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Abstract—The gain in the Identification Capacity afforded
by a rate-limited description of the noise sequence corrupting
a modulo-additive noise channel is studied. Both the classical
Ahlswede-Dueck version and the Ahlswede-Cai-Ning-Zhang ver-
sion, which does not allow for missed identifications, are studied.
Irrespective of whether the help is provided to the transmitter,
to the receiver, or to both—the two capacities coincide and both
equal the helper-assisted Shannon capacity.

I. INTRODUCTION

If a helper can observe the additive noise corrupting a
channel and can describe it to the decoder, then the latter
can subtract it and thus render the channel noiseless. But, for
this to succeed, the description must be nearly lossless and
hence possibly of formidable rate. It is thus of interest to
study scenarios where the description rate is limited and to
understand how the rate of the help affects performance.

When performance is measured in terms of the Shannon ca-
pacity, the problem was solved for a number of channel models
in [1], [2], and [3], where the former two address assistance to
the decoder and the latter to the encoder. When performance is
measured in terms of the Erasures-Only capacity or the List-
Size capacity, the problem was solved in [4] and [5]. Error
exponents with assistance were studied in [6]. Here we study
how rate-limited help affects the Identification capacity [7].

We focus on the memoryless modulo-additive channel
(MMANC) whose time-k output Yk corresponding to the time-
k input xk is

Yk = xk ⊕ Zk,

where Zk is the time-k noise sample; the channel input xk, the
channel output Yk, and the noise Zk all take values in the set
A—also denoted X , or Y , or Z—comprising the |A| elements
{0, . . . , |A| − 1}; and ⊕ and ⊖ denote mod-|A| addition and
subtraction respectively. The noise sequence {Zk} is IID ∼
PZ , where PZ is some PMF on A.

Irrespective of whether the help is provided to the encoder,
to the decoder, or to both, the Shannon capacity of this channel
coincides with its Erasures-Only capacity and both are given
by [3, Section V] [4, Theorems 2 and 6]

Ce-o(Rh) = CSh(Rh) = log |A| −
{
H(QZ)−Rh

}+
, (1)

where {ξ}+ denotes max{0, ξ}, and H(QZ) is the Shannon
entropy of QZ .

Here we study two versions of the Identification capacity
of this channel: Ahlswede and Dueck’s original Identification
capacity CID [7] and the Identification capacity subject to
no missed-identifications CID,0 [8]. Our main result is that—
irrespective of whether the help is provided to the encoder,
to the decoder, or to both—the two identification capacities
coincide, and both equal the right-hand side (RHS) of (1).

II. PROBLEM FORMULATION

The channel identification problem is parameterized by
the blocklength n, which tends to infinity in the definition
of the Identification capacity. The n-length noise sequence
Zn ∈ An is presented to the helper, which produces its nRh-
bit description t(Zn)

t(zn) ∈ T

where

T = {0, 1}nRh .

We refer to the set N = {1, . . . ,N} as the set of identi-
fication messages and to its cardinality N as the number of
identification messages. The identification rate is defined (for
N sufficiently large) as

1

n
log logN.

A generic element of N—namely, a generic identification
message—is denoted i.

If no help is provided to the encoder, then the latter is
specified by a family {P i

Xn}i∈N of PMFs on An that are
indexed by the identification messages, with the understanding
that, to convey Identification Message (IM) i, the encoder
transmits a random sequence in An that it draws according
to the PMF P i

Xn . If help T = t(Zn) ∈ T is provided to
the encoder, then the encoder’s operation is specified by a
family of PMFs {P i

Xn|t}(i,t)∈N×T that is now indexed by
pairs of identification messages and noise descriptions, with
the understanding that, to convey IM i given the description
T = t(Zn), the encoder produces a random n-length sequence
of channel inputs that is distributed according to P i

Xn|T . In
either case, the channel output sequence Y n is

Y n = Xn ⊕ Zn

componentwise.
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If help is provided to the encoder, and if IM i is to be
conveyed, then the joint distribution of (Xn, Zn, Y n, T ) has
the form

PZn(zn)PT |Zn(t|zn)P i
Xn|T (x

n|t)PY n|Xn,Zn(yn|xn, zn),

where1

PT |Zn(t|zn) = 1
{
t = t(zn)

}
,

and

PY n|Xn,Zn(yn|xn, zn) = 1
{
yn = xn ⊕ zn

}
,

where 1
{

Statement
}

is equal to 1 if the statement holds and
is equal to 0 otherwise. In the absence of help, the joint
distribution has the form

PZn(zn)PT |Zn(t|zn)P i
Xn(xn)PY n|Xn,Zn(yn|xn, zn).

Based on the data available to it—Y n in the absence of help
to the decoder and (Y n, t(Zn)) in its presence—the receiver
performs N binary tests indexed by i ∈ N , where the i-th
test is whether or not the IM was i. It accepts the hypothesis
that the IM was i if Y n is in its acceptance region, which
we denote Di(t) ∈ An in the presence of decoder assistance
t ∈ T and Di ∈ An in its absence.

When the help t ∈ T is provided to the receiver, the
probability of missed detection associated with IM i is thus

piMD(t) = 1− P i
Y n|T=t

(
Di(t)

)
and the worst-case false alarm associated with IM i is

piFA(t) = max
j∈N\{i}

P j
Y n|T=t

(
Di(t)

)
.

Note that, given t ∈ T , the acceptance regions {Di(t)}i∈N of
the different tests need not be disjoint. We define

pMD,max = max
i∈N

∑
t∈T

PT (t) p
i
MD(t), (2)

and

pFA,max = max
i∈N

∑
t∈T

PT (t) p
i
FA(t). (3)

In the absence of help to the receiver, the probability of
missed detection associated with IM i is

piMD = 1− P i
Y n(Di)

and the worst-case probability of false alarm associated with
it is

piFA = max
j∈N\{i}

P j
Y n(Di).

In this case, we define

pMD,max = max
i∈N

piMD

1We are assuming that the noise description is a deterministic function
of the noise sequence, but the results also hold if we allow randomized
descriptions. In fact, our coding schemes are of deterministic descriptions
and the converse allows for randomization.

and

pFA,max = max
i∈N

piFA.

In both cases we say that a scheme is of zero missed
detections if pMD,max is zero.

A rate R is an achievable identification rate if, for every
γ > 0 and every ϵ > 0, there exists some positive integer n0

such that, for all blocklengths n exceeding n0, there exists a
scheme with

N =
⌈
22

n(R−γ)⌉
identification messages for which

max{pMD,max, pFA,max} < ϵ. (4)

The supremum of achievable rates is the Identification capacity
with a helper CID(Rh). Replacing the requirement (4) with

pMD,max = 0, pFA,max < ϵ (5)

leads to the definition of the zero missed-identification ca-
pacity CID,0(Rh).

The following theorem is the main result of this paper.
Theorem 1: On the modulo additive noise channel—

irrespective of whether the help is provided to the transmitter,
to the receiver, or to both—the Identification capacity with a
helper CID(Rh) and the Zero Missed-Identification capacity
with a helper CID,0(Rh) are equal and coincide with the
Shannon capacity

CID(Rh) = CID,0(Rh) = CSh(Rh)

where the latter is given in (1).
We prove this result by establishing that CID,0(Rh) ≥ CSh(Rh)
using the recent results in [4] in combination with the code
construction proposed in [8]. The converse, is proved by
analyzing the case where the assistance is provided to both
transmitter and receiver using the techniques developed in [9].
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