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Abstract—The additive noise channel is studied in the presence
of a helper who observes the noise and can describe it to the
receiver over a rate-limited noise-free bit-pipe. It is shown that
the capacity of this network is typically the sum of the capacity
of the channel in the absence of the helper and the capacity
of the bit-pipe from the helper to the receiver. This holds for
finite-variance stationary and ergodic noises under fairly general
power-like constraints on the transmitted signal. A helper that
is only cognizant of the noise is thus as helpful as an omniscient
helper that is cognizant of both the noise and the transmitted
message. The achievability proof is based on “flash helping” and
requires no binning. Extensions to additive-noise multi-access
channels are also discussed.

I. INTRODUCTION

Consider the additive noise channel with a helper that is
depicted in Figure 1. The noise {Zi} (but not the transmitted
message M ) is observed by a helper who wishes to assist the
decoder in recovering M . To this end, the helper uses a noise-
free bit-pipe of capacity Rh to describe the noise sequence
to the decoder. Our interest is in the capacity C(Rh) of this
network. In the absence of any constraints on the transmitted
power, this capacity is typically infinite even without a helper.
Here we will show that under fairly general cost constraints
and relatively mild assumptions on the noise sequence,

C(Rh) = C(0) +Rh. (1)

That no rate exceeding C(0) + Rh can be achieved, readily
follows from the Cut-Set bound [1, Theorem 15.10.1] by
considering the cut depicted by the dashed line in Figure 1.
In fact, by this argument, no such rate would be achievable
even if the helper were omniscient and cognizant not only
of the noise but also of the transmitted message. Our result
thus shows that on the additive noise channel, a helper that is
only cognizant of the noise is as helpful as one that is also
cognizant of the message.
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Fig. 1. The additive-noise channel with a helper.

This result is fairly general: the only assumption that we
make about the noise is that it is stationary and ergodic of
some finite second moment N . This guarantees an operational
meaning to the mutual information. It also guarantees by the
Pointwise Ergodic Theorem [2, Ch. 2, Sec. 2.2, Thm. 2.3] (and
the fact that almost-sure convergence implies convergence in
probability) that

1

n

n∑
i=1

Z2
i

p→ N. (2)

The constraints on the encoder are also mild. To simplify
notation, we shall not state them in the fullest generality and
consider only “single letter constraints”: We shall assume that
every channel input Xi must be in some Borel measurable
“support set” A ⊆ R, so

xk(m) ∈ A, (3)

where xk(m) ∈ R is the symbol transmitted at Time-k to
convey Message m; and each codeword x(m) must satisfy
the constraints

1

n

n∑
k=1

gα
(
xk(m)

)
≤ Γα, (4)

where {gα} is a finite collection of Borel measurable map-
pings (“cost functions”) from A to R+ (the nonnegative
reals) and {Γα} is a finite collection of nonnegative numbers
(“maximally-allowed average costs”).

An example to keep in mind is when A ⊂ R is some
interval that is symmetric around the origin, and the single
cost function is the quadratic x 7→ x2. This corresponds to
imposing peak-power and average-power constraints. Another
example arises in the study of the Exponential Noise chan-
nel [3], where A is the set of nonnegative reals and the cost
function is the identity function x 7→ x. Yet another example
is the Free Space Optical Intensity channel [4] where A is an
interval of the form [0, A] and the cost function is the identity.

The final assumption we shall make rules out inter alia
situations where A is finite or where the cost constraints are
too restrictive. This assumption is stated formally as follows:

Assumption 1. There exists a probability distribution PX such
that when X ∼ PX

Pr[X ∈ A] = 1; (5)
E
[
gα(X)

]
< Γα (6)
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for each of the cost functions; and the differential entropy
h(X) is defined and not −∞

h(X) > −∞. (7)

Here (5) and (6) guarantee that a codeword drawn at
random from a random codebook whose codewords are drawn
independently according to the n-fold product distribution PnX
will satisfy the constraints with probability tending to one [1,
Sec. 9.1]. Condition (7) guarantees that PX , when used as an
input distribution to an additive noise channel, gives rise to a
mutual information between the channel terminals that tend to
infinity as the differential entropy of the noise tends to −∞.

In the example of peak and average-power constraints this
assumption is satisfied whenever the peak-power and the
maximally-allowed average power are positive: PX can then
be chosen as uniform over a sufficiently small (but of positive
length) symmetric interval around the origin.

We can now state our main result:

Theorem 1. Consider the additive noise channel

Yi = xi + Zi, (8)

where {Zi} is a stationary and ergodic stochastic process of
finite second moment, and where the cost constraints satisfy
Assumption 1. Its capacity C(Rh) with a rate-Rh helper is

C(Rh) = C(0) +Rh. (9)

Our network can be viewed as a special case (albeit with
cost constraints and infinite alphabets) of the problem that
was studied by Ahlswede and Han [5, Sec. V] and for
which they conjectured the capacity. It was solved by Kim
[6] in the special case in which—as in our network—the
states observed by the helper are deterministic functions of
the channel inputs and outputs.1 In fact, if one ignores the
cost constraint and the infiniteness of our input and output
alphabets, then Theorem 1 can be viewed as a special case of
Kim’s result [6]. Nevertheless, our achievability result might
be of interest nonetheless because, unlike Kim’s, it does not
require binning. It is based on “flash helping,” where help is
rare but exceedingly useful.

The more general helper problem was studied by Heegard
and El Gamal [7] and by Steinberg [8]. In its fullest generality
it is still open [9].

Our “flash helping” approach extends to the additive noise
multi-access channel (MAC):

Theorem 2. Consider the additive noise MAC of time-i output

Yi = x1 + x2 + Zi (10)

where {Zi} is a stationary and ergodic stochastic process of
finite second moment, and where the inputs of each of the
users are restricted by a set of constraints analogous to those
in the single user case. Assume that Assumption 1 holds for
both sets of constraints, i.e., that for each ν ∈ {1, 2} there
exists a distribution P

(ν)
X that assigns probability one to the

1The result in [6] is more general in that it pertains to the Relay Channel.

subset A(ν) ⊆ R in which Xν must take value; that satisfies
the average cost constraints on Xν strictly; and that has
differential entropy exceeding −∞.

Let C(Rh) denote the capacity region of the MAC with a
helper that can describe the noise to the receiver using an
ideal bit-pipe of capacity Rh. Then,

C(Rh) = C(0) +
{

(R1, R2) ∈ R+ × R+ : R1 +R2 ≤ Rh
}

(11)

where the symbol “+” denotes here Minkowski addition.

Proof: Omitted.
Extensions to the Broadcast Channel as well as to cases

where the help is provided not to the decoder but to the
encoder are discussed in [10]. For example, it is shown in
[10] that when the help is provided to the encoder and the
noise is Gaussian,

C(Rh) =
1

2
log
(

1 +
P

N

)
+Rh, (12)

where P is the allowed average transmit power, and N is the
variance of the Gaussian noise.

We emphasize that we assume throughout that the helper
is cognizant of the exact noise sequence. Some preliminary
results on the capacity when the helper only observes an
approximate version of the noise can be found in [11]. The
capacity in this setting is still unknown, but its low signal-to-
noise ratio asymptotics are [11, Proposition 2]

II. ON THE MEAN SQUARED-ERROR DISTORTION FOR A
GENERAL SOURCE

To prove our main results, we shall need the following
variation on Sakrison’s classical result [12, Section 6], [13,
Theorem 3] that—among all sources of a given second
moment—the memoryless Gaussian source is the most difficult
to describe in mean squared-error (MSE). Unlike Sakrison, we
do not require the existence of a moment higher than two.
Instead, we require that the empirical average of the squares
of the source symbols converge in probability.

Theorem 3. Let X1, X2, . . . be a sequence of random vari-
ables whose average second moment converges to σ2

lim
n→∞

1

n

n∑
i=1

E
[
X2
i

]
= σ2, (13)

and assume that the empirical average of their squares con-
verges in probability to σ2

1

n

n∑
i=1

X2
i

p→ σ2. (14)

Then, given any rate R and any ε̃ > 0, there exists for all
sufficiently large blocklengths n a rate-R blocklength-n rate-
distortion codebook with normalized average MSE distortion

1

n
E
[
‖X−X∗‖2

]
≤ σ2 2−2R + ε̃, (15)
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where X∗ is the reconstruction of X based on its nR-bit
description.

Proof: We focus on positive rates, because when the
rate is zero the result follows from (13) by considering
the codebook with only one codeword, namely, the all-zero
codeword.

The proof relies heavily on a result of A. D. Wyner [14,
Corollary to Theorem 2] that if θ ∈ (0, π/2) is arbitrary and
ρ > − log sin θ, then, for every sufficiently large n, there exist
2ρn points on the n-dimensional sphere such that the caps of
half-angle θ around these points cover the entire n-dimensional
sphere. With this result, we can proceed as follows. Let θ be
the angle in the interval (0, π/2) for which

R = − log sin θ, (16)

and let

∆ = σ2 2−2R

= σ2 sin2 θ. (17)

Fix some 0 < ε < cos(θ) and let θ′ ∈ (θ, π/2) be such that

cos(θ)− ε < cos(θ′) < cos(θ). (18)

Since cos(θ′) < cos(θ) with θ, θ′ ∈ (0, π/2), (16) implies that

R > − log sin θ′. (19)

By Wyner’s result, there exist, for every n sufficiently large,
2nR points on the radius-r n-dimensional sphere, where

r =
√
n(σ2 −∆), (20)

such that the caps of half-angle θ′ centered around the points
cover the sphere. Our codebook will comprise these point and
the all-zero point 0. Adding the latter point guarantees that,
irrespective of the source sequence x, the closest codeword
x∗ to it must satisfy

‖x− x∗‖ ≤ ‖x‖, x ∈ Rn. (21)

The perfect covering of the sphere guarantees that, if x̃∗ is the
closest nonzero codeword to x, then the inner product between
x and x̃∗ can be bounded as

〈x, x̃∗〉
‖x‖‖x̃∗‖

≥ cos(θ′)

> cos(θ)− ε, (22)

where the second inequality follows from (18). Assuming that
x 6= 0 and with θ̂ denoting the angle between x and x̃∗, the
above inequalities can be written as

cos(θ̂) ≥ cos(θ′)

> cos(θ)− ε. (23)

Consequently, for nonzero x,

n−1‖x− x∗‖2

≤ n−1‖x− x̃∗‖2

= n−1‖x‖2 + n−1‖x̃∗‖2 − 2n−1‖x‖‖x̃∗‖ cos(θ̂)

< n−1‖x‖2 + n−1‖x̃∗‖2 − 2n−1‖x‖‖x̃∗‖
(
cos(θ)− ε

)
= n−1‖x‖2 + n−1r2 − 2n−1‖x‖ r cos(θ) + 2n−1‖x‖ rε.

(24)

As a function of ‖x‖, the RHS is monotonically increasing
when ‖x‖ exceeds r cos(θ).

To analyze ‖x− x∗‖2 we shall use (24) or (21) depending
on whether or not “x is in the δ-shell”, i.e., n−1‖x‖2 is in
the interval (σ2− δ, σ2 + δ). Here δ > 0 is arbitrary but small
enough to guarantee that√

n(σ2 − δ) > r cos(θ). (25)

This latter condition guarantees that the RHS of (24) be
monotonically increasing in ‖x‖ in the δ-shell. (It suffices, of
course, that

√
n(σ2 − δ) exceed r, which, in view of (20), is

equivalent to δ being smaller than ∆.) Using this monotonicity
we obtain that when x is in the δ-shell we can upper-bound
the RHS of (24) by replacing n−1‖x‖2 with σ2 + δ to obtain

n−1‖x− x∗‖2

≤ (σ2 + δ) + n−1r2 − 2n−1
√
n(σ2 + δ) r cos(θ)

+ 2n−1
√
n(σ2 + δ) rε

= (σ2 + δ) + (σ2 −∆)− 2
√
σ2 + δ

√
σ2 −∆ cos(θ)

+ 2
√
σ2 + δ

√
σ2 −∆ ε

= 2σ2 + δ −∆− 2
√
σ2 + δ

1

σ
(σ2 −∆)

+ 2
√
σ2 + δ

√
σ2 −∆ ε, (26)

where in the last equality we have used (17), which implies
that

cos(θ) =
1

σ

√
σ2 −∆. (27)

Expressing the expected unnormalized distortion as

E
[
‖X−X∗‖2

]
=

∫
|n−1‖x‖2−σ2|≤δ

‖x− x∗‖2 dP (x)

+

∫
|n−1‖x‖2−σ2|>δ

‖x− x∗‖2 dP (x), (28)

we can upper-bound the first integral by the product of the
probability of X being in the δ-shell and the RHS of (26). As
n tends to infinity, this approaches the RHS of (26).

lim
n→∞

1

n

∫
|n−1‖x‖2−σ2|≤δ

‖x− x∗‖2 dP (x)

≤ 2σ2 + δ −∆− 2
√
σ2 + δ

1

σ
(σ2 −∆)

+ 2
√
σ2 + δ

√
σ2 −∆ ε. (29)
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To upper-bound the second integral in (28), we upper-bound
the integrand using (21) to obtain∫
|n−1‖x‖2−σ2|>δ

‖x− x∗‖2 dP (x)

≤
∫
|n−1‖x‖2−σ2|>δ

‖x‖2 dP (x)

= E
[
‖X‖2

]
−
∫
|n−1‖x‖2−σ2|≤δ

‖x‖2 dP (x)

≤ E
[
‖X‖2

]
− n

(
σ2 − δ) Pr

[∣∣n−1‖x‖2 − σ2
∣∣ ≤ δ]. (30)

Dividing by n and letting n tend to infinity, we obtain
using (13) and (14) that

lim
n→∞

1

n

∫∣∣n−1‖x‖2−σ2

∣∣>δ‖x− x∗‖2 dP (x) ≤ δ. (31)

Using (28), (29), and (31), we conclude that

lim
n→∞

1

n
E
[
‖X−X∗‖2

]
≤ 2σ2 + 2δ −∆− 2

√
σ2 + δ

1

σ
(σ2 −∆)

+ 2
√
σ2 + δ

√
σ2 −∆ ε. (32)

Since this hold for any δ > 0 for which (25) holds, we can
let δ ↓ 0 to obtain

lim
n→∞

1

n
E
[
‖X−X∗‖2

]
≤ ∆ + 2σ

√
σ2 −∆ ε. (33)

Since this holds for any ε > 0, the theorem must hold.

III. PROOF OF THEOREM 1 VIA FLASH HELPING

Proof: Since the Cut-Set bound provides us with the
converse, we only need to prove achievability. In the following
Zm denotes the m random variables Z1, . . . , Zm, and [1 : m]
denotes the set {1, . . . ,m}.

Before describing our proposed scheme, which is based on
time-sharing, we begin with a calculation. Suppose that the
helper describes the noise sequence Zm using mRh bits, and
the decoder, based on this description, produces the estimate
Ẑm of Zm with corresponding error Z̃m, where

Z̃i = Zi − Ẑi, i ∈ [1 : m]. (34)

It then subtracts this estimate from the received sequence Y m

and obtains the sequence

Ỹi = Xi + Z̃i, i ∈ [1 : m]. (35)

We now study I
(
Xm; Ỹ m

)
when X1, . . . , Xm are IID ac-

cording to the distribution PX whose existence is guaranteed
by Assumption 1. Since the noise Zm and its description are
independent of Xm,

I
(
Xm; Ỹ m

)
= h

(
Ỹ m
)
− h
(
Z̃m
)

≥ h
(
Xm

)
− h
(
Z̃m
)

= mh(PX)− h
(
Z̃m
)
, (36)

where h(PX) is the differential entropy of a random variable
that is distributed according to PX

To further lower-bound I
(
Xm; Ỹ m

)
, we shall upper-bound

h
(
Z̃m
)

in terms of the estimation error. Of all multivariate
distributions of a given second moment matrix, the cen-
tered multivariate Gaussian maximizes differential entropy [1,
Thm. 8.6.5]. And under a constraint on the trace of the sec-
ond moment matrix, the IID Gaussian distribution maximizes
differential entropy. Thus, with Z̃ denoting Z̃m ,

h
(
Z̃
)
≤ m

2
log

2πe
tr
(

E[Z̃Z̃T]
)

m


=
m

2
log

(
2πe

1

m
E
[
‖Z̃‖2

])
. (37)

From (37) and (36) we obtain upon dividing by m,

1

m
I
(
Xm; Ỹ m

)
≥ h(PX)− 1

2
log(2πe)− 1

2
log

(
1

m
E
[
‖Z̃‖2

])
. (38)

Theorem 3 guarantees that, given any δ̃ > 0, we can find
some sufficiently large m for which there exists a rate-Rh
blocklength-m rate-distortion codebook that allows the helper
to describe the noise sequence with average distortion that is
bounded by

1

m
E
[
‖Z̃‖2

]
≤ N 2−2Rh(1 + δ̃). (39)

For such m, it follows from (39) and (38) that

1

m
I
(
Xm; Ỹ m

)
≥ h(PX)− 1

2
log
(
2πeN(1 + δ̃)

)
+Rh. (40)

Having completed our calculation, we now consider time
sharing, with the channel being used without help in (1− α)
of the time, and with rate-(Rh/α) help in α of the time. In the
absence of help we can approach C(0)−ε′ for any positive ε′.
The overall achievable rate is thus lower-bounded by

(1− α)
(
C(0)− ε′

)
+ α

(
h(PX)− 1

2
log
(
2πeN(1 + δ̃)

)
+
Rh

α

)
. (41)

This rate is achievable because the ergodicity of the noise
process guarantees the operational meaning of the mutual
information.

By considering the limit of the RHS as α ↓ 0 and then
letting ε′ ↓ 0 we obtain the achievability of

C(0) +Rh (42)

and hence conclude the proof. Since the helper is used only
α of the time, and since α approaches zero, we refer to this
form of help as “flash helping.”

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
drawing their attention to [5] and [6].

2019 IEEE Information Theory Workshop (ITW)



REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York: J. Wiley & Sons, 2006.

[2] K. Petersen, Ergodic Theory. Cambridge University Press, 1983.
[3] S. Verdú, “The exponential distribution in information theory,” Probl.

Peredachi Inf., vol. 32, no. 1, pp. 100–111, 1996.
[4] A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of

free-space optical intensity channels,” IEEE Transactions on Information
Theory, vol. 55, no. 10, pp. 4449–4461, Oct 2009.

[5] R. Ahlswede and T. Han, “On source coding with side information via a
multiple-access channel and related problems in multi-user information
theory,” IEEE Transactions on Information Theory, vol. 29, no. 3, pp.
396–412, May 1983.

[6] Y.-H. Kim, “Capacity of a class of deterministic relay channels,” IEEE
Trans. Inf. Theor., vol. 54, no. 3, pp. 1328–1329, Mar. 2008. [Online].
Available: https://doi.org/10.1109/TIT.2007.915921

[7] C. Heegard and A. E. Gamal, “On the capacity of computer memory
with defects,” IEEE Trans. on Inform. Theory, vol. 29, no. 5, pp. 731–
739, Sept. 1983.

[8] Y. Steinberg, “Coding for channels with rate-limited side information at
the decoder, with applications,” IEEE Trans. on Inform. Theory, vol. 54,
no. 9, pp. 4283–4295, Sep. 2008.

[9] G. Keshet, Y. Steinberg, and N. Merhav, “Channel coding in the presence
of side information,” Foundations and Trends R© in Communications and
Information Theory, vol. 4, no. 6, pp. 445–586, 2008.

[10] G. Marti, “Channels with a helper,” Master’s thesis, ETH Zurich, 2019.
[11] S. I. Bross and A. Lapidoth, “The Gaussian state-dependent channel

with rate-limited decoder state-information,” in 2016 IEEE International
Conference on the Science of Electrical Engineering (ICSEE), Nov 2016,
pp. 1–5.

[12] D. J. Sakrison, “The rate distortion function for a class of sources,”
Information and Control, vol. 15, pp. 165–195, 1969.

[13] A. Lapidoth, “On the role of mismatch in rate distortion theory,” IEEE
Transactions on Information Theory, vol. 43, no. 1, pp. 38–47, Jan 1997.

[14] A. Wyner, “Random packings and coverings of the unit n-sphere,” The
Bell System Technical Journal, vol. 46, no. 9, pp. 2111–2118, 1967.

2019 IEEE Information Theory Workshop (ITW)


