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Abstract: The gain in the identification capacity afforded by a rate-limited description of the noise
sequence corrupting a modulo-additive noise channel is studied. Both the classical Ahlswede–Dueck
version and the Ahlswede–Cai–Ning–Zhang version, which does not allow for missed identifications,
are studied. Irrespective of whether the description is provided to the receiver, to the transmitter, or
to both, the two capacities coincide and both equal the helper-assisted Shannon capacity.
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1. Introduction

If a helper can observe the additive noise corrupting a channel and can describe
it to the decoder, then the latter can subtract it and thus render the channel noiseless.
However, for this to succeed, the description must be nearly lossless and hence possibly
of formidable rate. It is thus of interest to study scenarios where the description rate is
limited, and to understand how the rate of the help affects performance.

When performance is measured in terms of the Shannon capacity, the problem was
solved for a number of channel models [1–3], where the former two address assistance to
the decoder and the latter to the encoder. When performance was measured in terms of
the erasures-only capacity or the list-size capacity, the problem was solved in [4,5]. Error
exponents with assistance were studied in [6]. Here we study how rate-limited help affects
the identification capacity [7].

We focus on the memoryless modulo-additive channel (MMANC), whose time-k
output Yk corresponding to the time-k input xk is:

Yk = xk ⊕ Zk (1)

where Zk is the time-k noise sample; the channel input xk, the channel output Yk, and the
noise Zk all take values in the set A—also denoted X , or Y , or Z—comprising the |A| ele-
ments {0, . . . , |A|− 1}; and⊕ and	 denote mod-|A| addition and subtraction, respectively.
The noise sequence {Zk} is IID ∼ PZ, where PZ is some PMF on A.

Irrespective of whether the help is provided to the encoder, to the decoder, or to both,
the Shannon capacity of this channel coincides with its erasures-only capacity, and both are
given by [3] (Section V) and [4] (Theorems 2 and 6):

Ce-o(Rh) = CSh(Rh) = log |A| −
{

H(PZ)− Rh
}+ (2)

where {ξ}+ denotes max{0, ξ}, and H(PZ) is the Shannon entropy of PZ.
Here we study two versions of the identification capacity of this channel: Ahlswede

and Dueck’s original identification capacity CID [7], and the identification capacity subject
to no missed-identifications CID,0 [8]. Our main result is that—irrespective of whether the
help is provided to the encoder, to the decoder, or to both—the two identification capacities
coincide and both equal the right-hand side (RHS) of (2).

Entropy 2023, 25, 1314. https://doi.org/10.3390/e25091314 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091314
https://doi.org/10.3390/e25091314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4742-5124
https://orcid.org/0009-0005-1103-0007
https://doi.org/10.3390/e25091314
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091314?type=check_update&version=2


Entropy 2023, 25, 1314 2 of 15

2. Problem Formulation

The identification-over-a-channel problem is parameterized by the blocklength n,
which tends to infinity in the definition of the identification capacity. The n-length noise
sequence Zn ∈ An is presented to a helper, which produces its nRh-bit description t(Zn):

t(zn) ∈ T (3)

where:
T = {0, 1}nRh . (4)

We refer to the set N = {1, . . . ,N} as the set of identification messages and to its
cardinality N as the number of identification messages. The identification rate is defined
(for N sufficiently large) as:

1
n

log logN. (5)

A generic element of N—namely, a generic identification message—is denoted i.
If no help is provided to the encoder, then the latter is specified by a family {Pi

Xn}i∈N
of PMFs on An that are indexed by the identification messages, with the understanding
that, to convey the identification message (IM) i, the encoder transmits a random sequence
in An that it draws according to the PMF Pi

Xn . If help T = t(Zn) ∈ T is provided to the
encoder, then the encoder’s operation is specified by a family of PMFs {Pi

Xn |t}(i,t)∈N×T
that is now indexed by pairs of identification messages and noise descriptions, with the
understanding that, to convey IM i given the description T = t(Zn), the encoder produces a
random n-length sequence of channel inputs that is distributed according to Pi

Xn |T . In either
case, the channel output sequence Yn is:

Yn = Xn ⊕ Zn (6)

componentwise.
If help is provided to the encoder, and if IM i is to be conveyed, then the joint distribu-

tion of (Xn, Zn, Yn, T) has the form:

PZn(zn) PT|Zn(t|zn) Pi
Xn |T(xn|t) PYn |Xn ,Zn(yn|xn, zn) (7)

where
PYn |Xn ,Zn(yn|xn, zn) = 1

{
yn = xn ⊕ zn} (8)

and where
PT|Zn(t|zn) = 1

{
t = t(zn)

}
(9)

because we are assuming that the noise description is a deterministic function of the noise
sequence. (The results also hold if we allow randomized descriptions: our coding schemes
employ deterministic descriptions and the converse allows for randomization.) Here
1{statement} equals 1 if the statement holds and equals 0 otherwise. In the absence of
help, the joint distribution has the form:

PZn(zn) PT|Zn(t|zn) Pi
Xn(xn) PYn |Xn ,Zn(yn|xn, zn). (10)

Based on the data available to it—Yn in the absence of help to the decoder and
(Yn, t(Zn)) in its presence—the receiver performs N binary tests indexed by i ∈ N , where
the i-th test is whether or not the IM is i. It accepts the hypothesis that the IM is i if Yn is in
its acceptance region, which we denote Di(t) ∈ An in the presence of decoder assistance
t ∈ T and Di ∈ An in its absence.

When the help t ∈ T is provided to the receiver, the probability of missed detection
associated with IM i ∈ N is thus:

pi
MD(t) = 1− Pi

Yn |T=t
(
Di(t)

)
(11)
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and the worst-case false alarm associated with it is:

pi
FA(t) = max

j∈N\{i}
Pj

Yn |T=t

(
Di(t)

)
. (12)

Note that, given t ∈ T , the acceptance regions {Di(t)}i∈N of the different tests need not be
disjoint. We define:

pMD,max = max
i∈N ∑

t∈T
PT(t) pi

MD(t) (13)

and:
pFA,max = max

i∈N ∑
t∈T

PT(t) pi
FA(t). (14)

In the absence of help to the receiver, the probability of missed detection associated
with IM i is:

pi
MD = 1− ∑

t∈T
PT(t)Pi

Yn |T=t(Di) = 1− Pi
Yn(Di) (15)

and the worst-case probability of false alarm associated with it is:

pi
FA = ∑

t∈T
PT(t) max

j∈N\{i}
Pj

Yn |T=t(Di). (16)

In this case, we define:
pMD,max = max

i∈N
pi

MD (17)

and:
pFA,max = max

i∈N
pi

FA. (18)

In both cases we say that a scheme is of zero missed detectionsif pMD,max is zero.
A rate R is an achievable identification rate if, for every γ > 0 and every ε > 0, there

exists some positive integer n0 such that, for all blocklengths n exceeding n0, there exists a
scheme with:

N =
⌈
22n(R−γ)⌉

(19)

identification messages for which:

max{pMD,max, pFA,max} < ε. (20)

The supremum of achievable rates is the identification capacity with a helper CID(Rh).
Replacing requirement (20) with:

pMD,max = 0, pFA,max < ε (21)

leads to the definition of the zero missed-identification capacity CID,0(Rh).

Remark 1. Writing out pFA,max of (14) as:

pFA,max = max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}
Pj

Yn |T=t

(
Di(t)

)
(22)

highlights that (prior to maximizing over i) we first maximize over j and then average the result
over t. In this sense, the help—even if provided to both encoder and decoder—cannot be viewed as

“common randomness” in the sense of [9–11] where the averaging over the common randomness is
performed before taking the maximum. Our criterion is more demanding of the direct part (code
construction) and less so of the converse.

Both criteria are interesting. Ours allows for the notion of “outage”, namely, descriptions that
indicate that identification might fail and that therefore call for retransmission. The other criterion
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highlights the interplay between the noise description and the generation of common randomness
(particularly when the help is provided to both transmitter and receiver).

The following theorem is the main result of this paper.

Theorem 1. On the modulo additive noise channel—irrespective of whether the help is provided to
the transmitter, to the receiver, or to both—the identification capacity with a helper CID(Rh) and the
zero missed-identification capacity with a helper CID,0(Rh) are equal and coincide with the Shannon
capacity:

CID(Rh) = CID,0(Rh) = CSh(Rh) (23)

where the latter is given in (2).

We prove this result by establishing in Section 3 that CID,0(Rh) ≥ CSh(Rh) using a
slight strengthening of recent results in [4] in combination with the code construction
proposed in [8]. The converse is proved in Section 4, where we use a variation on a theme
by Watanabe [12] to analyze the case where the assistance is provided to both transmitter
and receiver.

3. Direct Part: Zero Missed Detection

In this section we prove that:

CID,0(Rh) ≥ CSh(Rh) (24)

by proposing identification schemes of no missed detections and of rates approaching
CSh(Rh). To this end, we extend to the helper setting the connection—due to Ahlswede,
Cai, and Zhang [8]—between the zero-missed-detection identification capacity CID,0 and
the erasures-only capacity Ce-o. We then call on recent results [4] to infer that, on the
modulo-additive noise channel with a helper, the Erasures-Only capacity is equal to the
Shannon capacity. We treat encoder-only assistance and decoder-only assistance separately.
Either case also proves achievability when the assistance is provided to both encoder
and decoder.

Recall that an erasures-only decoder produces a list L comprising the messages under
which the observation is of positive likelihood and then act as follows: If the list contains
only one message, it produces that message; otherwise, it declares an erasure. Since the
list always contains the transmitted message, this decoder never errs. The erasures-only
capacity is defined like the Shannon capacity, but with the additional requirement that the
decoder be the erasures-only decoder. This notion extends in a natural way to settings with
a helper [4].

3.1. Encoder Assistance

A rate-R, blocklength-n, encoder-assisted, erasures-only transmission code comprises
a message setM = {1, . . . ,M} with M = 2nR messages and a collection of M mappings
{ fm}m∈M from T toX n, indexed byM, with the understanding that to transmit Message m
after being presented with the help t(Zn) ∈ T , the encoder produces the n-tuple of channel
inputs fm

(
t(Zn)

)
∈ X n. Since the decoder observes only the channel outputs (and not the

help), it forms the list:

L(yn) =
{

m ∈ M : ∃t ∈ T s.t. PYn |Xn ,T
(
yn| fm(t), t)

)
> 0

}
. (25)

The collection of output sequences that cause the erasures-only decoder to produce an
erasure is:

Yer =
{

yn ∈ An : |L(yn)| > 1
}

. (26)
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The probability of erasure associated with the transmission of Message m with encoder
help t is PYn |Xn ,T

(
Yer| fm(t), t

)
. On the modulo additive noise channel with rate-Rh encoder

assistance, the erasures-only capacity and the Shannon capacity coincide and [4]:

Ce-o(Rh) = CSh(Rh) = log |A| −
{

H(PZ)− Rh
}+. (27)

We shall need the following slightly-stronger version of the achievability part of this result,
where we swap the maximization over the messages with the expectation over the help:

Proposition 1. Consider the modulo additive noise channel with rate-Rh encoder assistance.
For any transmission rate R smaller than Ce-o(Rh) of (27)), there exists a sequence of rate-R
transmission codes for which:

lim
n→∞ ∑

t∈T
PT(t) max

m∈M
PYn |Xn ,T

(
Yer| fm(t), t

)
= 0. (28)

A similar result holds for decoder assistance.

Proof. The proof is presented in Appendix A. It is based on the construction in [4], but with
a slightly finer analysis.

The coding scheme we propose is essentially that of [8]. We just need to account for
the help. For each blocklength n, we start out with a transmission code of roughly 2nCe-o(Rh)

codewords for which (28) holds, and use Lemma 1 ahead to construct approximately
22nCe-o(Rh) lightly-intersecting subsets of its message set. We then associate an IM with each
of the subsets, with the understanding that to transmit an IM we pick uniformly at random
one of the messages in the subset associated with it and transmit this message with the
helper’s assistance.

Lemma 1 ([7] Proposition 14). Let Z be a finite set, and let λ ∈ (0, 1
2 ) be given. If ε > 0 is

sufficiently small so that:

λ log
(

1
ε
− 1
)
> 2 and

1
ε
> 6 (29)

then there exist subsets A1, . . . , AN of Z such that for all distinct i, j ∈ {1, . . . ,N} the follow-
ing hold:

(a) |Ai| =
⌊
ε |Z |

⌋
, (30)

(b) |Ai ∩Aj| < λ
⌊
ε |Z |

⌋
, (31)

(c) N ≥ |Z |−1 · 2bε |Z |c − 1. (32)

With the aid of this lemma, we can now prove the achievability of Ce-o(Rh).

Proof. Given an erasures-only encoder-assisted transmission code {( fm)}m∈M where
fm : T → X n, we apply Lemma 1 to the transmission message setM with:

ε =
1

n2 + 2
and λ =

1
log n

(33)

to infer, for large enough n, the existence of subsets F1, . . . ,FN ⊆ M such that for all
distinct i, j ∈ {1, . . . ,N} with j 6= i:

|Fi| =
⌊ M

n2 + 2

⌋
(34)

|Fi ∩ Fj| <
1

log n

⌊ M

n2 + 2

⌋
(35)
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N ≥ M−1 · 2
⌊

M
n2+2

⌋
− 1. (36)

Note that (36) implies that:

lim
n→∞

(
1
n

log logN− 1
n

logM

)
≥ 0. (37)

To send IM i after obtaining the assistance t(zn), the encoder picks a random element M
from Fi equiprobably and transmits Xn = fM

(
t(Zn)

)
, so:

Pi
Xn |T(xn|t) = 1

|Fi| ∑
m∈Fi

1
{

xn = fm(t)
}

. (38)

To guarantee no missed detections, we set the acceptance region of i-th IM to be:

Di =
{

yn ∈ Yn : ∃(m, t) ∈ Fi × T s.t. PYn |Xn ,T
(
yn| fm(t), t

)
> 0

}
. (39)

It now remains to analyze the scheme’s maximal false-alarm probability.

pFA,max = max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}
Pj

Yn |T=t(Di) (40)

= max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

1
|Fj| ∑

m∈Fj

PYn |Xn ,T
(
Di| fm(t), t

)
(41)

= max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

1
|Fj|

[
∑

m∈Fj\Fi

PYn |Xn ,T
(
Di| fm(t), t

)
+ ∑

m∈Fj∩Fi

PYn |Xn ,T
(
Di| fm(t), t

)]
(42)

≤ max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

1
|Fj|

[
∑

m∈Fj\Fi

PYn |Xn ,T
(
Di| fm(t), t

)
+
∣∣Fj ∩ Fi

∣∣] (43)

≤ max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

1
|Fj|

[
∑

m∈Fj\Fi

PYn |Xn ,T
(
Yer| fm(t), t

)
+
∣∣Fj ∩ Fi

∣∣] (44)

< max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

{
1
|Fj| ∑

m∈Fj\Fi

PYn |Xn ,T
(
Yer| fm(t), t

)
+
b M

n2+2c
|Fj| log n

}
(45)

≤ max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

{∣∣Fj \ Fi
∣∣

|Fj|
max
m∈M

PYn |Xn ,T
(
Yer| fm(t), t

)}
+

1
log n

(46)

≤ max
i∈N ∑

t∈T
PT(t) max

j∈N\{i}

{
max
m∈M

PYn |Xn ,T
(
Yer| fm(t), t

)}
+

1
log n

(47)

= ∑
t∈T

PT(t) max
m∈M

PYn |Xn ,T
(
Yer| fm(t), t

)
+

1
log n

(48)

where in (41) we expressed Pj
Yn |T=t(Di) as PYn |Xn ,T

(
Di| fm(t), t

)
using (7); in (42) we ex-

pressed Fj as the disjoint union of Fj ∩ Fi and Fj \ Fi; in (43) we used the trivial bound:

PYn |Xn ,T
(
Di| fm(t), t

)
≤ 1; (49)

in (44) we used the fact that whenever m 6= i:

PYn |Xn ,T
(
Di| fm(t), t

)
≤ PYn |Xn ,T

(
Yer| fm(t), t

)
(50)
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which holds because, by the definition of the set Yer, any output sequence yn that con-
tributes to the LHS of (50), i.e., that is in Di with PYn |Xn ,T

(
yn| fm(t), t

)
> 0, must also be

in Yer; in (45) we used (35); in (46) we replaced each term in the sum with the global
maximum (over m ∈ M) and used (34); in (47) we used the trivial bound |Fj \ Fi| ≤ |Fj|;
and in (48) we could simplify the expression because the dependence on i and j is no longer.

The above construction demonstrates that every transmission scheme that drives
∑t∈T PT(t)maxm∈M PYn |Xn ,T

(
Yer| fm(t), t

)
to zero induces a zero missed-identification

scheme that drives the false-alarm probability to zero. Since the former exists for all rates
up to Ce-o(Rh), we conclude, by (37), that CID,0(Rh) ≥ Ce-o(Rh). This, in turn, implies that
CID,0(Rh) ≥ CSh(Rh) and hence concludes the achievability proof for encoder-assistance
because, on the modulo additive noise channel, Ce-o(Rh) = CSh(Rh).

3.2. Decoder Assistance

When, rather than to the encoder, the assistance is to the decoder, the transmission
codewords are n-tuples inAn, and we denote the transmission codebook C = {xn(m)}m∈M.
For the induced identification scheme we use the same message subsets as before, with IM i
being transmitted by choosing uniformly at random a message M from the subset Fi and
transmitting the codeword xn(M). To avoid any missed detections, we set the acceptance
region corresponding to IM i and decoder assistance t to be:

Di(t) =
{

yn ∈ An : ∃m ∈ Fi s.t. PYn ,T|Xn
(
yn, t|xn(m)

)
> 0

}
(51)

The analysis of the false-alarm probability is nearly identical to that with encoder assistance
and is omitted.

4. Converse Part: Help Provided to Both Transmitter and Receiver

In this section we establish the converse for all the cases of interest by proving that
the inequality:

CID(Rh) ≤ log |A| −
{

H(PZ)− Rh
}+ (52)

holds even when the help is provided to both encoder and decoder. The RHS of (52) is the
helper Shannon capacity, irrespective of whether the help is provided to the encoder, to the
decoder, or to both [3] (Section V).

There are two main steps to the proof. The first addresses the conditional probabilities
of the two types of testing errors conditional on a given description T = t. It relates the
two to the conditional entropy of the noise given the description, namely, H(Zn|T = t).
Very roughly, this corresponds to proving the converse part of the ID-capacity theorem
for the channel whose noise is distributed according to the conditional distribution of Zn

given T = t. The difficulty in this step is that, given T = t, the noise is not memoryless,
and the channel may not even be stable. Classical type-based techniques for proving the
converse part of the ID-capacity theorem—such as those employed in [7] (Theorem 12), [13]
(Section III), or [14] (Section III)—are therefore not applicable. Instead, we extend to
the helper setting Watanabe’s technique [12], which is inspired by the partial channel
resolvability method introduced by Steinberg [15].

The second step in the proof addresses the unconditional error probabilities. This step
is needed because, in the definition of achievability (see (13) and (14)), the error probabilities
are averaged over the noise description t. We will show that, when the identification rate
exceeds the Shannon capacity, there exists an IM i∗ for which the sum of the two types
of errors is large whenever the description t is in a subset T ∗ of T whose probability is
bounded away from zero. This will imply that, for this IM i∗, the sum of the averaged
probabilities of error is bounded away from zero, thus contradicting the achievability.
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4.1. Additional Notation

Given a PMF PX and a conditional PMF PY|X, we write PX ◦ PY|X for the joint PMF
that assigns the pair (x, y) the probability PX(x) PY|X(y|x). We use IP◦PY|X (X; Y) to denote
the mutual information between X and Y under the joint distribution P ◦ PY|X . The prod-
uct PMF of marginals PX and PY is denoted PX × PY; it assigns (x, y) the probability
PX(x) PY(y).

For the hypothesis testing problem of guessing whether some observation X was
drawn ∼ PX (the “null hypothesis”) or ∼ QX (the “alternative hypothesis”), we use
K(·|X) to denote a generic randomized test that, after observing X = x, guesses the null
hypothesis (X ∼ PX) with probability K(0|X = x) and the alternative (X ∼ QX) with
probability K(1|X = x). (Here K(0|X = x) + K(1|X = x) = 1 for every x ∈ X .) The type I
error probability associated with K(·|X) is:

λ1[K] = ∑
x∈X

PX(x)K(1|x) (53)

and the type II:
λ2[K] = ∑

x∈X
QX(x)K(0|x). (54)

For a given 0 < ε < 1 we define:

βε(PX , QX) = inf
K : λ1[K]≤ε

λ2[K] (55)

to be the least type-II error probability that can be achieved under the constraint that the
type-I error probability does not exceed ε.

4.2. Conditional Missed-Detection and False-Alarm Probabilities

The following lemma follows directly from Watanabe’s work [12].

Lemma 2 ([12] Theorem 1 and Corollary 2). Let PYn |Xn ,T=t be the n-letter conditional distri-
bution of the channel output sequence given that the noise description is T = t and the input is
Xn. For any λ1, λ2 > 0 with λ1 + λ2 < 1, any 0 < η < 1− λ1 − λ2, and any fixed t ∈ T ,
the condition:

pi
MD(t) + pi

FA(t) < λ1 + λ2, ∀i ∈ N (56)

implies:

log logN ≤ sup
P∈P(X n)

inf
Q∈P(Yn)

− log βλ1+λ2+η

(
P ◦ PYn |Xn ,T=t, P×Q

)
+ log log |A|n + 2 log

(
1
η

)
+ 2 (57)

and hence:

1
n

log logN ≤ 1
n

sup
P∈P(X n)

inf
Q∈P(Yn)

− log βλ1+λ2+η

(
P ◦ PYn |Xn ,T=t, P×Q

)
+ ψn(η), (58)

where:

ψn(η) =
log n

n
+

log log |A|
n

− 2
n

log η +
2
n

(59)

which—for any fixed η > 0—tends to 0 as n tends to ∞.

Substituting PYn |Xn ,T=t for PY|X in the following theorem will allow us to link the RHS
of (57) with the conditional mutual information between Xn and Yn given t ∈ T . The
theorem’s proof was inspired by the proof of [16] (Theorem 8). See also [17] (Lemma 1).
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Theorem 2. Given any 0 < ε < 1 and any conditional PMF PY|X ,

sup
P∈P(X )

inf
Q∈P(Y)

− log βε

(
P ◦ PY|X , P×Q

)
≤

supP∈P(X ) IP◦PY|X (X; Y) + h(ε)

1− ε
(60)

where h(ε) , −ε log(ε)− (1− ε) log(1− ε) is the binary entropy function.

Proof. Applying the data-processing inequality for relative entropy to the binary hypothe-
sis testing setting (see, e.g., [18] (Thm. 30.12.5)) we conclude that for any randomized test
K(·|X),

Dbin
(
1− λ1[K]

∥∥ λ2[K]
)
≤ D

(
P ◦ PY|X

∥∥ P×Q
)

(61)

where:
Dbin(α ‖ β) , α log

α

β
+ (1− α) log

1− α

1− β
(62)

denotes the binary divergence function. Since there exists a randomized test K∗(·|X) for which(
λ1[K?], λ2[K?]

)
=
(
ε, βε(P ◦ PY|X, P × Q)

)
(see, e.g., [18] (Lemma 30.5.4 and Proposi-

tion 30.8.1) we can apply (61) to K?(·|X) to conclude that:

Dbin
(
1− ε

∥∥ βε(P ◦ PY|X , P×Q)
)
≤ D

(
P ◦ PY|X

∥∥ P×Q
)
. (63)

(The above existence also holds when βε(P ◦ PY|X , P×Q)) is zero, but for this case we can
verify (63) directly by noting that in this case, since ε < 1, the RHS of (63) is +∞.) The LHS
of (63) can be lower bounded by lower-bounding the binary divergence function as:

Dbin
(
1− ε

∥∥ βε(P ◦ PY|X , P×Q)
)
≥ −h(ε)− (1− ε) log βε(P ◦ PY|X , P×Q). (64)

It follows from (63) and (64) that:

− log βε(P ◦ PY|X , P×Q) ≤
D
(

P ◦ PY|X
∥∥ P×Q

)
+ h(ε)

1− ε
(65)

so the infimum over Q of the LHS is upper bounded by the infimum over Q on the RHS.
The latter (for fixed P ∈ P(X )) is achieved when Q is the Y-marginal of P ◦ PY|X , a marginal
that we denote PY:

inf
Q

D
(

P ◦ PY|X
∥∥ P×Q

)
= IP◦PY|X (X; Y). (66)

This is a special case of a more general result on Rényi divergence [19] (Theorem II.2). Here
we give a simple proof for K-L divergence:

D
(

P ◦ PY|X
∥∥ P×Q

)
= ∑

x∈X ,y∈Y
P ◦ PY|X(x, y) log

(
P ◦ PY|X(x, y)

P(x)Q(y)

)
(67)

= ∑
x∈X ,y∈Y

P ◦ PY|X(x, y) log

(
P ◦ PY|X(x, y)

P(x)PY(y)
PY(y)
Q(y)

)
(68)

= ∑
x∈X ,y∈Y

P ◦ PY|X(x, y) log

(
P ◦ PY|X(x, y)

P(x)PY(y)

)
+ ∑

y
PY(y) log

PY(y)
Q(y)

(69)

≥ IP◦PY|X (X; Y) + 0 (70)

with equality if and only if Q equals PY.
From (63), (64), and (66) we obtain:
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sup
P∈P(X )

inf
Q∈P(Y)

− log βε(P ◦ PY|X , P×Q)

≤ sup
P∈P(X )

inf
Q∈P(Y)

Dbin
(
1− ε

∥∥ βε(P ◦ PY|X , P×Q)
)
+ h(ε)

1− ε
(71)

≤ sup
P∈P(X )

inf
Q∈P(Y)

D
(

P ◦ PY|X
∥∥ P×Q

)
+ h(ε)

1− ε
(72)

= sup
P∈P(X )

IP◦PY|X (X; Y) + h(ε)

1− ε
. (73)

Applying Lemma 2 and Theorem 2 to our channel when its law is conditioned on
T = t yields the following corollary.

Corollary 1. On the MMANC, for any λ1, λ2 > 0 with λ1 + λ2 < 1, any 0 < η < 1− λ1 − λ2,
and any fixed t ∈ T , the condition:

pi
MD(t) + pi

FA(t) < λ1 + λ2, ∀i ∈ N (74)

implies:
1
n

log logN ≤ log |A| − H(Zn|T = t)/n
1− ε′

+ ψn(η), (75)

where ε′ = λ1 + λ2 + η.

Proof. Substituting X n for X , Yn for Y , PYn |Xn ,T=t for PY|X, and ε′ for ε in Theorem 2,
we obtain:

sup
P∈P(X n)

inf
Q∈P(Yn)

− log βε′(P ◦ PYn |Xn ,T=t, P×Q)

≤
supP∈P(X n) IP◦PYn |Xn ,T=t

(Xn; Yn) + h(ε′)

1− ε′
. (76)

Given P ∈ P(X n) and PYn |Xn ,T=t, the mutual information term in (76) can be upper-
bounded as follows:

IP◦PYn |Xn ,T=t
(Xn; Yn) ≤ n log |A| − HP◦PYn |Xn ,T=t

(Yn|Xn, T = t) (77)

= n log |A| −∑
xn

P(xn|T = t) H(Yn|Xn = xn, T = t) (78)

= n log |A| −∑
xn

P(xn|T = t) H(Zn|Xn = xn, T = t) (79)

= n log |A| − H(Zn|T = t). (80)

Applying (76) and (80) to (58) in Lemma 2 establishes Corollary 1.

4.3. Averaging over T

Corollary 1 deals with identification for a given fixed T = t, but our definition of
achievability in (13) and (14) entails averaging over t, which we must thus study. We begin
by lower-bounding the conditional entropy of the noise sequence Zn given the assistance T:

H(Zn|T) = H(Zn, T)− H(T) (81)

≥ {H(Zn)− nRh}+ (82)



Entropy 2023, 25, 1314 11 of 15

= n {H(PZ)− Rh}+. (83)

We next define, for every δ > 0, the subset of descriptions:

T ∗(δ) =
{

t ∈ T : H(Zn|T = t) ≥ n{H(PZ)− Rh − δ}+
}

. (84)

These are poor noise descriptions in the sense that, after they are revealed, the remaining
uncertainty about the noise is still large. Key is that their probability is bounded away from
zero. In fact, as we next argue:

PT(T ∗(δ)) ≥
{

δ
log |A|−H(PZ)+Rh+δ

if Rh < H(PZ)− δ

1 if Rh ≥ H(PZ)− δ
(85)

where in the second case the probability is 1 because when Rh ≥ H(PZ)− δ the condition
appearing in the definition of T ∗(δ) in (84) translates to H(Zn|T = t) ≥ 0. As to the first
case, we begin with (83) to obtain:

n(H(PZ)− Rh) ≤ H(Zn|T) (86)

= ∑
t/∈T ∗(δ)

PT(t) H(Zn|T = t) + ∑
t∈T ∗(δ)

PT(t) H(Zn|T = t) (87)

≤
(

1− PT
(
T ∗(δ)

))
· n
(

H(PZ)− Rh − δ
)
+ PT

(
T ∗(δ)

)
· n log |A| (88)

from which the first case of the bound in (85) follows. Here (87) follows from expressing T
as the disjoint union of T ∗(δ) and T \ T ∗(δ), and (88) follows from the definition of T ∗(δ)
and the bound H(Zn|T = t) ≤ n log |A|.

Inequality (85) establishes that the probability of a poor description is lower bounded
by a positive constant that does not depend on n. Using Corollary 1 for such t’s will be the
key to the converse.

Henceforth, we fix some sequence of identification codes of rate R exceeding CSh(Rh),
i.e., satisfying R > log |A| − {H(PZ) − Rh}+, and show that pMD,max + pFA,max cannot
tend to 0 as n tends to ∞. For such a rate R, there exist R′, δ > 0; a pair λ1, λ2 > 0 with
λ1 + λ2 < 1; and some η ∈ (0, 1− λ1 − λ2) such that:

R > R′ >
log |A| − {H(PZ)− Rh − δ}+

1− ε′
(89)

where ε′ , λ1 + λ2 + η < 1. Fix such R′, δ, λ1, λ2, η, and ε′.
Since the inequality on R′ in (89) is strict, and since ψn(η) tends to zero with n, it

follows that the inequality continues to hold also when we add ψn(η) to the RHS provided
that n is sufficiently large, i.e., that there exists some n0(η) such that:

R′ >
log |A| − {H(PZ)− Rh − δ}+

1− ε′
+ ψn(η), n ≥ n0(η). (90)

It then follows from (90) and the definition of T ∗(δ) in (84) that, whenever n ≥ n0(η), R′

exceeds the RHS of (75):

R′ >
log |A| − n−1 H(Zn|T = t)

1− ε′
, ∀t ∈ T ∗(δ). (91)

Corollary 1 thus implies that, for n > n0(η):( 1
n

log logN > R′
)

=⇒
(
∀t ∈ T ? ∃i(t) ∈ N s.t. pi

MD(t) + pi
FA(t) ≥ λ1 + λ2

)
. (92)
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However, we need a stronger statement because, in the above, the IM i for which pi
MD(t) +

pi
FA(t) ≥ λ1 + λ2 depends on t, whereas in our definition of achievability we are averaging

over T for fixed IM. The stronger result we will establish is that the condition on the LHS
of (92) implies that, for all sufficiently large n, there exists some IM i∗ (that does not depend
on t) which performs poorly for every t in T ∗(δ), i.e., for which:

pi∗
MD(t) + pi∗

FA(t) ≥ λ1 + λ2, ∀t ∈ T ∗(δ). (93)

That is, we will show that for sufficiently large n:( 1
n

log logN > R′
)

=⇒
(
∃i ∈ N s.t min

t∈T ?(δ)

{
pi

MD(t) + pi
FA(t)

}
≥ λ1 + λ2

)
. (94)

To this end, define for each t ∈ T ∗(δ):

N (t) =
{

i ∈ N : pi
MD(t) + pi

FA(t) < λ1 + λ2
}

(95)

and consider the identification code that results when we restrict our code to the IMs in
N (t) (while keeping the same acceptance regions). Applying Corollary 1 to this restricted
code using (91), we obtain that:

1
n

log log |N (t)| < R′, ∀t ∈ T ∗(δ). (96)

Consequently, ∣∣∣∣∣ ⋃
t∈T ∗(δ)

N (t)

∣∣∣∣∣ ≤ ∑
t∈T ∗(δ)

|N (t)| ≤ 2nRh 22nR′
(97)

where the second inequality holds by (96) and the fact that T ∗(δ) is contained in T , and the
latter’s cardinality is 2nRh .

Since R′ < R (89), there exists some n1(R, R′, Rh) such that:

2nRh22nR′
< 22nR

, n ≥ n1(R, R′, Rh). (98)

We can use this to upper-bound the RHS of (97) to obtain that, for n ≥ max
{

n0(η),
n1(R, R′, Rh)

}
: ∣∣∣∣∣ ⋃

t∈T ∗(δ)
N (t)

∣∣∣∣∣ < N. (99)

The complement (in N ) of the union on the LHS of (99) is thus not empty, which proves
the existence of some i? ∈ N for which (93) holds.

With i? in hand, the converse follows from the fact that the probability that T is in
T ∗(δ) is bounded away from zero (85), because for every n ≥ max

{
n0(η), n1(R, R′, Rh)

}
:

pMD,max + pFA,max = max
i∈N ∑

t∈T
PT(t) pi

MD(t) + max
i∈N ∑

t∈T
PT(t) pi

FA(t) (100)

≥ ∑
t∈T

PT(t)
(

pi∗
MD(t) + pi∗

FA(t)
)

(101)

≥ ∑
t∈T ∗(δ)

PT(t)
(

pi∗
MD(t) + pi∗

FA(t)
)

(102)

≥ ∑
t∈T ∗(δ)

PT(t) · (λ1 + λ2) (103)

= PT(T ∗(δ)) · (λ1 + λ2) (104)
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where (100) follows from the definitions in (13) and (14); in (101) we replaced the maximum
with the IM i∗; and (103) follows from (93). Thus, any code of rate R > log |A| − {H(PZ)−
Rh}+ with large enough n must have pMD,max + pFA,max ≥ PT(T ∗) · (λ1 + λ2), and the
latter is bounded away from zero. This concludes the proof of the converse part.
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Appendix A. Proof of Proposition 1

Proof. As in [4], the code construction entails time-sharing between two schemes: a “zero-
rate help scheme” corresponding to help of zero rate, and a “high-rate help scheme”
corresponding to help of a rate exceeding the noise entropy. In the former, the help
comprises one bit, indicating whether or not the noise is typical. We denote this help T(z)

and assume that it takes values in the set H = {τ, α}, with T(z) = τ indicating that the
noise is typical and T(z) = α that it is atypical (when the help is to the encoder, the helper
additionally provides the encoder with the description of one noise sample in order to
enable the encoder to convey T(z) to the decoder error free).

When the help is of high rate, we denote it T(h). It has two parts, that we denote T(h)
t/a

and T(h)
d , so T(h) = (T(h)

t/a , T(h)
d ). The first part, T(h)

t/a , indicates whether or not the noise is

typical and hence takes values inH. The second part, T(h)
d , describes the noise (perfectly)

when the latter is typical, and is null otherwise (as above, when the help is to the encoder,
the helper additionally provides the encoder with the description of one noise sample
in order to enable the encoder to convey T(h)

t/a to the decoder error free). The help in the
time-sharing scheme, which we denote T, comprises the help in the zero-rate part and the
help in the high-rate part:

T =
(
T(z) , T(h)) (A1)

The duty cycle is chosen so that the rate of T be Rh (or the entropy of the noise, if the latter
is smaller than Rh). We assume throughout that R < log |A|.

The transmission code derived in [4] has two salient properties:

• In the high-rate scheme, conditional on T(h)
t/a = τ (i.e., on the noise being typical and

that it can therefore be perfectly described by T(h)
d ), no erasures are declared.

• In the zero-rate scheme, conditional on T(z) = τ (i.e., on the noise being typical),
the maximal (over the messages) probability of erasure is upper bounded by some εn
tending to zero.
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(To guarantee the second property, the code is constructed—as in [4]—using random coding
and we then expurgate half the codewords to obtain a code whose maximal probability
of erasure is smaller than ε. The asserted property then follows by bounding, for each
message, the conditional probability of erasure given that the noise is typical by the ratio of
the unconditional probability of erasure to the probability that the noise is typical.)

We next analyze the time-sharing scheme. We focus on the case where 0 < Rh ≤ H(PZ).
The remaining cases, where Rh = 0 or Rh > H(PZ) are very similar, except that they
require no time sharing. We use the superscript (h) for quantities occurring in the high-
rate help phase, and the superscript (z) for those in the zero-rate phase. For example,
m(h), X(h), Y(h), T(h) are the message, input sequence, output sequence, and help in the
high-rate help phase; and the set of output sequences causing an erasure in this phase is
denoted Y (h)

er . The set of outputs causing an erasure in the time-sharing scheme is:

Yer =
{

yn : y(h) ∈ Y (h)
er or y(z) ∈ Y (z)

er

}
. (A2)

For the time-sharing scheme we now have:

∑
t∈T

PT(t) max
m∈M

PYn |Xn ,T
(
Yer| fm(t), t

)
≤ ∑

t∈T
PT(t) max

m∈M

[
PY(h) |Y(h),T(h)

(
Y (h)

er

∣∣∣ f (h)m(h)(t
(h)), t(h)

)
+ PY(z) |X(z),T(z)

(
Y (z)

er

∣∣∣ f (z)
m(z)(t

(z)), t(z)
)]

(A3)

≤ ∑
t∈T

PT(t) max
m(h)∈M(h)

PY(h) |X(h),T(h)

(
Y (h)

er

∣∣∣ f (h)m(h)(t
(h)), t(h)

)
+ ∑

t∈T
PT(t) max

m(z)∈M(z)
PY(z) |X(z),T(z)

(
Y (z)

er

∣∣∣ f (z)
m(z)(t

(z)), t(z)
)

(A4)

= ∑
t(h))

PT(h)(t(h)) max
m(h)∈M(h)

PY(h) |X(h),T(h)

(
Y (h)

er

∣∣∣ f (h)m(h)(t
(h)), t(h)

)
+∑

t(z)
PT(z)(t(z)) max

m(z)∈M(z)
PY(z) |X(z),T(z)

(
Y (z)

er

∣∣∣ f (z)m(z)(t
(z)), t(z)

)
(A5)

≤ P
(
T(h)

t/a = α
)
+ P

(
T(z) = α

)
· 1 + P

(
T(z) = τ

)
· εn (A6)

≤ P
(
T(h)

t/a = α
)
+ P

(
T(z) = α

)
+ εn (A7)

which establishes the proposition, because the RHS tends to zero. Here (A3) follows
from (A2) and the union-of-events bound; (A4) holds (in this case with equality) because
the maximum of a sum is upper bounded by the sum of the maxima; and (A6) holds by the
aforementioned salient properties of the code construction.
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