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Abstract—We consider a variation on the Wyner-Ziv source
coding problem with side-information at the decoder where
the encoder is required to be able to compute the decoder’s
reconstruction sequence with some fidelity. This requirement
limits the extent to which the reconstruction sequence can depend
on the side-information, which is not available to the encoder.

For finite-alphabet memoryless sources and single-letter dis-
tortion measures we compute the minimal description rate as
a function of the joint law of the source and side-information
and of the allowed distortions at the encoder and decoder. We
also treat memoryless Gaussian sources with mean squared-error
distortion measures.

I. PROBLEM STATEMENT

Inspired by Steinberg [1], we study a variation on the

Wyner-Ziv source coding problem [2]. What makes our prob-

lem different from the Wyner-Ziv problem is that we impose

the additional requirement that the encoder reproduce the

decoder’s reconstruction with some prespecified precision.

This additional requirement limits the extent to which the

decoder’s reconstruction can depend on the side-information,

which is not available to the encoder.

Our setting is specified by a tuple

(

X ,Y, X̂ , PXY , dd, de, Dd, De

)

,

which we explain next. The set X is the source alphabet, the

set Y is the side-information alphabet, and the set X̂ is the

reconstruction alphabet. All are assumed to be finite except

in our treatment of Gaussian sources where they are all equal

to the set of real numbers R. The source and side-information

sequence {(Xi, Yi)}
n
i=1 is assumed to be drawn IID according

to the joint law PXY on X ×Y . The source sequence Xn =
(X1, . . . , Xn) is observed only at the encoder, and the side-

information Y n = (Y1, . . . , Yn) only at the decoder. We also

specify two single-letter distortion functions dd : X × X̂ →
R

+ and de : X̂ × X̂ → R
+. The former is used to measure

the fidelity of the reconstruction at the decoder, and the latter

to measure the fidelity with which the encoder estimates the

decoder’s reconstruction sequence. The allowed distortions are

Dd ≥ 0 and De ≥ 0.

To describe the source sequence Xn, the encoder produces

the index

M = f (n)(Xn) (1)

where f (n) : Xn → M is the encoding function and M ,

{1, . . . ,M}. The index M is conveyed to the decoder who

uses it and the side-information Y n to form the decoder’s

reconstruction sequence

X̂n
d = φ(n)(M,Y n) (2)

where φ(n) : M ×Yn → X̂n is the decoder’s reconstruction

function. The encoder’s estimate of the decoder’s reconstruc-

tion sequence is

X̂n
e = ψ(n)(Xn) (3)

for some ψ(n) : Xn → X̂n.

We call a triple of functions (f (n), φ(n), ψ(n)) as above an

(n,R,Dd, De)-code if M ≤ 2nR and the produced sequences

X̂n
d = (X̂d,1, . . . , X̂d,n) and X̂n

e = (X̂e,1, . . . , X̂e,n) satisfy:

1

n

n
∑

i=1

E
[

dd(Xi, X̂d,i)
]

≤ Dd (4)

1

n

n
∑

i=1

E
[

de(X̂d,i, X̂e,i)
]

≤ De. (5)

The nonnegative triple (R,Dd, De) is achievable if for every

ǫ > 0 and sufficiently large n there exists an (n,R+ ǫ,Dd +
ǫ,De + ǫ)-code. The set of achievable (R,Dd, De) triples is

denoted by R, and the rate-distortions function by

R(Dd, De) , min
(R,Dd,De)∈R

R. (6)

The region R ⊆ R
3 is closed, and thus the indicated minimum

exists. Fig. 1 shows a model of our problem.
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Fig. 1. Constrained Wyner-Ziv coding.

Remark 1: Our setup differs from the Wyner-Ziv setup [2]

only in the additional constraint (5). When de is the Hamming

distance and De = 0 our setup is nearly identical to that of

Steinberg’s [1].
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II. RESULTS

In our first result the sets X ,Y, X̂ are assumed to be finite.

Theorem 1: For finite sets X ,Y, X̂ :

R(Dd, De) = min
Z,φ,ψ

(

I(X ;Z)− I(Y ;Z)
)

(7)

where (X,Y ) ∼ PXY , and where the minimization is over

a discrete random variable Z taking value in an auxiliary

alphabet Z of size at most |X | + 3 and forming the Markov

chain

Z⊸−−X⊸−−Y (8)

and over the functions φ : Y × Z → X̂ and ψ : X × Z → X̂
satisfying

E
[

dd(X,φ(Y, Z))
]

≤ Dd (9)

E
[

de(φ(Y, Z), ψ(X,Z))
]

≤ De. (10)

Proof: See Section III.

Remark 2: If de(·, ·) is the Hamming distance, then for

all Dd ≥ 0, R(Dd, 0) coincides with Steinberg’s common-

reconstruction rate-distortion function Rcr(Dd) [1].

Proof: Omitted.

In our second result we consider the Gaussian case with

quadratic distortion measures. We assume that X ,Y, X̂ are

the reals; dd and de are quadratic distortions

dd(x, x̂d) = (x− x̂d)
2, (11)

de(x̂d, x̂e) = (x̂d − x̂e)
2; (12)

and PXY is the law of a centered bivariate Gaussian (X,Y ),
where X is of variance σ2

X and Y = X+U for U independent

of X and of variance σ2
U .

Theorem 2: For the Gaussian setup with quadratic distor-

tion measures:

• If
√

Deσ
2
U ≥ min

{

Dd,
σ2

X
σ2

U

σ2

X
+σ2

U

}

, then

R(Dd, De) = max

{

0,
1

2
log

(

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd

)}

.

• If
√

Deσ
2
U < min

{

Dd,
σ2

X
σ2

U

σ2

X
+σ2

U

}

, then

R(Dd, De)

= max

{

0,
1

2
log

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)}

.

Proof: See Section IV.

Remark 3: If
√

Deσ
2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(13)

or
(

1−

√

De

σ2
U

)2

σ2
X ≤ Dd −De (14)

then our result coincides with Wyner and Ziv’s [2]: in this case

removing Constraint (5) or revealing the side-information also

to the encoder do not decrease the rate-distortion function.

Our results can be extended to a scenario where the encoder

observes not only the source sequence {Xi} but also some

sequence {Wi} which is correlated with the decoder’s side-

information sequence {Yi}. This additional sequence {Wi}
makes it easier for the encoder to estimate the decoder’s

reconstruction sequence and thus allows the decoder to rely

more heavily on its side information {Yi}. To see how this

seemingly more general scenario reduces to our scenario

assume that {(Xi,Wi, Yi)}
n
i=1 are IID random triples of law

PXWY and that Wi takes value in the finite set W . Consider

now a new IID source {X̃i} taking value in the set X̃ = X×W
according to the law PXW with X̃i = (Xi,Wi). The encoder

now observes the source sequence {X̃i} only and no additional

sequences. The decoder side information is still {Yi}, and the

joint law of X̃i, Yi is PXWY . Finally define the new decoder

distortion function d̃d : X̃ × X̂ → R
+ as

d̃d

(

(Xi,Wi), X̂i

)

= dd(Xi, X̂i).

Solving the original scenario for this new source and new de-

coder distortion function is equivalent to solving the seemingly

more general problem we described.

III. PROOF OF THEOREM 1

The proof of the achievability part of Theorem 1 is based

on random coding and binning [3], [4, Chapter 12.3] and is

omitted.

We next sketch the converse. To this end, we define the

information rate-distortions function R∗(Dd, De) as the right-

hand side of (7). It satisfies the following lemma.

Lemma 1 (Monotonicity and Convexity of R∗(Dd, De)):
The function R∗(Dd, De) is nondecreasing in both distortions,

i.e.,

R∗(D′
d, D

′
e) ≤ R∗(Dd, De),

(

D′
d ≥ Dd ≥ 0, D′

e ≥ De ≥ 0
)

. (15)

It is also convex, i.e., for nonnegative distortion pairs
(

D
(1)
d , D

(1)
e

)

and
(

D
(2)
d , D

(2)
e

)

and any λ ∈ [0, 1]

R∗
(

λD
(1)
d + (1− λ)D

(2)
d , λD(1)

e + (1− λ)D(2)
e

)

≤ λR∗
(

D
(1)
d , D(1)

e

)

+ (1− λ)R∗
(

D
(2)
d , D(2)

e

)

. (16)

Proof: Omitted.

To prove the converse, it suffices that we show that if a

triple (R,Dd, De) is achievable, then for every ǫ > 0

R + ǫ ≥ R∗(Dd + ǫ,De + ǫ). (17)

Indeed, by letting ǫ tend to zero and using the continuity

of R∗(Dd, De), this implies that R ≥ R∗(Dd, De) whenever

(R,Dd, De) is achievable, and consequently that R(Dd, De) ≥
R∗(Dd, De).

The first part of our proof follows the steps in [4]. For a
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given (n,R+ ǫ,Dd + ǫ,De + ǫ)-code, we have

n(R+ ǫ)
(a)

≥ H(M) (18)

(b)

≥ I(Xn;M |Y n) (19)

(c)
=

n
∑

i=1

I(Xi;M |Y n, X i−1) (20)

=
n
∑

i=1

H(Xi|Y
n, X i−1)−H(Xi|M,Y n, X i−1) (21)

(d)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n, X i−1) (22)

(e)

≥

n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n) (23)

(f)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Zi, Yi) (24)

=

n
∑

i=1

I(Xi;Zi|Yi) (25)

(g)
=

n
∑

i=1

H(Zi|Yi)−H(Zi|Xi) (26)

=

n
∑

i=1

I(Xi;Zi)− I(Yi;Zi), (27)

where (a) follows because M ≤ 2n(R+ǫ); (b) follows

because conditioning cannot increase entropy and because

H(M |Y n, Xn) ≥ 0; (c) follows from the chain rule for mutual

information; (d) follows because Xi is independent of the past

and future Y ’s and X’s given Yi; (e) follows from the fact that

conditioning cannot increase entropy; (f) follows by defining

Zi , (M,Y i−1, Y ni+1); (28)

and (g) follows because

Zi⊸−−Xi⊸−−Yi (29)

forms a Markov chain.

We define φ
(n)
i to be the function that maps (M,Y n) to the

i-th symbol of φ(n)(M,Y n) and ψ
(n)
i to be the function that

maps Xn to the i-th symbol of ψ(n)(Xn). We then notice that

by the definition of Zi:

φi(Yi, Zi) , φ
(n)
i (M,Y n), (30)

for some function φi with arguments in the respective domains.

We now define

Dd,i , E[dd(Xi, φ
(n)
i (M,Y n))], (31)

where E[·] is with respect to PXn,Y n . By definitions (30) and

(31), we have

E[dd(Xi, φi(Yi, Zi))] = Dd,i, (32)

where E[·] is with respect to PXi,Yi
PZi|Xi

.

For the encoder-side distortion, we next argue that there

exists a deterministic function ψi : X ×Z → X̂ that achieves

a distortion no larger than ψ
(n)
i (Xn). To this end we define

De,i , E[de(φ
(n)
i (M,Y n), ψ

(n)
i (Xn))], (33)

where the expectation is with respect to PXn,Y n . We then

express De,i as

De,i

= EXn,Yi,Zi
[de(φi(Yi, Zi), ψ

(n)
i (Xn))] (34)

= EXn,Zi
EYi|Xn,Zi

[de(φi(Yi, Zi), ψ
(n)
i (Xn))] (35)

= EXn,Zi
EYi|Xi,X\i,Zi

[de(φi(Yi, Zi), ψ
(n)
i (Xi, X\i))], (36)

where X\i , (X i−1, Xn
i+1). For every (xi, zi) ∈ X × Z , we

define x∗\i(xi, zi) (or for short x∗\i) as:1

x∗\i(xi, zi) , argmin
x\i∈Xn−1

EYi|Xi=xi,X\i=x\i,Zi=zi [de(φi(Yi, zi), ψ
(n)
i (xi, x\i))] (37)

or in any other way that guarantees

EX\i|Xi=xi,Zi=ziEYi|Xi=xi,X\i,Zi=zi

[de(φi(Yi, zi), ψ
(n)
i (xi, X\i))]

≥ EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi [de(φi(Yi, zi), ψ

(n)
i (xi, x

∗
\i))] (38)

We can now define the function ψi as

ψi : X × Z → X̂ (39a)

(xi, zi) 7→ ψ
(n)
i (xi, x

∗
\i(xi, zi)). (39b)

For every (xi, x\i, zi) ∈ Xn ×Z , we have

EYi|Xi=xi,X\i=x\i,Zi=zi [de(φi(Yi, zi), ψ
(n)
i (xi, x\i))]

(a)

≥ EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi [de(φi(Yi, zi), ψ

(n)
i (xi, x

∗
\i))] (40)

(b)
= EYi|Xi=xi,Zi=zi [de(φi(Yi, zi), ψ

(n)
i (xi, x

∗
\i))] (41)

(c)
= EYi|Xi=xi,Zi=zi [de(φi(Yi, zi), ψi(xi, zi))], (42)

where: (a) follows from the definition of x∗\i; (b) follows from

the fact that

X\i⊸−−(Xi, Zi)⊸−−Yi (43)

forms a Markov chain; and (c) follows from the definition

of ψi.

It now follows from (36) and (42) that

EXi,Yi,Zi
[de(φi(Yi, Zi), ψi(Xi, Zi))] ≤ De,i. (44)

1If argmin is not unique, x\i(xi, zi) is defined as the first in lexicological
order.
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We can now continue from (27):

n
∑

i=1

I(Xi;Zi)− I(Yi;Zi)

(a)

≥

n
∑

i=1

R∗(Dd,i, De,i) (45)

(b)
= n

1

n

n
∑

i=1

R∗(Dd,i, De,i) (46)

(c)

≥ nR∗

(

1

n

n
∑

i=1

Dd,i ,
1

n

n
∑

i=1

De,i

)

(47)

(d)

≥ nR∗(Dd + ǫ,De + ǫ) (48)

where: (a) follows from the definition of R∗(Dd, De) and

from (29), (32), and (44); (b) follows by multiplying by 1; (c)

follows from Lemma 1 and Jensen’s inequality; and (d) follows

from the monotonicity of R∗(Dd, De) (Lemma 1) and the fact

that for a (n,R+ǫ,Dd+ǫ,De+ǫ)-code Dd+ǫ ≥
1
n

∑n

i=1Dd,i

and De+ǫ ≥
1
n

∑n

i=1De,i. Inequality (48) combines with (27)

to establish (17).

The proof of the cardinality bound for the auxiliary alpha-

bet and the justification of the minimum (as opposed to an

infimum) are omitted. They are similar to the proofs in [2].

IV. PROOF OF THEOREM 2

Recall that in this section we assume that dd and de are the

quadratic distortion measures (11) and (12), and we assume

that Y = X +U , where X and U are independent zero-mean

Gaussians of variances σ2
X and σ2

U .

The achievability part of Theorem 2 can be proved using

geometric arguments related to random coding over n-spheres.

The details are omitted.

We focus on the converse. For
√

Deσ
2
U ≥

min
{

Dd,
σ2

X
σ2

U

σ2

X
+σ2

U

}

, the converse follows directly from

Remark 1 and the Wyner-Ziv result [2], because adding

Constraint (5) cannot decrease the rate-distortion function.

We also note that by definition R(Dd, De) is nonnegative

for all Dd, De ≥ 0. Thus, to establish the converse for the case

√

Deσ
2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(49)

it suffices to prove that in this case

R(Dd, De) ≥
1

2
log

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(50)

To this end, we define the continuous information rate-

distortions functionR∗
cnt(Dd, De) like R∗(Dd, De), except that

the minimum is replaced by an infimum and the size of the

auxiliary alphabet Z can be unbounded. Thus, if we introduce

X̂d , φ(Y, Z) and X̂e , ψ(X,Z), then

R∗
cnt(Dd, De) , inf

Z,X̂d,X̂e

I(X ;Z|Y ) (51)

where the infimum is over all choices of the random variables

Z, X̂d, X̂e satisfying

E[(X − X̂d)
2] ≤ Dd, (52a)

E[(X̂d − X̂e)
2] ≤ De, (52b)

Z⊸−−X ⊸−−Y, (52c)

X̂d = φ(Y, Z), (52d)

X̂e = ψ(X,Z). (52e)

Following the proof of the converse in Theorem 1, it is not

difficult to show that no rate below R∗
cnt(Dd, De) is achievable.

This is the content of the following lemma whose proof is

omitted

Lemma 2: For every Dd, De ≥ 0

R(Dd, De) ≥ R∗
cnt(Dd, De). (53)

It remains to show that if (49) holds then R∗
cnt(Dd, De) cannot

be smaller than the right hand side of (50). This is the content

of the following lemma.

Lemma 3: For all Dd, De ≥ 0 satisfying (49)

R∗
cnt(Dd, De) ≥

1

2
log

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(54)

Proof: We first notice that

I(X ;Z|Y ) = h(X |Y )− h(X |Y, Z)

=
1

2
log

(

2πe
σ2
Xσ

2
U

σ2
X + σ2

U

)

− h(X |Y, Z). (55)

Showing (54) is thus equivalent to showing

Ω ≤
1

2
log

(

2πeσ2
U

Dd −De

σ2
U +Dd − 2

√

σ2
UDe

)

, (56)

where

Ω , sup
Z,X̂d,X̂e

h(X |Y, Z) (57)

and where the supremum is over all choices of Z, X̂d, X̂e

satisfying (52).

Define a second optimization problem:

Γ , suph(X − X̂d|X − X̂d + U) (58)

where the supremum is over all choices of X̂d satisfying

Var(X − X̂d) ≤ Dd, (59a)
(

Cov(X − X̂d, U)
)2

≤ De σ
2
U . (59b)

In the following we will show that

Ω ≤ Γ (60)

and that for all Dd, De ≥ 0 satisfying (49)

Γ =
1

2
log

(

2πeσ2
U

Dd −De

σ2
U +Dd − 2

√

σ2
UDe

)

. (61)

This will establish (56) and conclude the proof of the lemma.
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Inequality (60) is established by showing that for every

choice of Z, X̂d, X̂e satisfying (52) the following two state-

ments hold.

1) the objective function of the optimization problem in

(57) defining Ω is upper bounded by the objective

function of the optimization problem in (61) defining Γ:

h(X |Y, Z) ≤ h(X − X̂d|X − X̂d + U). (62)

2) Constraints (52) imply Constraints (59).

To prove the first statement we note that for all Z, X̂d, X̂e

satisfying (52c)–(52e), Inequality (62) holds because:

h(X |Y, Z) = h(X − X̂d|Y, Z) (63)

= h(X − X̂d|Y, Z, X̂d) (64)

= h(X − X̂d|X + U,Z, X̂d) (65)

= h(X − X̂d|X − X̂d + U,Z, X̂d) (66)

≤ h(X − X̂d|X − X̂d + U). (67)

We next prove the second statement. Constraint (59a) follows

from (52a), and Constraint (59b) is proved as follows. We

notice that by the Markov chain (52c), by the fact that Y =
X+U , and by the fact that U is independent of X , it follows

that the pair (X,Z) is independent of U . By (52e), this implies

that also X̂e is independent of U and therefore

Cov(X̂d − X̂e, U) = −Cov(X − X̂d, U). (68)

Since the magnitude of the correlation coefficient cannot

exceed 1, it follows from (52b) that

|Cov(X̂d − X̂e, U)|2 ≤ De σ
2
U , (69)

which combined with (68) implies the desired constraint (59b).

Having established the two statements and hence (60), we

next prove prove (61) under the assumption that Dd, De ≥ 0
satisfy (49). Notice that (49) implies:

De < min{σ2
U , Dd}. (70)

From the conditional max-entropy theorem [5] it follows

that when solving the optimization problem in (58) we can

restrict attention to X − X̂d jointly Gaussian with U . To

simplify notation we introduce A , X − X̂d, and we denote

its variance by σ2
A , Var(A) and its covariance with U by

κAU , Cov(A,U). We notice that A = −U is not a valid

choice in our optimization problem, because this choice would

imply |κAU |
2 = σ4

U , which, by (70), violates (59b). For all

other choices of A (jointly Gaussian with U ), the conditional

differential entropy h(A|A+ U) can be written as

h(A|A+ U)

=
1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(71)

=
1

2
log

(

2πe

(

σ2
U −

(σ2
U + κAU )

2

σ2
A + σ2

U + 2κAU

))

(72)

=
1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

. (73)

Therefore, we can rewrite the optimization problem in (58) as

Γ = sup
κAU ,σ

2

A

1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(74)

subject to

0 ≤ σ2
A ≤ Dd, (75)

0 ≤ |κAU |
2 ≤ De σ

2
U (76)

0 ≤ |κAU |
2 ≤ σ2

Aσ
2
U . (77)

(We have to add the last constraint because a correlation

coefficient has absolute value not exceeding 1.) For fixed

κAU , the objective function in (74) is increasing in σ2
A (see

Equality (72)), and so is the right-hand side of Constraint (77).

Therefore, without loss in optimality we can choose

σ2
A = Dd. (78)

We substitute (78) into (74) and (77), and obtain:

Γ = sup
κAU

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

)

(79)

subject to (76) and

0 ≤ |κAU |
2 ≤ Dd σ

2
U . (80)

In view of (70) and (76), Constraint (80) is redundant, and

hence ignored in the following.

We compute the derivative of the objective function in (79)

with respect to κAU :

d

dκAU

(

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

))

=
−(Dd + κAU )(σ

2
U + κAU )

(Dd + σ2
U + 2κAU )(Ddσ

2
U − κ2AU )

. (81)

Inequalities (70) and (76) imply that |κAU | < min{Dd, σ
2
U},

and therefore, when (70) holds, the derivative in (81) is finite

and negative for all κAU satisfying (76). Hence, the objective

function in (79) is decreasing on the interval of interest, and in

the optimization problem in (79) subject to (76) it is optimal

to choose

κAU = −
√

Deσ
2
U . (82)

Plugging (82) into the objective function in (79) results in the

right-hand side of (61), which concludes the proof of (61) and

of the lemma.
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