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Abstract—A source generates a “point pattern” consisting of
a finite number of points in an interval. Based on a binary
description of the point pattern, a reconstructor must produce
a “covering set” that is guaranteed to contain the pattern. We
study the optimal trade-off (as the length of the interval tends
to infinity) between the description length and the least average
Lebesgue measure of the covering set. The trade-off is established
for point patterns that are generated by a Poisson process. Such
point patterns are shown to be the most difficult to describe. We
also study a Wyner-Ziv version of this problem, where some of
the points in the pattern are known to the reconstructor but not
to the encoder. We show that this scenario is as good as when
they are known to both encoder and reconstructor.

I. INTRODUCTION

Imagine a controller that receives a request that a computer
be on at certain epochs. If the controller could describe
these epochs to the computer with infinite precision, then the
computer would turn itself on only at these epochs and be in
sleep mode at all other times. If the controller cannot describe
the epochs at all, then the computer must be on all the time.
In this paper we study the trade-off between the bit rate with
which the epochs can be described and the percentage of time
the computer must be on.
More specifically, we consider a source that generates a

“point pattern” consisting of a finite number of points in the
interval [0, T ]. Based on a binary description of the pattern,
a reconstructor must produce a “covering-set”—a subset of
[0, T ] containing all the points. There is a trade-off between
the description length and the minimal Lebesgue measure of
the covering-set. This trade-off is formulated as a continuous-
time rate-distortion problem in Section III. In this paper we
investigate this trade-off in the limit where T tends to infinity.
For point patterns that are generated by a Poisson process

of intensity λ, we show that, for the reconstructor to produce
covering-sets of average measure not exceeding DT , the
required description rate in bits per second is −λ log D. This
result is closely related to results on the capacity of the
ideal peak-limited Poisson channel [1]–[4]. In fact, the two
problems can be considered dual in the sense of [5].1
Rate-distortion problems for Poisson processes under dif-

ferent distortion measures were studied in [6]–[10]. It is
interesting that our rate-distortion function, −λ log D, is equal
to the ones in [8] and in [10], where a queueing distortion

1The results of [5] are not directly applicable here because our problem is
of a continuous-time nature.

measure was considered. This is no coincidence, because the
Poisson channel is closely related to the queueing channel
introduced in [11].
We also show that the Poisson process is the most difficult

to cover, in the sense that any point process that, with high
probability, has no more than λT points in [0, T ] can be
described with −λ log D bits per second. This is true even if an
adversary selects the point pattern, provided that the encoder
and the reconstructor are allowed to use random codes.
Finally, we consider a Wyner-Ziv setting [12] of the prob-

lem, where some points in the pattern are known to the
reconstructor but the encoder does not know which ones. This
can be viewed as a dual problem to the Poisson channel
with noncausal side-information [13]. We show that in this
setting one can achieve the same minimum rate as when the
transmitter does know the reconstructor’s side-information.
The rest of this paper is arranged as follows: in Section II we

introduce some notation; in Section III we present the result
for Poisson processes; in Section IV we present the results
for general point processes and arbitrary point patterns; and
in Section V we present the results for the Wyner-Ziv setting.

II. NOTATION
We use lower-case letters like x to denote numbers, and

upper-case letters like X to denote random variables. We use
boldface lower-case letters like x to denote vectors, functions
from the reals, or point patterns, depending on the context. If
x is a vector, xi denotes its ith element. If x is a function,
x(t) denotes its value at t ∈ R. If x is a point pattern, nx(·)
denotes its counting function, so nx(t2)−nx(t1) is the number
of points in x that fall in the interval (t1, t2]. We use bold-face
upper-case letters like X to denote random vectors, random
functions, or random point processes. The random counting
function corresponding to a point processX is denotedNX(·).
We denote by Ber(p) the Bernoulli distribution of param-

eter p, which assigns probability p to the outcome 1 and
probability (1 − p) to the outcome 0.

III. COVERING A POISSON PROCESS
Consider a Poisson process X of intensity λ on the interval

[0, T ]. Its counting function NX(·) satisfies

Pr [NX(t + τ) − NX(t) = k] =
e−λτ (λτ)k

k!

for all τ ∈ [0, T ], t ∈ [0, T − τ ] and k ∈ {0, 1, . . .}.
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The encoder maps the realization of the Poisson process to
a message in {1, . . . , 2TR}, where R is the description rate in
bits per second. The reconstructor then maps this message to
a {0, 1}-valued, Lebesgue-measurable, signal x̂(t), t ∈ [0, T ].
We wish to minimize the length of the region where x̂(t) =
1 while guaranteeing that all points in the original Poisson
process lie in this region. See Figure 1 for an illustration.

x

!
t

!
t

x̂
missed!

""#

Fig. 1. Illustration of the problem.

More formally, we formulate this problem as a continuous-
time rate-distortion problem, where the distortion between the
point pattern x and the reproduction signal x̂ is

d(x, x̂) !

{

µ(x̂−1(1))
T , if all points in x are in x̂−1(1)

∞, otherwise.
(1)

Here µ(·) denotes the Lebesgue measure.
We say that (R, D) is an achievable rate-distortion pair for

X if, for every ε > 0, there exists some T0 > 0 such that, for
every T > T0, there exist an encoder fT (·) and a reconstructor
φT (·) of rate R + ε bits per second that, when applied to X

on [0, T ], result in

E
[

d
(

X,φT (fT (X))
)]

≤ D + ε.

Denote by R(D,λ) the minimal rate R such that (R, D) is
achievable for the Poisson process of intensity λ. Define

RPois(D,λ) !

{

−λ log D bits per second, D ∈ (0, 1)

0, D ≥ 1.
(2)

Theorem 1: For all D,λ > 0,

R(D,λ) = RPois(D,λ). (3)

To prove Theorem 1, we propose a scheme to reduce the
original problem to one for a discrete memoryless source.
This is reminiscent of Wyner’s scheme for reducing the peak-
limited Poisson channel to a discrete memoryless channel [3].
We shall show the optimality of this scheme in Lemma 1, and
we shall then prove Theorem 1 by computing the best rate
that is achievable using this scheme.
Scheme 1: We divide the time interval [0, T ] into T/∆

slots2 of duration ∆. The encoder first maps the original point
pattern x to a {0, 1}-valued vector x∆ of T

∆ components in
the following way: if x has at least one point in the slot

2If T is not divisible by ∆, we replace it with T ′ = ! T

∆
"∆. When ∆ tends

to zero, the difference between RT and RT ′ tends to zero. Consequently, we
shall ignore this edge effect and assume that T is divisible by ∆.

((i − 1)∆, i∆], then we set the ith component of x∆ to 1.
Otherwise, we set it to zero. The encoder then maps x∆ to a
message in {1, . . . , 2TR}.
Based on the encoder’s message, the reconstructor produces

a {0, 1}-valued length- T
∆ vector x̂∆ that meets the distortion

criterion
E

[

d∆(X∆, X̂∆)
]

≤ D + ε,

where the distortion measure d∆(·, ·) between vectors is de-
fined in terms of the single-letter distortion function

d∆(0, 0) = 0

d∆(0, 1) = d∆(1, 1) = 1

d∆(1, 0) = ∞.

It then maps x̂∆ to the piecewise-constant continuous-time
signal x̂

x̂(t) = x̂∆
" t

∆
#, t ∈ [0, T ].

Scheme 1 reduces the task of designing a code forX subject
to the distortion d(·, ·) to the task of designing a code for the
vector X∆ subject to the distortion d∆(·, ·) because

d(x, x̂) = d∆(x∆, x̂∆). (4)

When X is a Poisson process of intensity λ, the components
of X∆ are independent and identically distributed (IID), and
each is Ber(1−e−λ∆). Let R∆(D,λ) denote the rate-distortion
function for X∆ and d∆(·, ·). If we combine Scheme 1 with
an optimal code forX∆ subject to E

[

d∆(X∆, X̂∆)
]

≤ D+ε,
we can achieve any rate that is larger than

R∆(D,λ) bits
∆ seconds

.

The next lemma, which is reminiscent of [4, Theorem 2.1],
shows that when we let ∆ tend to zero, there is no loss in
optimality in using Scheme 1.
Lemma 1: For all D,λ > 0,

R(D,λ) = lim
∆↓0

R∆(D,λ)

∆
. (5)

Proof: See Appendix.
Proof of Theorem 1: We derive R(D,λ) by computing

the right-hand side (RHS) of (5). To compute R∆(D,λ) we
apply Shannon’s formula [14]3 for the rate-distortion function
of a discrete memoryless source

R∆(D,λ) = min
PẐ|Z :E[d∆(Z,Ẑ])≤D

I(Z; Ẑ). (6)

When D ∈ (0, 1), the conditional distribution PẐ|Z that
achieves the minimum on the RHS of (6) is

P ∗
Ẑ|Z

(1|0) = Deλ∆ − eλ∆ + 1,

P ∗
Ẑ|Z

(1|1) = 1.

3Although our distortion function is unbounded, the all-one reconstruction
sequence yields a bounded distortion, so Shannon’s formula applies.
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Computing the mutual information I(Z; Ẑ) corresponding to
this conditional law yields that for all λ > 0 and D ∈ (0, 1),

R∆(D,λ) = Hb(D) − e−λ∆Hb(Deλ∆ − eλ∆ + 1), (7)

where Hb(·) denotes the binary entropy function.
When D ≥ 1, it is optimal to choose Ẑ = 1 (deterministi-

cally), yielding

R∆(D,λ) = 0, D ≥ 1. (8)

Combining (5), (7), and (8) and computing the limit as ∆
tends to zero yields (3).

IV. COVERING GENERAL POINT PROCESSES AND
ARBITRARY POINT PATTERNS

We next consider a general point process Y. We assume
that there exists some λ such that

lim
t→∞

Pr

[

NY(t)

t
> λ + δ

]

= 0 for all δ > 0. (9)

For example, Y could be an ergodic process whose expected
number of points per second is less than or equal to λ.
Since the Poisson process is memoryless, one naturally

expects it to be the most difficult to describe. This is indeed
the case, as the next theorem shows.
Theorem 2: The pair (RPois(D,λ), D) is achievable on any

point process satisfying (9).
Before proving Theorem 2, we state a stronger result.

Suppose that a point pattern z is generated by an adversary
with the only constraint that it be in the interval [0, T ] and
that it contain no more than λT points. The corresponding
counting function nz(·) must hence satisfy

nz(T ) ≤ λT. (10)

The encoder and the reconstructor are allowed to use random
codes. That is, they fix a distribution on all (deterministic)
codes of a given rate on [0, T ], and they use this distribution
to generate a code, which is not revealed to the adversary. They
then apply it to the point pattern z chosen by the adversary.
We say that (R, D) is achievable with random coding against
an adversary subject to (10) if, for every ε > 0, there exists
some T0 such that, for every T > T0, there exists a random
code on [0, T ] of rate R + ε such that the expected distortion
between any z satisfying (10) and its reconstruction is smaller
than D + ε.
Theorem 3: The pair (RPois(D,λ), D) is achievable with

random coding against any adversary respecting (10).
Proof: When D ≥ 1, the encoder does not need to

describe the pattern: the reconstructor simply produces the all-
one function, yielding distortion 1 for any z. Hence the pair
(0, D) is achievable with random coding.
Next consider D ∈ (0, 1). We use Scheme 1 of Section III

to reduce the original problem to one of random coding for
an arbitrary discrete-time sequence z∆. Here the vector z∆ is
{0, 1}-valued, has T

∆ components, and satisfies
T/∆
∑

i=1

z∆
i ≤ λT. (11)

We shall construct a random code of rate R
∆ which, when

applied to any z∆ satisfying (11), yields

E
[

d∆(z∆, Ẑ∆)
]

< D + ε,

where the random vector Ẑ∆ is the result of applying the
random encoder and decoder to z∆. Combined with Scheme 1
this random code will yield a random code for the continuous-
time point pattern z that achieves the rate-distortion pair
(R, D).
Our discrete-time random code consists of 2TR {0, 1}-

valued, length- T
∆ random sequences Ẑ∆

m, m ∈ {1, . . . , 2TR}.
The first sequence Ẑ∆

1 is chosen deterministically to be the
all-one sequence. The other 2TR − 1 sequences are drawn
independently, with each sequence drawn IID Ber(D).
To describe a source sequence z∆, the encoder looks for a

codeword ẑ∆
m, m ∈ {2, . . . , 2TR} such that

ẑ∆
m,i = 1 whenever z∆

i = 1. (12)

If it finds one or more such codewords, it sends the index of
the first one; otherwise it sends the index 1. The reconstructor
produces the sequence ẑ∆

m, where m is the index it received
from the encoder.
We next analyze the expected distortion of this random code

for a fixed z∆ satisfying (11). Define

µ ! T−1
T/∆
∑

i=1

z∆
i ,

and note that by (11) µ ≤ λ. Let E be the event that the
encoder cannot find ẑ∆

m, m ∈ {2, . . . , 2TR} satisfying (12).
If E occurs, the encoder produces the index 1, and the
resulting distortion is 1. The probability that a randomly drawn
codeword Ẑ∆

m satisfies (12) is

DµT ≥ DλT = 2(λ log D)T .

Because the codewords Ẑ∆
m, m ∈ {2, . . . , 2TR} are chosen

independently, if R > −λ log D, then Pr[E ] → 0 as T → ∞.
Hence, for large enough T , the contribution to the expected
distortion from the event E can be ignored.
We next analyze the expected distortion conditional on Ec.

The reproduction Ẑ∆ has the following distribution: at posi-
tions where z∆ is 1, Ẑ∆ must also be 1; at other positions the
components of Ẑ∆ are IID Ber(D). (These components were
not “looked at” in the process of generating the index.) Thus,
the expected value of

∑T/∆
i=1 Ẑ∆

i is µT + D( T
∆ − µT ), and

E
[

d∆(z∆, Ẑ∆)
∣

∣

∣
Ec

]

= D + (1 − D)µ∆,

which tends to D as ∆ tend to zero. We have thus shown that,
for small enough ∆, we can achieve the pair (R/∆, D) on z∆

using random coding whenever R > −λ log D. Consequently,
if R > −λ log D then we can also use random coding to
achieve (R, D) on the continuous-time point pattern z.
We next use Theorem 3 to prove Theorem 2.
Proof of Theorem 2: It follows from Theorem 3 that, on

any point process satisfying (9), the pair (RPois(D,λ+ δ), D)
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is achievable with random coding. Further, since there is no
adversary, the existence of a good random code guarantees the
existence of a good deterministic code. Hence (RPois(D,λ +
δ), D) is also achievable on this process with deterministic
coding. Theorem 2 now follows when we let δ tend to zero,
because RPois(D, ·) is a continuous function.

V. SOME POINTS ARE KNOWN TO THE RECONSTRUCTOR
In this section we consider a Wyner-Ziv setting for our

problem. We first consider the case where X is a Poisson
process of intensity λ. (Later we consider an arbitrary point
pattern.) Assume that each point in X is known to the
reconstructor independently with probability p. Also assume
that the encoder does not know which points are known
to the reconstructor. The encoder maps X to a message in
{1, . . . , 2TR}, and the reconstructor produces a Lebesgue-
measurable, {0, 1}-valued signal X̂ on [0, T ] based on this
message and the positions of the points that it knows. The
achievability of a rate-distortion pair is defined in the same
way as in Section III. Denote the smallest rate R for which
(R, D) is achievable by RWZ(D,λ, p).
Obviously, RWZ(D,λ, p) is lower-bounded by the smallest

achievable rate when the transmitter does know which points
are known to the reconstructor. The latter rate is given by
RPois(D, (1 − p)λ), where RPois(·, ·) is given by (2). Indeed,
when the encoder knows which points are known to the
reconstructor, it is optimal for it to describe only the remaining
points, which themselves form a Poisson process of intensity
(1 − p)λ. The reconstructor then selects a set based on this
description to cover the points unknown to it and adds to this
set the points it knows. Thus,

RWZ(D,λ, p) ≥ RPois(D, (1 − p)λ). (13)

The next theorem shows that (13) holds with equality.
Theorem 4: Knowing the points at the reconstructor only is

as good as knowing them also at the encoder:

RWZ(D,λ, p) = RPois(D, (1 − p)λ). (14)

To prove Theorem 4, it remains to show that the pair
(RPois(D, (1−p)λ), D) is achievable. We shall show this as a
consequence of a stronger result concerning arbitrarily varying
sources.
Consider an arbitrary point pattern z on [0, T ] chosen by an

adversary. The adversary is allowed to put at most λT points
in z. Also, it must reveal all but at most νT points to the
reconstructor, without telling the encoder which points it has
revealed. The encoder and the reconstructor are allowed to use
random codes, where the encoder is a random mapping from z

to a message in {1, . . . , 2TR}, and where the reconstructor is
a random mapping from this message, together with the point
pattern that it knows, to a {0, 1}-valued, Lebesgue-measurable
signal ẑ. The distortion d(z, ẑ) is defined as in (1).
Theorem 5: Against an adversary who puts at most λT

points on [0, T ] and reveals all but at most νT points to
the reconstructor, the rate-distortion pair (RPois(D, ν), D) is
achievable with random coding.

Proof: The case D ≥ 1 is trivial, so we shall only
consider the case where D ∈ (0, 1). The encoder and the
reconstructor first use Scheme 1 as in Section III to reduce
the point pattern z to a {0, 1}-valued vector z∆ of length T

∆ .
Define

µ ! T−1
T/∆
∑

i=1

z∆
i ,

and note that, by assumption, µ ≤ λ. If µ ≤ ν, then we can
ignore the reconstructor’s side-information and use the random
code of Theorem 3. Henceforth we assume µ > ν.
Denote by s the point pattern known to the reconstructor and

by s∆ the vector obtained from s through the discretization in
time of Scheme 1. Since there are at most νT points that are
unknown to the reconstructor,

T/∆
∑

i=1

s∆
i ≥ (µ − ν)T. (15)

The encoder conveys the value of µT to the receiver using
bits. Since µT is an integer between 0 and λT , the number of
bits per second needed to describe it tends to zero as T tends
to infinity.
Next, the encoder and the reconstructor randomly generate

2T (R+R̃) independent codewords

ẑ
∆
m,l, m ∈ {1, . . . , 2TR}, l ∈ {1, . . . , 2TR̃},

where each codeword is generated IID Ber(D).
To describe z∆, the encoder looks for a codeword ẑ∆

m,l such
that

ẑ∆
m,l,i = 1 whenever z∆

i = 1. (16)

If it finds one or more such codewords, it sends the index m
of the first one; otherwise it tells the reconstructor to produce
the all-one sequence.
When the reconstructor receives the index m, it looks for

an index l̃ ∈ {1, . . . , 2TR̃} such that

ẑ∆
m,l̃,i

= 1 whenever s∆
i = 1. (17)

If there is only one such codeword, it produces it as the
reconstruction; if there are more than one such codewords,
it produces the all-one sequence.
To analyze the expected distortion for z∆ over this random

code, first consider the event that the encoder cannot find
a codeword satisfying (16). Note that the probability that a
randomly generated codeword satisfies (16) is DµT , so the
probability of this event tends to zero as T tends to infinity
provided that

R + R̃ > −µ logD. (18)

Next consider the event that the reconstructor finds more
than one l̃ satisfying (17). The probability that a randomly
generated codeword satisfies (17) is D

PT/∆

i=1
s∆

i . Consequently,
by (15) the probability of this event tends to zero as T tends
to infinity provided

R̃ < −(µ − ν) log D. (19)
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Finally, if the encoder finds a codeword satisfying (16) and
the reconstructor finds only one codeword satisfying (17),
then the two codewords must be the same. Following the
same calculations as in the proof of Theorem 3, the expected
distortion in this case tends to D as ∆ tends to zero.
Combining (18) and (19), we can make the expected dis-

tortion arbitrarily close to D as T → ∞ if

R > −ν log D.

Proof of Theorem 4: The claim follows from (13),
Theorem 5, and the Law of Large Numbers.

APPENDIX
In this appendix we prove Lemma 1. Given any rate-

distortion code with 2TR codewords x̂m, m ∈ {1, . . . , 2TR}
that achieves expected distortion D, we shall construct a new
code that can be constructed through Scheme 1, that contains
(2TR +1) codewords, and that achieves an expected distortion
that is arbitrarily close to D.
Denote the codewords of our new code by ŵm, where

m ∈ {1, . . . , 2TR + 1}. We choose the last codeword to
be the constant 1. We next describe our choices of the
other codewords. For every ε > 0 and every x̂m, we can
approximate the set {t : x̂m(t) = 1} by a set Am that is equal
to a finite, say Nm, union of open intervals. More specifically,

µ
(

x̂−1
m (1) 'Am

)

≤ 2−TRε, (20)

where ' denotes the symmetric difference between two sets
(see, e.g., [15, Chapter 3, Proposition 15]). Define

B !

2T R
⋃

m=1

(

x̂−1
m (1) \ Am

)

,

and note that by (20)

µ(B) ≤ ε. (21)

For each Am, m ∈ {1, . . . , 2TR}, define

Tm !
{

t ∈ [0, T ] :
(

((t/∆) − 1)∆, (t/∆)∆
]

∩Am += ∅
}

.

We now construct ŵm, m ∈ {1, . . . , 2TR} as

ŵm = 1Tm ,

where 1S denotes the indicator function of the set S. Note
that Am ⊆ Tm = ŵ−1

m (1). See Figure 2 for an illustration of
this construction. Let

!
t∆

$!

!
t

1Am

ŵm

Fig. 2. Constructing ŵm from Am.

N ! max
m∈{1,...,2TR}

Nm.

It can be seen that

µ
(

ŵ−1
m (1)

)

− µ(Am) ≤ 2N∆, m ∈ {1, . . . , 2TR}. (22)

Our encoder works as follows: if x contains no point in B, it
maps x to the same message as the given encoder; otherwise
it maps x to the index (2TR + 1) of the all-one codeword. To
analyze the distortion, first consider the case where x contains
no point in B. In this case, all points in x must be covered by
the selected codeword ŵm. By (20) and (22), the difference
d(x, ŵm)−d(x, x̂m), if positive, can be made arbitrarily small
by choosing small ε and ∆. Next consider the case where x

does contain points in B. By (21), the probability that this
happens can be made arbitrarily small by choosing ε small,
therefore its contribution to the expected distortion can also be
made arbitrarily small. We conclude that our code {ŵm} can
achieve a distortion that is arbitrarily close to the distortion
achieved by the original code {x̂m}. This concludes the proof
of Lemma 1.
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