A is very
similar to their achievability sketch [23, Sec. III-A.]. For the
reasons we outline in Section IV ahead, a rigorous proof of
achievability is more intricate.

The paper is organized as follows. In Section II we provide
a formal statement of our problem and present our main
result. Section III proves the converse and Section IV the
achievability.

II. PROBLEM STATEMENT AND MAIN RESULT

We adopt the following convention. Random variables are
denoted by upper-case letters and their realizations by the
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corresponding lower-case letter. A generic realization of the
random variable X is hence denoted x. Random vectors
are denoted by bold upper-case letters and their realizations
by the corresponding bold lower-case letter. Their dimen-
sion is usually implicit. Thus, X denotes the random vector
(X1, X2, . . . , Xn), and x = (x1, x2, . . . , xn) denotes its
realization. The set in which a message takes values is denoted
using a caligraphic font: the common message Wc takes values
in the set Wc and the private message W1 in W1. The set of
real numbers is denoted R, and its n-fold Cartesian power R

n.
If α is in the interval [0, 1], then we sometimes write ᾱ for
1 − α:

ᾱ � 1 − α, α ∈ [0, 1]. (3)

Using a Gaussian broadcast channel n times, we wish to
transmit an n-tuple S of source symbols S1, . . . , Sn, which
are independent and identically distributed (IID) centered
Gaussians of variances σ2 > 0, as well as a pair of messages
W = (Wc, W1) that is drawn independently of S uniformly
over the set Wc ×W1, where

Wc = {1, . . . , 2nRc} and W1 = {1, . . . , 2nR1};
Wc is the “common message;” W1 is the “private message;”
and their corresponding rates are Rc and R1. An encoder for
our setting is thus a mapping

ϕ(n) : R
n ×Wc ×W1 → R

n, (4)

where the set of reals R is the source’s alphabet as well as the
BC’s input and output alphabets. Applying the encoder ϕ(n)

to (S, Wc, W1) yields the n-tuple X comprising the n channel
inputs X1, . . . , Xn:

X = ϕ(n)(S, Wc, W1). (5)

The channel inputs are subjected to an average-power
constraint

1
n

n∑
k=1

E
[
X2

k

] ≤ P, (6)

where E[·] denotes the expectation operator (in this case with
respect to Wc, W1, and S). This constraint can be expressed
in terms of X’s Euclidean norm �·� as

1
n

E
[�X�2

] ≤ P. (7)

When X is transmitted, the strong receiver observes the
n-tuple Y1 ∈ R

n that is given by

Y1 = X + Z1, (8)

where Z1 is a random n-vector whose components are IID
N (0, N1), where N1 is positive and N (

μ, σ2
)

denotes the
mean-μ variance-σ2 univariate Gaussian distribution. Based
on Y1, the strong receiver must guess the message pair W =
(Wc, W1) and estimate the source sequence S. It performs the
former task by applying some decoding rule

φ
(1)
W : R

n → Wc ×W1 (9)

to produce the guess

(Ŵ (1)
c , Ŵ

(1)
1 ) = φ

(1)
W (Y1) (10)

with resulting average probability of error

P (1)
e = Pr

[
(Ŵ (1)

c , Ŵ
(1)
1 ) �= (Wc, W1)

]
. (11)

In order to estimate the source sequence, it applies some
estimation rule

φ
(1)
S : R

n → R
n (12)

to produce the estimate

Ŝ1 = φ
(1)
S (Y1) (13)

with resulting average MSE distortion

1
n

E
[
�S− Ŝ1�2

]
.

The weaker receiver observes the n-tuple

Y2 = X + Z2, (14)

where Z2 is a random n-vector whose components are IID
N (0, N2), with

N2 ≥ N1 > 0. (15)

It too wishes to estimate S but, unlike the strong receiver,
it only wishes to guess the common message Wc. It does so
using some decoding rule

φ
(2)
Wc

: R
n → Wc (16)

to produce the guess Ŵ
(2)
c

Ŵ (2)
c = φ

(2)
Wc

(Y2) (17)

with resulting average probability of error

P (2)
e = Pr

[
Ŵ (2)

c �= Wc

]
. (18)

Like the strong receiver, it forms its estimate Ŝ2 of S by
applying some estimation rule

φ
(2)
S : R

n → R
n (19)

to produce the estimate

Ŝ2 = φ
(2)
S (Y2) (20)

with resulting average MSE distortion

1
n

E
[
�S− Ŝ2�2

]
.

The encoder, the broadcast channel, and the decoders are
depicted in Figure 1.

Definition 1: The tuple (Rc, R1, D1, D2) is achievable if,
for every ε > 0, there exist for all sufficiently-large block-
lengths n a power-P -limited encoder ϕ(n) whose rates exceed
(Rc−ε, R1−ε) and decoding/estimation mappings

(
φ

(1)
W , φ

(1)
S

)
and

(
φ

(2)
Wc

, φ
(2)
S

)
such that

lim
n→∞

1
n

E
[∥∥S− Ŝν

∥∥2] ≤ Dν + ε, ν = 1, 2 (21a)
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and

lim
n→∞

(
P (1)

e + P (2)
e

)
= 0. (21b)

Remark 1: Since imposing additional source reconstruc-
tion constraints cannot help, the achievability of the tuple
(Rc, R1, D1, D2) implies that the rates (Rc, R1) must lie in
the capacity region CG-BC of the Gaussian BC.

Remark 2: The achievability of a quadruple depends only
on the BC’s marginals, i.e., on the distributions of (X,Y1)
and (X,Y2). We shall therefore henceforth assume w.l.g. that
the BC is physically degraded so

Z2 = Z1 + Z̃2, (22)

where Z̃2 is a Gaussian n-vector that is indepen-
dent of (Wc, W1,X,Z1) and whose components are IID
N (0, N2 − N1).

Define the signal-to-noise ratios

SNRν =
P

Nν
, ν ∈ {1, 2} (23)

and define

g =
N2

N1
. (24)

With these definitions we can now state our main result.
Theorem 2: A quadruple (Rc, R1, D1, D2) is achievable if,

and only if, all three of the following conditions hold:

(Rc, R1) ∈ CG-BC (25a)

D1 ≥ σ2 D1,min(Rc, R1) (25b)

D2 ≥ σ2D2,min(Rc, R1), (25c)

where

D1,min(Rc, R1) =
22R1

(SNR1 + g)2−2Rc − (g − 1)
(26)

and

D2,min(Rc, R1) =
22(Rc+Rd)

SNR2 + 1
, (27)

where Rd, or Rd(R1), is defined as (c.f. [1])

Rd =
1
2

log
(
1 + (22R1 − 1)

N1

N2

)
. (28)

Remark 3: The theorem would also hold if we replace
the limit superior with a limit inferior in our definition of
achievability, i.e., in (21a) of Definition 1.

To prove Theorem 2, we need to show that Conditions (25)
are necessary and sufficient. Necessity is proved in Section III
and sufficiency in Section IV.

Remark 4: Conditions (25) are also necessary if the trans-
mitter and the two receivers have access to a common source
of randomness that is independent of the source and messages.

Proof: See Appendix A.

III. NECESSITY

To prove necessity, fix some ε > 0 and assume the existence
of a sequence of encoders, decoders, and estimators as in
Definition 1. For each blocklength n, denote the average MSE
distortions achieved by the two receivers

δ(ν)
n =

1
n

E
[∥∥S − Ŝν

∥∥2
]
, ν ∈ {1, 2}, (29)

and define

εn = max
{
P (1)

e , P (2)
e

}
. (30)

The achievability of the quadruple (Rc, R1, D1, D2) implies
that

lim
n→∞ δ(ν)

n ≤ Dν + ε, ν ∈ {1, 2} (31)

and

lim
n→∞ εn = 0. (32)

By Fano’s inequality we obtain as
in [9, Eqs. (7.100)–(7.101)]

I(Y1; W1)
≥ n

(
R1 − P (1)

e R1 − n−1
)

(33a)

≥ n
(
R1 − max{P (1)

e , P (2)
e } · max{R1, Rc} − n−1

)
(33b)

= n
(
R1 − ηn

)
, (33c)

where ηn is defined as

ηn = max{P (1)
e , P (2)

e } · max{R1, Rc} + n−1

and therefore, by (32), tends to zero

lim
n→∞ ηn = 0. (34a)

Rearranging (33c) and repeating the argument in (33) with the
substitution of (Wc, Rc,Y2) for (W1, R1,Y1), we obtain

n(R1 − ηn) ≤ I(Y1; W1) (34b)

n(Rc − ηn) ≤ I(Y2; Wc). (34c)

To relate (31) to mutual informations, recall the rate-
distortion function

RGau(Δ) =
1
2

log+

(
σ2

Δ

)
, Δ > 0 (35)

of a memoryless variance-σ2 Gaussian source with respect
to the MSE criterion [9, Sec. 10.3.2]. Here log+(ξ) �
max{log ξ, 0} for all ξ > 0. The converse to the Rate
Distortion theorem, e.g., [9, Eqs. (10.61) and (10.71)], implies
that

nRGau
(
δ(ν)
n

) ≤ I(S; Ŝν)
≤ I(S;Yν), ν ∈ {1, 2}, (36)

where the second inequality follows from the Data Processing
inequality.

We shall next use (34) and (36) to establish necessity.
Since the necessity of (25a) follows from Remark 1, we focus
on (25b) and (25c), beginning with the former.
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Fig. 1. Broadcasting a Gaussian source sequence S and a message pair W = (Wc, W1) over a Gaussian BC.

A. Necessity of (25b)

Starting from (36) and using the independence between S
and (Wc, W1),

nRGau
(
δ(1)
n

) ≤ I(S;Y1)
≤ I(S;Y1|Wc, W1)
= h(Y1|Wc, W1) − h(Y1|S, Wc, W1)
= h(Y1|Wc, W1) − h(Y1|X,S, Wc, W1)
= h(Y1|Wc, W1) − h(Z1)

= h(Y1|Wc, W1) − n

2
log(2πeN1), (37)

where the second equality holds because X is computable
from (S, Wc, W1).1

An upper bound on h(Y1|Wc, W1) will thus provide us with
an upper bound on RGau

(
δ
(1)
n

)
and hence with a lower bound

on δ
(1)
n .

To derive such an upper bound, we first use Fano’s inequal-
ity (34b) and the independence between W1 and Wc to obtain

n(R1 − ηn) ≤ I(Y1; W1)
≤ I(Y1; W1|Wc)
= h(Y1|Wc) − h(Y1|Wc, W1) (38)

or

h(Y1|Wc, W1) ≤ h(Y1|Wc) − n(R1 − ηn). (39)

We next upper-bound h(Y1|Wc) in terms of h(Y2|Wc)
using (22), the independence between Z̃2 and
(Wc, W1,X,Z1), and the conditional Entropy-Power
Inequality (EPI) [10, Sec. 2.2]:

2
2
n h(Y2|Wc) = 2

2
n h(Y1+Z̃2|Wc)

≥ 2
2
n h(Y1|Wc) + 2

2
n h(Z̃2)

= 2
2
n h(Y1|Wc) + 2πe(N2 − N1) (40)

or

2
2
n h(Y1|Wc) ≤ 2

2
n h(Y2|Wc) − 2πe(N2 − N1). (41)

1This does not hold when the transmitter and receivers have access to a
common source of randomness. Remark 4 addresses this scenario.

Inequality (41) and the monotonicity of the logarithmic func-
tion combine with (39) to yield

h(Y1|Wc, W1) ≤ n

2
log
(
2

2
n h(Y2|Wc) − 2πe(N2 − N1)

)
−n(R1 − ηn). (42)

From this we complete the derivation of the upper bound
on h(Y1|Wc, W1) by deriving an upper bound on h(Y2|Wc)
using Fano’s inequality (34c):

n(Rc − ηn) ≤ I(Y2; Wc)
= h(Y2) − h(Y2|Wc)

≤ n

2
log
(
2πe(P + N2)

)− h(Y2|Wc) (43)

or

2
2
n h(Y2|Wc) ≤ 2πe(P + N2) 2−2(Rc−ηn), (44)

where (43) follows from the power constraint on Y2 that is
induced by the power constraint on X and from the fact that
the IID multivariate Gaussian distribution maximizes differen-
tial entropy subject to a power constraint [10, Eq. (2.8)].

From (44) and (42) we obtain the desired upper bound on
h(Y1|Wc, W1):

h(Y1|Wc, W1)

≤ n

2
log
(
2πe(P + N2)2−2(Rc−ηn) − 2πe(N2 − N1)

)
−n(R1 − ηn). (45)

Equipped with this upper bound on h(Y1|Wc, W1), we return
to (37) to obtain

RGau
(
δ(1)
n

)
≤ 1

2
log
(
2πe(P + N2)2−2(Rc−ηn) − 2πe(N2 − N1)

)

− (R1 − ηn) − 1
2

log(2πeN1). (46)

Taking the limit superior over n and using (34a) and the
monotonicity of RGau(·),

RGau

(
lim δ(1)

n

)

≤ 1
2

log
(
2πe(P + N2)2−2Rc − 2πe(N2 − N1)

)

−R1 − 1
2

log(2πeN1). (47)
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It thus follows from (31) and the monotonicity of RGau(·) that

RGau(D1 + ε)

≤ 1
2

log
(
2πe(P + N2)2−2Rc − 2πe(N2 − N1)

)

−R1 − 1
2

log(2πeN1). (48)

Letting ε ↓ 0 and using the continuity of RGau(·) on the
positive reals,

RGau(D1) ≤ 1
2

log
(
(P + N2)2−2Rc − (N2 − N1)

)

−R1 − 1
2

log N1. (49)

This2 and the explicit expression (35) for RGau(D1) concludes
the proof of the necessity of (25b).

It would have been possible to infer (48) from (46) also if
we had replaced the limit superior in (31) with a limit inferior
(c.f. Remark 3). In fact, it follows from (46) that for fixed
(Rc, R1),

δ(1)
n ≥ σ2 D1,min(Rc, R1) − Ψ(1)(εn), (50a)

where εn is defined in (30), and Ψ(1)(·) is a nonnegative
function (that depends only on Rc, R1, P, N1, N2, σ

2 and not
on the codebook) for which

lim
εn↓0

Ψ(1)(εn) = 0, (50b)

and which can be chosen to be monotonically nonincreasing.

B. Necessity of (25c)

Let CX→Y2 denote the capacity of the Gaussian channel
from X to Y2

CX→Y2 =
1
2

log
(

1 +
P

N2

)
. (51)

Since the capacity is the maximum of mutual information,

nCX→Y2

≥ I(X;Y2)
= I(Wc, W1,S;Y2)
= I(Wc;Y2) + I(S;Y2|Wc) + I(W1;Y2|Wc,S)
≥ I(Wc;Y2) + I(S;Y2) + I(W1;Y2|Wc,S)
≥ n(Rc − ηn) + nRGau

(
δ(2)
n

)
+ I(W1;Y2|Wc,S), (52)

where the first equality holds because X is computable from
(Wc, W1,S) (c.f. Footnote 1) and because, conditional on X,
the pair Y2 and (Wc, W1,S) are independent; the second
equality follows from the chain rule for mutual informa-
tion; the following inequality follows from the independence
between S and Wc; and the final inequality follows from (34c)

2A necessary condition for the inequality RGau(D1) ≤ ξ to hold is D1 ≥
σ22−2ξ . (This is also sufficient if ξ is nonnegative.)

and (36). Thus

nRGau
(
δ(2)
n

)
≤ nCX→Y2 − n(Rc − ηn) − I(W1;Y2|Wc,S)
= nCX→Y2 − n(Rc − ηn) − h(Y2|Wc,S)

+ h(Y2|Wc, W1,S)
= nCX→Y2 − n(Rc − ηn) − h(Y2|Wc,S)

+
n

2
log(2πeN2). (53)

Using the conditional EPI, we can relate h(Y2|Wc,S)
to h(Y1|Wc,S) and hence to I(W1;Y1|Wc,S) (because
h(Y1|Wc, W1,S) is simply h(Z1)):

2
2
n h(Y2|Wc,S)

= 2
2
n h(Y1+Z̃2|Wc,S)

≥ 2
2
n h(Y1|Wc,S) + 2

2
n h(Z̃2)

= 2
2
n h(Y1|Wc,S) + 2πe(N2 − N1)

= 2
2
n [I(W1;Y1|Wc,S)+ n

2 log(2πeN1)] + 2πe(N2 − N1)

= 2
2
n I(W1;Y1|Wc,S)2πeN1 + 2πe(N2 − N1). (54)

From (53) and (54) we obtain

RGau
(
δ(2)
n

) ≤ CX→Y2 − Rc + ηn

− 1
2

log
(2

2
n I(W1;Y1|Wc,S)N1 + (N2 − N1)

N2

)
.

(55)

The right-hand side (RHS) can be further upper-bounded using
the inequality

I(W1;Y1|Wc,S) ≥ n(R1 − ηn) (56)

(which holds by Fano’s inequality (34b) and the independence
between W1 and (Wc,S)) to yield

RGau
(
δ(2)
n

) ≤ CX→Y2 − Rc + ηn

− 1
2

log
(22(R1−ηn)N1 + (N2 − N1)

N2

)
. (57)

Since the RHS converges as n tends to infinity, and since ηn

converges to zero,

lim
n→∞RGau

(
δ(2)
n

) ≤ CX→Y2 − Rc

− 1
2

log
(22R1N1 + (N2 − N1)

N2

)
= CX→Y2 − Rc − Rd, (58)

where the equality follows from the definition of Rd (28). This
and the monotonicity of RGau(·) implies that

RGau

(
lim δ(2)

n

)
≤ CX→Y2 − Rc − Rd, (59)

which, together with (31) and the monotonicity of RGau(·),
establishes that

RGau(D2 + ε) ≤ CX→Y2 − Rc − Rd. (60)

Since this is true for every ε > 0, we can take the limit as
ε ↓ 0 and use the continuity of RGau(·) at D2 to establish that
for all positive D2

RGau(D2) ≤ CX→Y2 − Rc − Rd. (61)
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This (c.f. Footnote 2) in combination with (51), estab-
lishes (25c).

It would have been possible to infer (60) from (57) also if
we had replaced the limit superior in (31) with a limit inferior
(c.f. Remark 3). In fact, it follows from (57) that for fixed
(Rc, R1),

δ(2)
n ≥ σ2 D2,min(Rc, R1) − Ψ(2)(εn), (62a)

where εn is defined in (30), and Ψ(2)(·) is a nonnegative
function (that depends only on Rc, R1, P, N1, N2, σ

2 and not
on the codebook) for which

lim
εn↓0

Ψ(2)(εn) = 0, (62b)

and which can be chosen to be monotonically nonincreasing.

IV. SUFFICIENCY

To establish sufficiency, we shall prove the following
proposition:

Proposition 1: For any choice of 0 ≤ γ, β ≤ 1, the tuple(
Rc(γ, β), R1(γ, β), σ2 D1,min

(
Rc(γ, β), R1(γ, β)

)
,

σ2 D2,min
(
Rc(γ, β), R1(γ, β)

))

is achievable, where

Rc(γ, β) =
1
2

log
(
1 +

γβ̄P

γβP + γ̄P + N2

)
(63a)

R1(γ, β) =
1
2

log
(
1 +

γβP

N1

)
(63b)

and, as in (3), β̄ denotes 1 − β and γ̄ denotes 1 − γ.
Since every pair (Rc, R1) in the capacity region CG-BC is
equal to

(
Rc(γ, β), R1(γ, β)

)
for some choice of γ and β,

this proposition will indeed establish sufficiency.
The proof of the proposition is a bit technical, so we begin

with a plausibility argument before proceeding with a rigorous
proof. The plausibility argument has a number of shortcom-
ings. The first has to do with the random-coding argument and
the code-averaged distortion. The problem arises because we
are dealing here with two separate distortion constraints, which
must be satisfied simultaneously. When there is but a single
distortion constraint, the random coding argument guarantees
that if the code-averaged distortion meets the constraint then
there must exist a (deterministic) code that also meets the
constraint. But when there are two distortions to deal with,
the fact that each of the code-averaged distortion constraints
is satisfied does not imply that there exists a single code
that simultaneously meets the two constraints. To deal with
this issue, the rigorous proof—rather than studying the code-
averaged distortions—studies the probabilities that a randomly
chosen codebook meets the constraints. These probabilities are
shown to tend to one, which implies that the probability that
both constraints are satisfied also tends to one, and the random
coding argument can be invoked.

Another shortcoming is due to the unboundedness of the
MSE distortion, which implies that the effect on the distortion
of representation failures, even if rare, need not be negligible.
To address this issue, the rigorous proof considers ensembles

of codes whose codewords are not Gaussian but drawn uni-
formly on the n-dimensional sphere. This must also be done
for the Gelfand-Pinsker/Costa codebook, where it results in
an unwieldy distribution for the power in the sum of the state
(source) and the codeword. Since this sum is later treated as
noise, and since it is not Gaussian, this requires an analysis of
the probability of error in non-Gaussian noise. To control the
power in this sum, our Gelfand-Pinsker/Costa encoder does
not search for the nearest codeword but for the one whose
inner product with the state sequence is closest to our target
value; see (86).

Finally, our plausibility argument tacitly assumes that the
decoded codewords can be stripped-off perfectly; it does not
therefore account for the effect of decoding errors on the
distortions. The rigorous proof accounts for such errors by
introducing Δ1 in (105).

A. Sufficiency: A Plausibility Argument

Fix some 0 ≤ γ, β ≤ 1. Given the source sequence S
and the message pair (Wc, W1), the encoder sends the n-tuple
X(S, Wc, W1) that is given by

X(S, Wc, W1) = Xa(S) + XGau(Wc) + XD-P(W1;S), (64)

where Xa(S) is a power-γ̄P scaled version of S,

Xa(S) =

√
γ̄P

σ2
S, (65)

and where the remaining power, namely γP , is used by the
remaining terms on the RHS of (64): γβ̄P by XGau(Wc) and
γβP by XD-P(W1;S). (The terms on the RHS of (64) are
orthogonal, so their powers add.) The term XGau(Wc) is the
codeword indexed by Wc in a power-γβ̄P Gaussian codebook.
The term XD-P(W1;S) is the sequence transmitted in order to
convey Message W1 in Costa’s scheme of power γβP for
writing on dirty paper [7] when the “dirt sequence” is Xa(S)
(which is known noncausally to the transmitter) and the noise
is the noise corrupting the strong receiver, i.e., Z1.

The decoders operate as follows. The weak receiver,
Receiver 2, uses nearest-neighbor decoding to decode Wc

treating Xa(S)+XD-P(W1;S) as noise that is added on top of
the noise Z2 corrupting its terminal. The total effective noise
is thus of power γ̄P +γβP +N2. And since the desired signal
XGau(Wc) is of power γβ̄P , it can decode Wc whenever Rc is
smaller than the RHS of (63a) [14]. This condition guarantees
that also the strong receiver can decode Wc. The weak receiver
then subtracts XGau(Wc) from its received sequence, and thus
obtains

Ỹ2 � Xa(S) + XD-P(W1;S) + Z2

and forms its linear minimum MSE estimate Ŝ2 of the source
sequence S based on Ỹ2

Ŝ2 =

√
γ̄Pσ2

γβP + γ̄P + N2
Ỹ2 (66)

with corresponding distortion

D2(γ, β) = σ2 γβP + N2

γβP + γ̄P + N2
(67)

= σ2D2,min
(
Rc(γ, β), R1(γ, β)

)
, (68)
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where the second equality follows from a straightforward
calculation, which is carried out in Appendix B.

After decoding Wc, also the strong receiver subtracts
XGau(Wc) from its received sequence to form

Ỹ1 � Xa(S) + XD-P(W1;S) + Z1. (69)

It then decodes W1 using Costa’s decoder. Since the dirty-
paper coding renders the “dirt” harmless, it can recover W1

whenever R1 is lower than the RHS of (63b). It finally forms
its estimate of the source as

Ŝ1 =

√
γ̄Pσ2

γβP + γ̄P + N1
Ỹ1 (70)

and the corresponding achievable distortion is

D1(γ, β) = σ2 γβP + N1

γβP + γ̄P + N1
(71)

= σ2D1,min
(
Rc(γ, β), R1(γ, β)

)
, (72)

where the distortion can be read off from the parametric
equations in [20, Th. 2, Eq. (5)] or those following [3,
Eq. (173)] by replacing γ there with 1; and the second equality
follows from a straightforward calculation, which is carried out
in Appendix C.

As noted in [20, Sec. II.C, Footnote 2], the decoded
Costa’s codeword U(W1;S) and S are conditionally inde-
pendent given Ỹ1, hence the state estimation error cannot be
further reduced using U(W1;S) when given Ỹ1.

B. Sufficiency: A proof

In order to prove Proposition 1, we shall need the following
lemma on linear estimation of vectors.

Lemma 1: Let x, c ∈ R
n and μ, η ∈ R be deterministic,

and let Z be a centered random n-vector whose components
are of variance σ2 and uncorrelated. Let

Y = x + c + Z. (73)

Then

E
[
�ηY − μx�2

]
= (η − μ)2 �x�2 + 2η(η − μ) 	c,x


+ η2 �c�2 + nη2σ2, (74)

where 	u,v
 denotes the Euclidean inner product
∑

ui vi.
Proof: This calculation can be carried out, for example,

by decomposing c into two parts: one that is co-linear with x
and one that is orthogonal to x. The details are omitted.

We are now ready to prove Proposition 1.
Proof of Proposition 1: Inspired by [5, Remark III.5]

and [6], our scheme will not describe the IID Gaussian n-tuple
S directly. Instead, we will describe its scaled version

S′ =
√

nσ2
S

�S� , (75)

which is uniformly distributed over the n-sphere:

�S′� =
√

nσ2. (76)

Asymptotically, as n tends to infinity, the average MSE
incurred when estimating S using some estimator Ŝ′ for S′

is no worse than when that estimator is used to estimate S′,
because, by the Norm Inequality, for every estimator Ŝ′ of S′,

E
[∥∥Ŝ′ − S

∥∥2
]1/2

= E
[∥∥(Ŝ′ − S′) + (S′ − S)

∥∥2
]1/2

≤ E
[∥∥Ŝ′ − S′∥∥2

]1/2

+ E
[∥∥S′ − S

∥∥2
]1/2

and3

lim
n→∞

1
n

E
[
�S′ − S�2

]
= 0. (77)

The transmitted signal in our scheme has the form

x(s′, wc, w1) = xa(s′) + xD-P(w1; s′|C(n)
D-P) + xGau(wc|C(n)

Gau),
(78)

where xa(s′) is a scaled-to-power-γ̄P version of s′

xa(s′) =

√
γ̄P

σ2
s′ (79a)

�xa(s′)�2 = nγ̄P ; (79b)

xD-P(w1; s′|C(n)
D-P) is a variant of Dirty-Paper coding [7] using

the codebook C(n)
D-P when the message is w1 and the interfer-

ence is xa(s′); and xGau(wc|C(n)
Gau) is a variant of the encoding

of wc using the codebook C(n)
Gau for the Gaussian channel. Often

we shall make the codebooks implicit and write xD-P(w1; s′)
and xGau(wc).

We next describe the codebooks in greater detail, starting
with C(n)

D-P . It is constructed from an ensemble of codes as
in [5], but with a slightly different encoding rule: The ensem-
ble is constructed starting with the positive parameters

Ñ , P̃ , Q, R̃, and R̃′, (80)

where

Q =
1
n
�Xa(S′)�2 = γ̄P (81)

and

Ñ = N1. (82)

Associated with P̃ and Ñ is

α̃ � P̃

P̃ + Ñ
. (83)

The codebooks in the ensemble consist of 2nR̃ bins, each
containing 2nR̃′

codewords. The k-th codeword in the m-th
bin is denoted Vm,k. The 2n(R̃+R̃′) codewords are drawn

3To justify (77) use the co-linearity of S′ with S to conclude that
E
�
‖S′ − S‖2

�
= E

�
(‖S′‖ − ‖S‖)2�; recall (75) and E

�
‖S‖2

�
= nσ2;

and express E[‖S‖] as σ
√

2Γ
�
(n+1)/2

�
/Γ(n/2) [15, Eq. (19.42)] (where

Γ(·) denotes the Gamma function). One can then conclude the proof of (77)
by noting [12, 8.328] [19, Eq. (2.36)] that

lim
n→∞

1√
n

√
2Γ

�
(n + 1)/2

�
/Γ(n/2) = 1.

In fact, using the log-convexity of Γ(·) one can show that for 0 < s < 1,

x1−s <
Γ(x + 1)

Γ(x + s)
< (x + 1)1−s.

(This ratio is often called Gautchi’s Ratio.)
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independently and uniformly over the centered n-sphere of

radius
√

n(P̃ + α̃2Q), so

�Vm,k�2 = n(P̃ + α̃2Q). (84)

To specify how we pick C(n)
D-P from this ensemble, we next

consider a specific encoder and a specific genie-aided decoder.
To describe the encoder, let us define the angle �(w,v)
between two nonzero vectors as the angle between 0 and π
such that

cos�(w,v) =
	w,v

�w� �v� . (85)

To send the message M after observing S′, the encoder
searches Bin M for the codeword whose angle with S′

(and hence also with Xa(S′)) is of cosine that is closest to
(α̃2Q/(P̃ + α̃2Q))1/2. Denoting this codeword VM,K� ,

K� = argmin
k

∣∣∣∣∣
〈

S′

�S′� ,
VM,k

�VM,k�
〉
−
√

α̃2Q

P̃ + α̃2Q

∣∣∣∣∣. (86)

It then sets

XD-P(M ;S′) = VM,K� − α̃Xa(S′), (87a)

provided that this does not result in the power in Xa(S′) +
XD-P(M ;S′) being too large, i.e., provided that

1
n

∥∥∥VM,K� + (1 − α̃)Xa(S′)
∥∥∥2

≤ γ̄P + γβP, (87b)

and otherwise it sets

XD-P(M ;S′) = 0. (87c)

The genie-aided decoder bases its guess on the vector

Xa(S′) + XD-P(M ;S′) + Z1 (88)

and searches the codewords {Vm,k} for the codeword of
largest inner product with it; its guess is the bin containing
this codeword.

Assume now that R̃′ is sufficiently large so that

1 − 2−2R̃′
>

α̃2Q

P̃ + α̃2Q
. (89)

It then follows using standard results on the area of spher-
ical caps [5, Appendix B] that the normalized inner prod-
uct between the selected codeword and S′ converges in
probability:

p-lim
n→∞

〈
S′

�S′� ,
VM,K�

�VM,K��
〉

=

√
α̃2Q

P̃ + α̃2Q
. (90)

This in combination with (79b), (81), and (84) establishes the
asymptotic orthogonality

p-lim
n→∞

1
n

〈
VM,K� − α̃ Xa(S′),Xa(S′)

〉
= 0. (91)

Moreover, (90) in combination with (79b), (81), and (84)
implies that

p-lim
n→∞

1
n

∥∥∥VM,K� + (1 − α̃)Xa(S′)
∥∥∥2

= γ̄P + P̃ . (92)

Consequently, if

P̃ < γβP, (93)

then the probability that (87b) is violated tends to zero:

lim
n→∞Pr

[
1
n

∥∥∥VM,K� + (1 − α̃)Xa(S′)
∥∥∥2

> γ̄P +γβP

]
=0.

(94)

As in [5], if

R̃ + R̃′ <
1
2

log

(
1 +

P̃

Ñ
+

QP̃

Ñ(P̃ + Ñ)

)
, (95)

then the probability of a decoding error tends to zero as
n → ∞. That is, if Edec

D-P denotes the event corresponding to a
decoding error, then

lim
n→∞Pr

(Edec
D-P

)
= 0. (96)

It follows from (90), (91), (94), and (96) that there exists a
sequence δn ↓ 0 such that the probability of a decoding error
or ∣∣∣∣∣

〈
S′

�S′� ,
VM,K�

�VM,K��
〉
−
√

α̃2Q

P̃ + α̃2Q

∣∣∣∣∣ > δn (97a)

or ∣∣∣ 1
n

〈
VM,K� − α̃Xa(S′),Xa(S′)

〉∣∣∣ > δn (97b)

or
1
n

∥∥∥VM,K� + (1 − α̃)Xa(S′)
∥∥∥2

> γ̄P + γβP (97c)

tends to zero as n → ∞. Fix such a sequence {δn}, and
let Eenc

D-P denote the event that at least one of the inequalities
in (97) is satisfied.

By the random-coding argument, there exists a sequence of
codes {C(n)

D-P} that, for the above {δn}, satisfies

lim
n→∞Pr[Eenc

D-P |C(n)
D-P ] = 0 (98)

and

lim
n→∞Pr[Edec

D-P |C(n)
D-P ] = 0. (99)

If a genie provides the decoder with the vector (88),
then—by letting P̃ ↑ γβP and by considering the limit under
which R̃′ is decreased until (89) holds with equality—we can
achieve (using the genie-aided decoder) rates that approach
R1(γ, β) of (63b) [5].

Having completed the description of the construction of the
sequence {C(n)

D-P}, we next turn to the Gaussian codes {C(n)
Gau}.

It follows from (98) (c.f. (92)) that, using the codes {C(n)
D-P},

the power in VW1,K� +(1−α̃)Xa(S′) converges in probability
to γ̄P + P̃ :

lim
n→∞Pr

[∣∣∣ 1
n

∥∥VW1,K� + (1 − α̃)Xa(S′)
∥∥2

− (γ̄P + P̃ )
∣∣∣ > δ

∣∣∣∣ C(n)
D-P

]
= 0, ∀δ > 0. (100)

Consequently, with these codes, the power in

Xa(S′) + XD-P(W1;S′|C(n)
D-P) + Z2 (101)
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—which for the purpose of guessing Wc by the weak receiver
we think of as noise—converges in probability to γ̄P+P̃+N2.
We now think of (101) as power-(γ̄P +P̃ +N2) additive noise
and construct the codebooks {C(n)

Gau} to combat it as in [14]:
We consider the performance of the nearest-neighbor decoder
on the ensemble of codes whose 2nRc codewords are drawn
independently and uniformly over the n-sphere

�XGau(wc)�2 = nγβ̄P. (102)

The (ensemble-averaged) probability of decoding error (when
the additive noise is as in (101)) then tends to zero, provided
that Rc is smaller than Rc(γ, β) of (63a). Subject to this con-
dition, we can thus choose a sequence of deterministic codes
{C(n)

Gau} for which the probability of error with nearest-neighbor
decoding tends to zero as n → ∞. Since the probability
of error tends to zero at the poor receiver, it can also be
made to tend to zero at the better receiver (e.g., by injecting
Gaussian noise of variance N2 − N1). And using a genie
argument [22, p. 419], [18], it follows from (99) that W1 can
be recovered at the better receiver too.

It remains to propose estimation rules and to study their
performance. Define (c.f. (66))

η2 =

√
γ̄Pσ2

γβP + γ̄P + N2
(103)

and (c.f. (70))

η1 =

√
γ̄Pσ2

γβP + γ̄P + N1
. (104)

Receiver 1 estimates S′ (and hence also S) as follows: First
it decodes the common message by forming Ŵ

(1)
c , and it then

subtracts the corresponding codeword XGau(Ŵ
(1)
c |C(n)

Gau) from
its received sequence Y1 to obtain Ỹ1 + Δ1, where Ỹ1 is
defined in (69), and Δ1 is defined as

Δ1 = XGau(Wc|C(n)
Gau) − XGau(Ŵ (1)

c |C(n)
Gau). (105)

It then forms its estimate

Ŝ1 = η1

(
Ỹ1 + Δ1

)
, (106)

where η1 is given in (104); c.f. (70). Expressing the estimation
error as (

η1Ỹ1 − S′)+ η1Δ1, (107)

we obtain from the Norm Inequality

1√
n

E
[∥∥Ŝ1 − S′∥∥2

]1/2

≤ 1√
n

E
[∥∥η1Ỹ1 − S′∥∥2

]1/2

+
1√
n

E
[∥∥η1Δ1

∥∥2
]1/2

. (108)

Since we have chosen our codewords on the sphere,
�XGau(Wc|C(n)

Gau)�2 equals nγβ̄P deterministically, and con-
sequently

E
[�Δ1�2

] ≤ n 4γβ̄P P (1)
e , (109)

so the second term on the RHS of (108) tends to zero in the
limit as n tends to infinity, because in this limit P

(1)
e tends to

zero. Thus

lim
n→∞

1
n

E
[∥∥Ŝ1 − S′∥∥2

]
= lim

n→∞
1
n

E
[∥∥η1Ỹ1 − S′∥∥2

]
. (110)

To study the RHS of (110), we condition on S′ = s′

and W1 = w1. Under this conditioning, Xa(S′) and
XD-P(W1;S′|C(n)

D-P) are deterministic. We first argue that, irre-
spective of s′ (on the sphere) and of w1,

1
n

E
[∥∥η1Ỹ1 − S′∥∥2

∣∣∣W1 = w1,S′ = s′
]

≤ K1(η1, γ, β, P, N1), (111)

where the constant K1(·) depends on its arguments but not
on n. Indeed, by (87),

1
n

∥∥xa(s′) + xD-P(w1; s′|C(n)
D-P)

∥∥2 ≤ γ̄P + γβP, (112)

so, by the Norm Inequality,

1
n

∥∥∥η1

(
xa(s′) + xD-P(w1; s′|C(n)

D-P)
)− s′

∥∥∥2

≤
(
|η1|

√
γ̄P + γβP + σ

)2

(113)

and thus
1
n

E
[∥∥η1Ỹ1 − S′∥∥2

∣∣∣W1 = w1,S′ = s′
]

≤
(
|η1|

√
γ̄P + γβP + σ

)2

+ η2
1N1. (114)

We can therefore choose K1(·) as the RHS of the above.
Inequality (111) holds for all pairs (w1, s′). For pairs that

do not result in the event Eenc
D-P, we can do better. For such

pairs we obtain from Lemma 1 upon substituting xa(s′) for x;
xD-P(w1; s′|C(n)

D-P) for c; Z1 for Z; and (c.f. (79a))

μ =

√
σ2

γ̄P
(115)

E
[∥∥η1Ỹ1 − S′∥∥2

∣∣∣W1 = w1,S′ = s′
]

= (η1 − μ)2 �xa(s′)�2

+ 2η1(η1 − μ)
〈
xD-P(w1; s′|C(n)

D-P),xa(s′)
〉

+ η2
1

∥∥∥xD-P(w1; s′|C(n)
D-P)

∥∥∥2

+ nη2
1N1. (116)

Using (79b), the inequality∣∣∣〈xD-P(w1; s′|C(n)
D-P),xa(s′)

〉∣∣∣ ≤ nδn (117)

(which holds by the negation of (97b)), and the inequality∥∥∥xD-P(w1; s′|C(n)
D-P)

∥∥∥2

≤ nγβP + 2nδn (118)

(which holds by the negation of (97b) and the negation
of (97c)) we obtain that for pairs (w1, s′) that do not result in
the event Eenc

D-P

1
n

E
[∥∥η1Ỹ1 − S′∥∥2

∣∣∣W1 = w1,S′ = s′
]

= (η1 − μ)2γ̄P + η2
1γβP + η2

1N1 + o(1), (119)

where the o(1) term depends on η1, μ, and δn and tends to
zero as n tends to infinity.

In the average of

1
n

E
[∥∥η1Ỹ1 − S′∥∥2

∣∣∣W1 = w1,S′ = s′
]
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over the pairs (w1, s′), the contribution of the pairs for which
the event Eenc

D-P occurs is at most

Pr (Eenc
D-P)K1(η1, γ, β, P, N1),

and the contribution of the pairs for which this event does not
occur is at most

(η1 − μ)2γ̄P + η2
1γβP + η2

1N1 + o(1),

(where we have upper bounded 1−Pr (Eenc
D-P) by 1). Recalling

that Pr (Eenc
D-P) tends to zero, we thus obtain

lim
n→∞

1
n

E
[∥∥η1Ỹ1−S′∥∥2

]
≤ (η1−μ)2γ̄P + η2

1γβP +η2
1N1,

(120)

which evaluates (using (115), and (104)) to the RHS of (71).
The analysis of the estimation error at the weak terminal is

nearly identical and is omitted.

APPENDIX

A. Common Randomness

We next prove Remark 4 by showing that allowing the
transmitter and the receivers access to a common source of
randomness (that is independent of the messages and of the
source) does not enlarge the set of achievable quadruples.
A fortiori, nor does allowing for stochastic encoders. We thus
consider the case where the transmitted sequence, in addition
to depending on the source and messages, also depends on the
realization θn of a random variable Θn that is drawn according
to P

(n)
Θ from On and which is revealed to both receivers.

As in (30), we define

εn(θn) = max
{
P (1)

e (θn), P (2)
e (θn)

}
,

where the argument θn indicates the dependence on the
realization of the common randomness. Thus, P

(1)
e (θn) can be

viewed as the probability of error at Terminal 1 conditional on
Θn = θn, and we use similar notation for the other quantities
that depend on θn. Averaging over Θn,

εn(P (n)
Θ ) =

∫
On

εn(θn) dP
(n)
Θ , (121)

where the argument P
(n)
Θ on the LHS indicates that the

quantity is being averaged over P
(n)
Θ , with similar notation

for other such averages. Thus, for example, for ν ∈ {1, 2} we
define δ

(ν)
n (θn) analogously to (29), and we define

δ(ν)
n (P (n)

Θ ) =
∫
On

δ(ν)
n (θn) dP

(n)
Θ . (122)

Consider now a sequence of codes with common random-
ness that are specified by the measures {P (n)

Θ } and that have
vanishing probability of error. Since εn(P (n)

Θ ) tends to zero,
we can pick a subsequence {nk} of blocklengths for which

εnk
(P (nk)

Θ ) <
1
k

. (123)

Define now

Gnk
=
{
θnk

∈ Onk
: εnk

(θnk
) ≤ log k

k

}
. (124)

It then follows from (121) and (123) using Markov’s inequality
that

P
(nk)
Θ

(Gnk

) ≥ 1 − 1
log k

(125)

and, consequently,

lim
k→∞

P
(nk)
Θ

(Gnk

)
= 1. (126)

Since the distortion is nonnegative, we can lower-bound the
expected distortion in (122) by limiting the integration to Gnk

:

δ(ν)
nk

(P (nk)
Θ ) ≥

∫
Gnk

δ(ν)
nk

(θnk
) dP

(nk)
Θ . (127)

For θnk
in Gnk

we can lower bound the distortion using (50a)
and (62a):

δ(ν)
nk

(θnk
) ≥ σ2 Dν,min(Rc, R1) − Ψ(ν)

( log k

k

)
,

θnk
∈ Gnk

. (128)

This and (127) implies

δ(ν)
nk

(P (nk)
Θ )

≥ P
(nk)
Θ

(Gnk

)(
σ2Dν,min(Rc, R1) − Ψ(ν)

( log k

k

))
. (129)

Using (126) we can thus infer that

lim
k→∞

δ(ν)
nk

(P (nk)
Θ ) ≥ σ2 Dν,min(Rc, R1), ν ∈ {1, 2}, (130)

thus establishing that the necessity of (25b) and (25c) also
when the transmitter and the receivers share common random-
ness.

B. Justifying (68)

To justify (68), we begin with the expression for
Rc(γ, β) (63a) and obtain

22Rc(γ,β) =
P + N2

γβP + γ̄P + N2
. (131)

And starting from the expression for R1(γ, β) (63b) and using
the definition of Rd (28) we obtain

Rd
(
R1(γ, β)

)
=

1
2

log
(
1 +

γβP

N2

)
, (132)

so

22Rd

(
R1(γ,β)

)
=

N2 + γβP

N2
. (133)

Consequently,

D2,min
(
Rc(γ, β), R1(γ, β)

)
=

N2

P + N2
22(Rc(γ,β)+Rd)

=
γβP + N2

γβP + γ̄P + N2
, (134)

where the first equality follows from (27), and the second
from (131) and (133).
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C. Justifying (72)

To justify (72), we begin with the definition of Rc(γ, β)
(63a) (c.f. (131))

2−2Rc(γ,β) =
γβP + γ̄P + N2

P + N2
, (135)

which implies that γβP can be represented as

γβP = (P + N2)2−2Rc(γ,β) − N2 − γ̄P. (136)

Substituting this expression for γβP in the expression for
R1(γ, β) (63b), we obtain

R1(γ, β) =
1
2

log
(P + N2)2−2Rc(γ,β) − γ̄P − (N2 − N1)

N1
.

(137)

Hence,

D1,min
(
Rc(γ, β), R1(γ, β)

)

=
N122R1(γ,β)

(P + N2)2−2Rc(γ,β) − (N2 − N1)

=
(P + N2)2−2Rc(γ,β) − γ̄P − N2 + N1

(P + N2)2−2Rc(γ,β) − N2 + N1

=
γβP + N1

γβP + γ̄P + N1
, (138)

where the first equality follows from (26), the second
from (137), and the third from (136).
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