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Decoder-Assisted Communications
Over Additive Noise Channels

Shraga I. Bross , Senior Member, IEEE, Amos Lapidoth , Fellow, IEEE,

and Gian Marti , Student Member, IEEE

Abstract— A number of additive noise networks are studied in
the presence of a helper that observes the noise and assists the
decoder by providing it with a rate-limited description of said
noise. It is shown that “flash helping”—where noise descriptions
are provided infrequently but with great precision—is often
optimal and typically increases capacity by the maximal allowed
description rate. It requires no binning. The discrete setting of
the modulo-additive noise channel is also discussed.

Index Terms— Broadcast channel, capacity, dirty-paper coding,
helper, multi-access channel, state.

I. INTRODUCTION

MOTIVATED by the promise of cooperative communica-
tions, we study scenarios where an altruistic helper—

wishing to communicate no message of its own—observes the
noise disturbing a communication network and wishes to help
the receiver(s) to combat it. To this end, the helper can provide
the decoder(s) with a rate-limited description of the noise.
We quantify the capacity gain afforded by such help for a
number of multi-terminal networks.

For the single-user channel, it has been recently shown by
Bross and Lapidoth [1] that the capacity gain is equal to the
helper’s description rate. This result also follows from the
work of Cover and Kim [2] and Kim [3] on relay channels,
but the coding technique proposed in [1], “flash helping,”
is very different: it does not require binning. Moreover,
as we show here, it generalizes to a number of multi-terminal
networks.

The idea behind flash helping is to describe the noise
infrequently but with great precision. This technique has
recently found applications also in settings where, rather than
the decoder, it is the encoder that receives the help [4].

Viewing the noise as “state,” our scenario falls under the
heading of communication with rate-limited side-information
at the decoder. This general problem has been studied exten-
sively, starting with the work of Ahlswede and Han [5]
and Heegard and El Gamal [6]. In general, computing the
capacity of general state-dependent channels with rate-Re
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side-information at the encoder and rate-Rd side-information
at the decoder is still open. Only special cases have been
solved [7].

The case addressed in [1] corresponds to an additive noise
channel with Re = 0, and the one in [4] to an additive
noise channel with Rd = 0. Extending these results to the
additive Gaussian noise channel with general Re and Rd is
straightforward.

Since we only consider side-information at the decoder
here, we shall adopt the notation of [1] and denote the
helper’s rate Rh. Except in dealing with modulo-additive noise,
we shall focus on additive noise networks under average-power
constraints. As noted in [1], flash helping can achieve capacity
also under more general cost constraints.

The rest of this paper is organized as follows: In the
next section we review the additive noise single-user chan-
nel. Section III discusses the additive noise multiple-access
channel (MAC) and Section IV the dirty-paper channel [8].
The additive Gaussian-noise broadcast channel is analyzed in
Section V. Finally, Section VI shows that a discrete-alphabet
analog of flash-helping achieves the capacity of the discrete
modulo-additive noise channel, where the noise is described
almost-losslessly some of the time and not at all the rest of the
time. This highlights the structural similarity of the problems
for finite and infinite alphabets.

In all the cases we study, the outer bounds imposed on the
capacity region by the Cut-Set Theorem [9, Thm. 15.10.1] are
achievable. The capacity region is thus “as large as one could
reasonably hope for.” It would not even be larger if the helper
were cognizant also of the transmitted messages. For more on
the Cut-Set Bound for our setting see [1, Fig. 1].

II. THE ADDITIVE NOISE SINGLE-USER CHANNEL

A single-user additive noise channel with a helper is
depicted in Figure 1. Its time-k output Yk is

Yk = xk + Zk, (1)

where xk ∈ R denotes its time-k input, and the noise
sequence {Zk} comprises independent identically distributed
(IID) random variables of finite second moment N. A rate-R
blocklength-n encoder φenc maps the message M , taking
values in the set M = {1, . . . , 2nR}, to the codeword x(m) =
(x1(m), . . . , xn(m)) ∈ R

n:

φenc : M → Xn, m �→ x(m). (2)

An average-power constraint is imposed on the encoder requir-
ing that, for every message m ∈ M, the corresponding
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Fig. 1. The additive noise channel with a helper.

codeword x(m) satisfy �x(m)�2 ≤ nP, where P is the
maximal allowed power. When P is zero, only the all-zero
codeword can be used, and no data can be transmitted reliably.
We shall therefore assume throughout that P is (strictly)
positive

P > 0. (3)

The helper observes the noise sequence Z1, . . . , Zn and
describes it to the decoder using nRh bits. It does so using
the function

φhelp : R
n → {0, 1}nRh, z �→ t (4)

where T = φhelp(Z1, . . . , Zn) represents the helper’s nRh-bit
description of the noise. Based on this description and the
channel outputs Y1, . . . , Yn, the decoder guesses the mes-
sage m using the function

ψdec : R
n × {0, 1}nRh → M, (y, t) �→ m̂. (5)

A rate R is achievable if for every � > 0 we can find for
every sufficiently large blocklength n a triple (φenc, φhelp, ψdec)
for which the probability of error, uniformly averaged over
the message set, is upper-bounded by �. The supremum of the
achievable rates is denoted C(Rh).

The following result is due to Cover and Kim [2] and can be
obtained from [3], which deals with discrete-memoryless relay
channels, using a limiting argument. Nevertheless, we shall
present an alternative proof because it introduces a coding
technique that we shall later need to treat multi-user settings.
Unlike Kim’s approach, our scheme requires no binning.
As in [3], the converse follows from the Cut-Set Bound, so we
provide only a brief sketch.

Theorem 1 ( [2], [3]): The capacity of the single-user
additive noise channel with decoder assistance is

C(Rh) = C(0) +Rh. (6)

Our proof is based on a lemma on quantization [1, Thm. 3]
which we restate here for completeness.

Lemma 1: Let Z1, Z2, . . . be a sequence of random vari-
ables whose average second moment converges to σ2

lim
�→∞

1
�

�∑
k=1

E
[
Z2

k

]
= σ2, (7)

and assume that the empirical average of their squares
converges in probability to σ2

1
�

�∑
k=1

Z2
k

p→ σ2. (8)

Then, given any rate Rh and any �̃ > 0, there exists for all
sufficiently large blocklengths � a rate-Rh blocklength-� rate-
distortion codebook with normalized average MSE distortion

1
�

E

[∥∥Z� − Ẑ�
∥∥2
]
≤ σ2 2−2Rh + �̃, (9)

where Ẑ� is the reconstruction �-sequence of Z� =
(Z1, . . . , Z�) based on its (�Rh)-bit description.

Proof: We now prove the achievability part of Theorem 1.
Achievability via Flash Helping: In the following A� =

(A1, . . . , A�), and [1 : �] denotes the set {1, . . . , �}.
Before describing our proposed scheme, which is based on

time-sharing and resource-allocation, we begin with a calcu-
lation. Suppose that the helper describes the noise sequence
Z� using �Rh bits, and the decoder, based on this description,
produces the estimate Ẑ� of Z� with corresponding error Z̃�,
where

Z̃k = Zk − Ẑk, k ∈ [1 : �]. (10)

It then subtracts this estimate from the received sequence Y �

and obtains the sequence Ỹ �

Ỹk = Xk + Z̃k, k ∈ [1 : �]. (11)

We now study I
(
X�; Ỹ �

)
when X1, . . . , X� are IID according

to some input distribution PX of second moment smaller
than P and having finite differential entropy h(PX) > −∞.
(For example, since P is positive, PX could correspond to a
centered Gaussian of variance P/2.) Since the noise Z� and
its description are independent of X�,

I
(
X�; Ỹ �

)
= h

(
Ỹ �
)− h

(
Z̃�
)

(12)

≥ h
(
X�
)− h

(
Z̃�
)

(13)

= � h(PX) − h
(
Z̃�
)
, (14)

where the inequality follows by conditioning on Z̃�. To further
lower-bound I

(
X�; Ỹ �

)
, we shall upper-bound h

(
Z̃�
)

in terms
of the estimation error. Of all multivariate distributions of
a given second moment matrix, the centered multivariate
Gaussian maximizes differential entropy [9, Thm. 8.6.5].
Furthermore, under a constraint on the trace of the second
moment matrix, the IID Gaussian distribution maximizes dif-
ferential entropy. Thus, with Z̃ denoting Z̃�,

h(Z̃) ≤ �

2
log

(
2πe

tr(E[Z̃Z̃T])
�

)
(15)

=
�

2
log
(

2πe
1
�

E
[�Z̃�2

])
. (16)
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From (16) and (14) we obtain upon dividing by �,

1
�
I
(
X�; Ỹ �

) ≥ h(PX) − 1
2

log(2πe) − 1
2

log
(

1
�

E
[�Z̃�2

])
.

(17)

Lemma 1 guarantees that, given any δ̃ > 0, we can find
some sufficiently large � for which there exists a rate-Rh

blocklength-� rate-distortion codebook that allows the helper
to describe the noise sequence with average distortion that is
bounded by

1
�

E
[�Z̃�2

] ≤ N 2−2Rh (1 + δ̃). (18)

For such �, it follows from (18) and (17) that

1
�
I
(
X�; Ỹ �

) ≥ h(PX) − 1
2

log
(
2πeN(1 + δ̃)

)
+Rh, (19)

which implies by the channel coding theorem [9, Thm. 7.7.1]
that, by coding over supersymbols of length �, the right-hand
side (RHS) of (19) (or, more precisely, the maximum between
it and zero) is achievable.

We now come to “flash helping” and consider time sharing,
where for some (small) 0 < τ < 1 the channel is used
without help in (1 − τ) of the time (i.e., during (1 − τ)n
channel uses), and with rate-(Rh/τ) help in τ of the time
(i.e., in the remaining τn channel uses).1 In the absence of
help, the rate C(0) is achievable, and in its presence the RHS
of (19) is achievable. The overall achievable rate is thus lower-
bounded by

(1 − τ)C(0) + τ

(
h(PX) − 1

2
log
(
2πeN(1 + δ̃)

)
+
Rh

τ

)
.

(20)

By studying the limit of (20) as τ ↓ 0—a limit corre-
sponding to very rare (τ of the time) but high precision
(at rate Rh/τ ) noise description—we obtain the achievability
of C(0)+Rh and hence conclude the proof. Since the helper is
used only τ of the time, and since τ approaches zero, we refer
to this form of help as “flash helping.”

Sketch of the Converse: By Fano’s inequality
[9, Thm. 2.10.1], the capacity is bounded from above
by the per-symbol mutual information 1

nI(M ;Y, T )
between the message M and the decoder’s input (Y, T ).
We can decompose this as 1

nI(M ;Y, T ) = 1
nI(M ;Y)+

1
nI(M ;T |Y), where the first of the terms is bounded by
C(0) and the second by 1

nI(M ;T |Y) ≤ 1
nH(T ) ≤ Rh, and

the result follows. Since we do not assume independence
between T and M , the converse holds even if the helper is
cognizant of the transmitted message.

Remark 1: Theorem 1 is extended in [1] to noise with mem-
ory and to more general peak- and average-power constraints.

Our description in (4) of the helper may seem too expan-
sive, as it allows the helper to observe the noise sequence
noncausally and to transmit its description in bursts. However,
these issues can be easily overcome, because the description is

1We ignore the fact, τn need not be an integer. This could be remedied e.g.
by choosing τ = κ/n for some integer κ (so that τn = κ). The limit τ ↓ 0
should then be understood as jointly letting κ, n → ∞ at relative velocities
such that τ = κ/n → 0.

provided to the decoder and not to the encoder. We can address
them by introducing some decoding delay: we consider trans-
mission in blocks, where the helper transmits its description
of the noise corrupting Block i during Block i + 1, and the
decoder decodes the message corresponding to Block i only
after it has received this description, i.e., after Block i + 1.
This approach resolves the causality issue at the cost of some
delay and also alleviates the need for bursty transmissions by
the helper.

III. THE ADDITIVE NOISE MAC

A two-to-one additive noise multiple-access channel (MAC)
with a helper is depicted in Figure 2. Its time-k output is

Yk = x1,k + x2,k + Zk, (21)

where x1,k and x2,k are the time-k inputs produced by the
two users, and the noise sequence {Zk} comprises, as in the
single-user case, IID random variables of second-moment N.
In analogy to the single-user case, we assume that the inputs
are subject to an average-power constraint

1
n

n∑
k=1

xi,k(mi)2 ≤ Pi, i ∈ {1, 2}. (22)

Here xi,k(mi) denotes the time-k input produced by Trans-
mitter i to convey its message Mi, where M1 and M2 are
independent and of rates R1 and R2 respectively, and

P1,P2 > 0. (23)

The helper observes the noise sequence and describes it to the
receiver using nRh bits.

Let C(Rh) denote the capacity region of this MAC under the
average probability of error criterion. The following theorem
shows that C(Rh) is the Minkowski sum of the capacity in the
absence of a helper C(0) and the set {(R1, R2) ∈ R

2
+ : R1 +

R2 ≤ Rh}.
Theorem 2: The capacity region of the additive noise MAC

with a helper is

C(Rh) = C(0) +
{
(R1, R2) ∈ R

2
+ : R1 +R2 ≤ Rh

}
(24)

where R+ denotes the nonnegative reals.
Proof: The helping strategy we propose is similar to the

one we employed in the single-user case with Z� estimated
as Ẑ� based on the helper’s �Rh-bit description and with the
corresponding estimation error Z̃� = Z�−Ẑ�. For independent
�-vectors X�

1, X�
2, and Z̃�, and with Ỹ � = X�

1 +X�
2 + Z̃� we

have

I
(
X�

1; Ỹ
�
∣∣X�

2

)
= h

(
Ỹ �
∣∣X�

2

)− h
(
Ỹ �
∣∣X�

1, X
�
2

)
= h

(
Ỹ �
∣∣X�

2

)− h
(
Z̃�
)

≥ h
(
X�

1

)− h
(
Z̃�
)
. (25a)

Likewise,

I
(
X�

2; Ỹ
�
∣∣X�

1

) ≥ h
(
X�

2

)− h
(
Z̃�
)
, (25b)

and

I
(
X�

1, X
�
2; Ỹ

�
)

= h
(
Ỹ �
)− h

(
Z̃�
) ≥ h

(
X�

1

)− h
(
Z̃�
)
. (25c)
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Fig. 2. The additive noise MAC with a helper.

Fig. 3. The dirty-paper channel with a helper.

Suppose now that, in addition to being independent, the vectors
X�

1 and X�
2 have components that are drawn IID according

to some distribution PX of second moment smaller than
min{P1,P2} and having finite differential entropy. It then
follows from (25) using (16) and (18) that (for sufficiently
large �)

1
�
I
(
X�

1; Ỹ
�
∣∣X�

2

) ≥ h(PX) − 1
2

log
(
2πeN(1 + δ̃)

)
+Rh,

(26a)
1
�
I
(
X�

2; Ỹ
�
∣∣X�

1

) ≥ h(PX) − 1
2

log
(
2πeN(1 + δ̃)

)
+Rh,

(26b)
1
�
I
(
X�

1, X
�
2; Ỹ

�
) ≥ h(PX) − 1

2
log
(
2πeN(1 + δ̃)

)
+Rh.

(26c)

The result now follows by coding over supersymbols of
length � and by considering flash helping, where, for τ ↓ 0,
the channel is used with rate-Rh/τ help during τ of the time
and without help during the remaining (1 − τ) of the time.

The converse can be proved by augmenting the noise
description to the channel output sequence and applying the
standard steps of the MAC’s converse to the resulting channel
while noting that the entropy of the noise description cannot
exceed nRh.

Remark 2 ( [10]): If the noise is Gaussian, then (24) con-
tinues to hold in the presence of feedback provided that
C(Rh) is interpreted as the feedback capacity and that C(0)
is therefore as given by Ozarow [11].

IV. WRITING ON DIRTY PAPER

Flash helping can also be applied to Costa’s “writing on
dirty paper” setting [8] when a helper observes the noise
sequence. Such a scenario is depicted in Figure 3. The time-k
channel output Yk is

Yk = Xk + Sk + Zk, (27)

where Xk, Sk, and Zk are the time-k channel input, state,
and noise, respectively. The encoder observes the state
sequence Sn noncausally, and the symbol Xk(m,Sn) it pro-
duces at time k is thus a function of both the message m and
the observed state sequence Sn. The average-power constraint
we consider requires that, for each message m ∈ M,

1
n

n∑
k=1

E
[
Xk(m,Sn)2

] ≤ P, (28)

where the expectation is over the state sequence Sn, and we
assume that P > 0.

The state sequence {Sk} and the noise sequence {Zk} are
independent, with the former being IID ∼ N (0, σ2

S) and the
latter IID ∼ N (0, σ2

Z). Their joint law does not depend on the
message m.

The noise sequence {Zk} is observed by the helper who
describes it to the decoder at the rate Rh. The capacity we
seek is denoted C(Rh). It was computed in the absence of a
helper by Costa [8] who showed that

C(0) =
1
2

log
(

1 +
P

σ2
Z

)
. (29)

Theorem 3: The capacity C(Rh) of the dirty-paper channel
with a helper is

C(Rh) = C(0) +Rh. (30)

Proof: The converse follows from the Cut-Set Bound
[9, Thm. 15.10.1], so we focus on achievability. Once again,
we use flash helping by considering a time-sharing scheme
with duty-cycle 0 < τ < 1, which we later drive to zero.

During 1−τ of the time, we use Costa’s dirty-paper coding
without any help. The achievable rate during this period is
the RHS of (29). In the remaining time, the helper describes
the noise sequence at rate Rh/τ , and the encoder uses the
single-user scheme of Section II with a twist: it subtracts
the state sequence. This subtraction comes at a power cost.
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Fig. 4. The broadcast channel with a helper.

Indeed, since the variance of the state is σ2
S , subtracting the

sequence during τn channel uses increases the transmitted
power by τσ2

S . This additional power, however, will wash out
when we later consider2 τ ↓ 0. (The continuity of C(Rh) in
P for P > 0 can be established by showing that C(Rh) is
concave in P using a time-sharing argument.) The achievable
rate during this period is lower-bounded by the RHS of (19).
The rate achieved by the time-sharing scheme can be thus
lower-bounded as in (20). As τ ↓ 0 it converges to the RHS
of (30), and the excess power that results from subtracting the
state sequence tends to zero.

The proof extends verbatim to the case where the noise and
state are not necessarily Gaussian, provided that they have a
finite second moment:

Remark 3: As long as the noise and state are of finite
second moment, the relation C(Rh) = C(0)+Rh continues to
hold provided that we interpret C(0) as the capacity without a
helper for the given (not necessarily Gaussian) noise and state
distributions.

V. THE GAUSSIAN ADDITIVE NOISE

BROADCAST CHANNEL

Flash helping can also be used to communicate over the
Gaussian broadcast channel with a helper, a network which is
depicted in Figure 4. However, some additional work is needed
because, in the presence of a helper, the notion of degradedness
is more involved: with help, the more-noisy receiver may
actually be the better receiver.

The time-k channel outputs observed by the respective
receivers are

Y1,k = xk + Z1,k, (31a)

Y2,k = xk + Z2,k, (31b)

where xk is the time-k input, and where the noise tuples
{(Z1,k, Z2,k)} are IID centered bivariate Gaussians of covari-
ance matrix (

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (32)

and we assume without loss of generality that

σ2 ≥ σ1 > 0. (33)

The noise tuples are observed by a helper who can describe
them to the two decoders at respective rates Rh1 and Rh2 .

2This loss can be avoided if one uses Costa’s scheme.

The encoder wishes to transmit three independent messages
M0, M1, and M2 at rates R0, R1, and R2. Both decoders
must recover the common message M0 reliably, while only
Decoder 1 must recover M1 and only Decoder 2 must
recover M2.

The encoder φenc is thus a mapping

φenc : M0 ×M1 ×M2 → R
n,

(m0,m1,m2) �→ x(m0,m1,m2) = (x1, . . . , xn), (34)

where Mi =
{
1, . . . , 2nRi

}
, i ∈ {0, 1, 2}, are the message

sets, and where we impose the average-power constraint that
for all message tuples (m0,m1,m2)∥∥x(m0,m1,m2)

∥∥2 ≤ nP. (35)

A helper is a mapping

φhelp : R
n × R

n → {0, 1}nRh1 × {0, 1}nRh2 ,

(z1, z2) �→
(
t1(z1, z2), t2(z1, z2)

)
, (36)

with the understanding that T1(Z1,Z2) is presented to
Decoder 1 and T2(Z1,Z2) to Decoder 2. The decoders are
thus mappings

ψ1 : R
n × {0, 1}nRh1 → M0 ×M1, (y1, t1) �→ (m̂0, m̂1),

(37a)

ψ2 : R
n × {0, 1}nRh2 → M0 ×M2, (y2, t2) �→ (m̂0, m̂2).

(37b)

The capacity with respect to the average-probability-of-
error-criterion is denoted C(Rh1 , Rh2) and is characterized in
the following theorem.

Theorem 4: The capacity region of the Gaussian broad-
cast channel with separate helping bit-pipes to each of the
decoders is (with ᾱ � 1 − α)

C(Rh1 , Rh2) =
⋃

α∈[0,1]

{
(R0, R1, R2) ∈ R

3
+ :

R0 +R2 ≤ 1
2

log
(

1 +
αP

ᾱP + σ2
2

)
+Rh2

R1 ≤ 1
2

log
(

1 +
ᾱP

σ2
1

)
+Rh1

R0 +R1 ≤ 1
2

log
(

1 +
P

σ2
1

)
+Rh1

}
. (38)

Proof: The proof is deferred to the appendix.
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Remark 4: The capacity region does not depend on the
noise correlation ρ. Moreover, it can be achieved by a helper
of the form

(z1, z2) �→
(
t1(z1), t2(z2)

)
, (39)

i.e., a helper that—rather than describing the noise sequences
jointly—describes them separately, each to the appropriate
decoder.

Remark 5: Achievability holds also if the noises are
not Gaussian or not memoryless: it suffices that their
empirical second moment converge in probability to finite
σ2

1 and σ2
2 .

When only a common message is to be sent (i.e., R1 =
R2 = 0), Theorem 4 implies that the largest achievable rate is

min
i∈{1,2}

{
1
2

log
(

1 +
P

σ2
i

)
+Rhi

}
. (40)

This can be generalized to non-Gaussian noises and to more
receivers:

Remark 6 ( [10]): The largest achievable common-
message rate C(Rh1 , . . . , RhL

) to L receivers is

max
PX

min
i∈[1:L]

{
I(X ;Yi) +Rhi

}
, (41)

where the maximum is over all input distributions PX under
which EP [X2] ≤ P.

VI. THE MODULO-ADDITIVE NOISE CHANNEL

This section demonstrates that a discrete form of flash-
helping can sometimes even achieve the capacity of finite-
alphabet channels. The model we treat is the single-user
modulo-additive noise channel. The extension to the MAC is
straightforward.

Consider the modulo-additive noise channel whose time-k
output Yk is

Yk = xk + Zk, (42)

where xk, Zk, and Yk all take values in the modulo-additive
group X = {0, 1, . . . , |X | − 1}, and “+” denotes addi-
tion modulo |X |. Irrespective of the input sequence {xk},
the noise sequence {Zk} is IID ∼ PZ , with corresponding
entropy H(Z). In the absence of a helper, the capacity is [9,
Thm. 7.2.1]

C(0) = log |X | −H(Z). (43)

Suppose now that the noise sequence is observed by a helper
who then describes it to the decoder at rate Rh.

As can be inferred from [2], the capacity is min{C(0) +
Rh, log |X |}. Unlike Kim’s proof, which uses binning, here
we will show achievability using flash helping. The converse
follows from the Cut-Set Bound and is omitted.

Theorem 5: The capacity of the modulo-additive noise
channel with a rate-Rh helper is

C(Rh) = min
{
C(0) +Rh, log |X |}. (44)

Proof: If Rh > H(Z), then the helper can describe
the noise sequence (almost) losslessly. The receiver can then

subtract it and thus obtain a noise-free channel of capacity
log |X |. We therefore focus on the case where Rh ≤ H(Z).

In this case the helper can use flash helping by using nRh

bits to describe the first n(Rh/H(Z)) noise samples and
by not describing the remaining noise samples at all. The
receiver then subtracts the noise samples for which it has a
description.

When the noise is subtracted, the rate log |X | is achiev-
able, and when not, log |X | − H(Z). The aggregate rate is
thus

Rh

H(Z)
log |X | +

(
1 − Rh

H(Z)

)(
log |X | −H(Z)

)
, (45)

which simplifies to log |X | − H(Z) + Rh, i.e., to
C(0) +Rh.

APPENDIX

PROOF OF THEOREM 4

A. Achievability

The achievability proof is based on the classical random
coding argument. We generate codebooks at random and show
that the different probabilities of error (and hence also their
sum) vanish as the blocklength tends to infinity. We then
conclude that there must exist some choice of the codebooks
for which the sum of (and hence all) the probabilities of error
vanish.

Given some (small) 0 < τ < 1, we split the blocklength n
into three intervals of lengths3 (1−2τ)n, τn, and τn. We refer
to the first interval as the “common interval,” to the second
as the “Decoder-1 interval,” and to the last as the “Decoder-2
interval.” In our analysis we shall first drive n to infinity and,
afterwards, drive τ to zero.

Unless otherwise specified, we shall assume that all the
vectors/tuples in this proof are row-vectors. For a generic
n-vector w, we use w(1−2τ) to denote its first n(1 − 2τ)
components stacked into an n(1−2τ)-dimensional row-vector;
we use w(τ1) to denote the next nτ components stacked into
an nτ -dimensional row-vector, and w(τ2) to denote the last nτ
components of w stacked into an nτ -dimensional row-vector.
Because all the vectors are row-vectors, we can express w in
terms of w(1−2τ), w(τ1), and w(τ2) as

w = w(1−2τ)
�w(τ1)

�w(τ2), (46)

where “�” indicates concatenation. For example, the noise
sequence z1 experienced by Receiver 1 is an n-tuple that can
be written as z1,(1−2τ)

�z1,(τ1)
�z1,(τ2).

In our coding scheme, the helper provides Decoder 1 with
an nRh1 -bit description of z1,(τ1) and Decoder 2 with an
nRh2-bit description of z2,(τ2). Decoder 1 ignores y1,(τ2) and
Decoder 2 ignores y2,(τ1). This explains our naming of the
intervals.

3We ignore the fact that nτ need not be an integer. This can be remedied
in a way that does not affect the rates, see Footnote 1.
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1) Encoding: We use rate-splitting for the private messages.
We decompose M1 of rate R1 into M1 =

(
M

(0)
1 ,M

(1)
1

)
of

rates R(0)
1 , R(1)

1 , and M2 of rate R2 into M2 =
(
M

(0)
2 ,M

(1)
2

)
of rates R

(0)
2 , R(1)

2 . The general form of the transmitted
n-tuple x

(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2 ,m

(1)
2

)
that is used to convey

the messages
(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2 ,m

(1)
2

)
is

x
(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2 ,m

(1)
2

)
=
(
u
(
m0,m

(0)
2

)
+ v(1−2τ)

(
m

(0)
1

))
�

v(τ1)

(
m

(1)
1

∣∣m0,m
(0)
2

)�
v(τ2)

(
m

(1)
2

∣∣m0,m
(0)
2

)
, (47)

where the terms appearing on the RHS will be described
shortly. Given some 0 ≤ α ≤ 1, we draw the 2n(R0+R

(0)
2 )

length-n(1 − 2τ) codewords
{
u
(
m0,m

(0)
2

)}
independently,

with the components of each being drawn IID ∼ N (0, αP).
Independently of these codewords, we draw the 2nR

(0)
1 length-

n(1 − 2τ) codewords
{
v(1−2τ)

(
m

(0)
1

)}
independently, with

the components being IID ∼ N (0, ᾱP). Here and throughout,
ᾱ � 1 − α.

For each codeword u
(
m0,m

(0)
2

)
, we independently

draw 2nR
(1)
1 length-nτ codewords

{
v(τ1)

(
m

(1)
1

∣∣m0,m
(0)
2

)}
with the components of each being drawn IID ∼
N (0,P). Similarly, and independently of those, for each
u
(
m0,m

(0)
2

)
, we independently draw 2nR

(1)
2 length-nτ code-

words
{
v(τ2)

(
m

(1)
2

∣∣m0,m
(0)
2

)}
with the components of each

being drawn IID ∼ N (0,P). The transmitted n-tuple is now
as given in (47).4

Decoder 1 ignores y1,(τ2), and Decoder 2 ignores y2,(τ1),
so the relevant sections of x for Decoder 1 and 2 are

x(1)
(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2

)
=
(
u
(
m0,m

(0)
2

)
+ v(1−2τ)

(
m

(0)
1

))�

v(τ1)

(
m

(1)
1

∣∣m0,m
(0)
2

)
,

(48)

x(2)
(
m0,m

(0)
1 ,m

(0)
2 ,m

(1)
2

)
=
(
u
(
m0,m

(0)
2

)
+ v(1−2τ)

(
m

(0)
1

))�

v(τ2)

(
m

(1)
2

∣∣m0,m
(0)
2

)
.

(49)

2) Helping: The helper provides Decoder 1 with an
nRh1-bit description of z1,(τ1) and Decoder 2 with an
nRh2-bit description of z2,(τ2). To describe z1,(τ1), a random
codebook is generated containing 2nτR̃h1/τ = 2nR̃h1 code-
words {ẑ1,(τ1)} that are drawn independently and uniformly
over the nτ -dimensional sphere of radius

r =
√
nτσ2

1

(
1 − 2−2Rh1/τ

)
. (50)

The noise sequence z1,(τ1) is then described by the codeword
ẑ∗1,(τ1)

that has an “almost orthogonal” error vector

ẑ∗1,(τ1) = argmin
ẑ1,(τ1)

〈
ẑ1,(τ1), z1,(τ1) − ẑ1,(τ1)

〉
. (51)

The helper provides Decoder 1 with the index of ẑ∗1,(τ1)
.

4Drawing the codewords according to these distributions will typically result
in minor violations of the power constraint. This can be remedied in the
standard way of backing-off in the power by ε and then expurgating the
codewords that violate the power constraint [9], [12].

Using standard results on the covering of the unit n-sphere
[13], [14], it can be shown that, for any δ > 0, for some
choice of R̃h1 < Rh1 + δ asymptotic orthogonality holds in
probability:

p-lim
n→∞

1
nτ

〈
ẑ∗1,(τ1)

, z1,(τ1) − ẑ∗1,(τ1)

〉
= 0. (52)

Using this asymptotic orthogonality and by opening the square,

p-lim
n→∞

1
nτ

∥∥z1,(τ1) − ẑ∗1,(τ1)

∥∥2 = σ2
1 2−2Rh1/τ . (53)

The procedure for describing z2,(τ2) to Decoder 2 is anal-
ogous: 2nR̃h2 codewords {ẑ2,(τ2)} are drawn independently
uniformly over the nτ -dimensional sphere of radius

r =
√
nτσ2

2

(
1 − 2−2Rh2/τ

)
. (54)

The codeword ẑ∗2,(τ2)
describing z2,(τ2) is the one leading to

the error that is most orthogonal, and, for any δ > 0 and for
some R̃h2 < Rh2 + δ,

p-lim
n→∞

1
nτ

∥∥z2,(τ2) − ẑ∗2,(τ2)

∥∥2 = σ2
2 2−2Rh2/τ . (55)

3) Decoding: Decoder 1 ignores the sequence y1,(τ2) that
it receives during the Decoder-2 interval and bases its deci-
sion on y1,(1−2τ)

�y1,(τ1) only. From y1,(τ1) it subtracts the
description ẑ∗1,(τ1)

of z1,(τ1) to form

ŷ1,(τ1) = y1,(τ1) − ẑ∗1,(τ1)
. (56)

For consistency we also define ŷ1,(1−2τ) � y1,(1−2τ) and
ŷ1 � ŷ1,(1−2τ) ŷ1,(τ1).

�

Decoder 1 decodes the messages intended for it (as well
as m̂

(0)
2 , which it discards) based on ŷ1 by assuming that

in the common interval the noise is Gaussian with variance
σ2

1 , that in the Decoder-1 interval it is Gaussian with variance
σ2

1 2−2Rh1/τ , and that in both intervals the signal power is P. It
thus employs scaled nearest-neighbor decoding and produces(

m̂0, m̂
(0)
1 , m̂

(1)
1 , m̂

(0)
2

)
= argmin

(m0,m
(0)
1 ,m

(1)
1 ,m

(0)
2 )

D1

(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2

)
, (57)

where

D1

(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2

)
� 1
n

n(1−2τ)∑
k=1

(
ŷ1,k − x

(1)
k

(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2

))2

+
1
n

n(1−τ)∑
k=

n(1−2τ)+1

22Rh1/τ
(
ŷ1,k−x(1)

k

(
m0,m

(0)
1 ,m

(1)
1 ,m

(0)
2

))2

(58)

=
1
n

n(1−2τ)∑
k=1

(
ŷ1,k − uk(m0,m

(0)
2 )−v(1−2τ),k(m(0)

1 )
)2

+
1
n

n(1−τ)∑
k=

n(1−2τ)+1

22Rh1/τ
(
ŷ1,k−v(τ1),k

(
m

(1)
1

∣∣m0,m
(0)
2

))2

(59)

is the decoding metric.
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Decoder 2 ignores the sequence y2,(τ1) and bases its deci-
sion on ŷ2 � ŷ2,(1−2τ) ŷ2,(τ2),

� where ŷ2,(1−2τ) = y2,(1−2τ)

and where ŷ2,(τ2) = y2,(τ2) − ẑ∗2,(τ2)
. It does not attempt to

decode m(0)
1 and hence treats the superpositioned codeword

v(1−2τ) of the common interval as noise. It assumes therefore
that the noise is Gaussian with variance σ2

2 + ᾱP during the
common interval and with variance σ2

2 2−2Rh1/τ during the
Decoder-2 interval, and that the signal power is αP during
the common interval and P during the Decoder-2 interval.
It therefore produces the guess(
m̂0, m̂

(0)
2 , m̂

(1)
2

)
= argmin

(m0,m
(0)
2 ,m

(1)
2 )

D2

(
m0,m

(0)
2 ,m

(1)
2

)
, (60)

where

D2

(
m0,m

(0)
2 ,m

(1)
2

)
� 1
n

n(1−2τ)∑
k=1

σ2
2

ᾱP + σ2
2

(
ŷ2,k − uk

(
m0,m

(0)
2

))2

+
1
n

n(1−τ)∑
k=

n(1−2τ)+1

22Rh2/τ
(
ŷ2,k − v(τ2),k

(
m

(1)
2

∣∣m0,m
(0)
2

))2

(61)

is the decoding metric. Note that the second sum in (61) ranges
over the indices from n(1 − 2τ) + 1 to n(1 − τ) because,
by construction, ŷ2 is a vector of length n(1 − τ).

4) Error Analysis: Since the codebooks are Gaussian, and
since the decoding is scaled nearest-neighbor, we can employ
the technique of [15] and [16]. The analysis is, however, a bit
more involved because we are in a multiple-user setting.

Since our codewords are chosen independently with iden-
tical distribution, we may assume without loss of general-
ity that the transmitted message is

(
m0, m(0)

1 , m(1)
1 , m(0)

2 ,
m

(1)
2

)
= (1, 1, 1, 1, 1) and denote the corresponding codeword

x(1, 1, 1, 1, 1) or x(1). Note that by independence, by the
weak law of large numbers, and by (53) and (55),

p-lim
n→∞

1
n

∥∥ŷ1,(1−2τ)

∥∥2 = (1 − 2τ)
(
P + σ2

1

)
, (62)

p-lim
n→∞

1
n

∥∥ŷ1,(τ1)

∥∥2 = τ
(
P + 2−2Rh1/τ σ2

1

)
, (63)

p-lim
n→∞

1
n

∥∥ŷ2,(1−2τ)

∥∥2
= (1 − 2τ)

(
P + σ2

2

)
, (64)

p-lim
n→∞

1
n

∥∥ŷ2,(τ2)

∥∥2 = τ
(
P + 2−2Rh2/τ σ2

2

)
. (65)

Consider now first the chance of a decoding error at
Decoder 1: From the decoding metric definition (59) it follows
that, as n→ ∞, the correct codeword will accumulate the met-
ric σ2

1(1− τ) with probability tending to one. The probability
of a decoding error is therefore upper-bounded asymptotically
by the probability that some other codeword accumulates a
metric below σ2

1 . We next analyze the rate constraints that
guarantee that this probability vanish as n → ∞. We have to
consider four different error cases:

• Case 1:
(
m̂0, m̂

(0)
2

) �= (1, 1), m̂(0)
1 �= 1

In this case, a candidate codeword X is independent
of ŷ1, regardless of whether or not m̂(1)

1 = 1 (since the
codebooks for M (1)

1 are independent of each other for
different

(
m0,m

(0)
2

)
). An arbitrary codeword X drawn

IID ∼ N (0,P) induces a random metric D1,

D1 =
1
n

n(1−2τ)∑
k=1

(
ŷ1,k −Xk

)2

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

22Rh1/τ
(
ŷ1,k −Xk

)2
. (66)

Conditioned on ŷ1, the logarithmic moment generating
function (MGF) of D1 is given for any θ < 0 as

Λn(θ) =
1
n

n(1−2τ)∑
k=1

ŷ2
1,kθ

1−2θP/n
− 1

2

n(1−2τ)∑
k=1

log(1−2θP/n)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P/n

− 1
2

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P/n

)
.

(67)

Therefore, by (62) and (63), it follows that

1
n

Λn(nθ)

=
1
n

n(1−2τ)∑
k=1

ŷ2
1,kθ

1 − 2θP
− 1

2n

n(1−2τ)∑
k=1

log(1 − 2θP)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P

− 1
2n

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P

)
(68)

=
θ

1 − 2θP
· 1
n

n(1−2τ)∑
k=1

ŷ2
1,k − 1 − 2τ

2
log(1 − 2θP)

+
θ

1 − 2θ 22Rh1/τ P
· 1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,k

− τ

2
log
(
1 − 2θ 22Rh1/τ P

)
(69)

n→∞→ (1 − 2τ)
(P + σ2

1)θ
1 − 2θP

− 1 − 2τ
2

log(1 − 2θP)

+ τ

(
22Rh1/τ P + σ2

1

)
θ

1 − 2θ 22Rh1/τ P

− τ

2
log
(
1 − 2θ 22Rh1/τ P

)
(70)

� Λ(θ) (71)

with probability one. By the Gärtner–Ellis Theorem
[17, Thm. 2.3.6],

lim
n→∞

1
n

log Pr
(
D1 < σ2

1

)
= −Λ∗(σ2

1

)
(72)
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where

Λ∗(σ2
1

)
= sup

θ<0

{
θσ2

1 − Λ(θ)
}

(73)

is the Fenchel–Legendre transform of Λ(·). In other words,
for the case at hand, the probability of error for a single
random codeword X decays exponentially with error expo-
nent Λ∗(σ2

1). Hence, by the union bound, as long as the
number of candidate codewords X grows exponentially at
an exponent below Λ∗(σ2

1), the probability of this error
event decays to zero as n → ∞. Furthermore, for any
θ < 0, θσ2

1 − Λ(θ) represents a lower bound on Λ∗(σ2
1).

The choice of θ = − 1
2σ2

1
establishes

Λ∗(σ2
1

) ≥ − 1
2σ2

1

· σ2
1 − Λ

(
− 1

2σ2
1

)
(74)

=
1 − 2τ

2
log
(

1 +
P

σ2
1

)
+
τ

2
log
(

1 +
P

σ2
1

· 22Rh1/τ

)
− τ

2
. (75)

Therefore, the probability of the current error case vanishes
as long as

R0 +R
(0)
1 +R

(1)
1︸ ︷︷ ︸

R1

+R
(0)
2

<
1 − 2τ

2
log
(

1 +
P

σ2
1

)
+
τ

2
log
(

1 +
P

σ2
1

· 22Rh1/τ

)
− τ

2
. (76)

Upon letting τ ↓ 0, we see that, as long as the rates satisfy

R0 +R1 +R
(0)
2 <

1
2

log
(

1 +
P

σ2
1

)
+Rh1 , (77)

the probability of an error of the kind at hand vanishes.
• Case 2:

(
m̂0, m̂

(0)
2

) �= (1, 1), m̂(0)
1 = 1

In this case, the metric D1 reduces to

D1 =
1
n

n(1−2τ)∑
k=1

(
uk(1, 1) + z1,k − Uk

)2

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

22Rh1/τ
(
ŷ1,k −Xk

)2
, (78)

where u(1, 1) and U are independent. Conditioned on
u(1, 1) + z1 and on ŷ1,(τ1), the logarithmic MGF of D1

is given for θ < 0 as

Λn(θ) =
1
n

n(1−2τ)∑
k=1

(
uk(1, 1) + z1,k

)2
θ

1 − 2θαP/n

− 1
2

n(1−2τ)∑
k=1

log(1 − 2θαP/n)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P/n

− 1
2

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P/n

)
. (79)

By the law of large numbers and by (63), we get
1
n

Λn(nθ)

=
1
n

n(1−2τ)∑
k=1

(uk(1, 1) + z1,k)2θ
1 − 2θαP

− 1
2n

n(1−2τ)∑
k=1

log(1 − 2θαP)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P

− 1
2n

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P

)
(80)

n→∞→ (1 − 2τ)
(αP + σ2

1)θ
1 − 2θαP

− 1 − 2τ
2

log(1 − 2θαP)

+ τ

(
22Rh1/τ P + σ2

1

)
θ

1 − 2θ 22Rh1/τ P

− τ

2
log
(
1 − 2θ 22Rh1/τ P

)
(81)

� Λ(θ) (82)

with probability one. We invoke the Gärtner–Ellis The-
orem as in Case 1 and bound the Fenchel–Legendre
transform Λ∗(σ2

1) from below by − 1
2σ2

1
· σ2

1 − Λ
(− 1

2σ2
1

)
to conclude that the probability of this error case decays
to zero as n→ ∞ whenever

R0 +R
(1)
1 +R

(0)
2 <

1 − 2τ
2

log
(

1 +
αP

σ2
1

)
+
τ

2
log
(

1 +
P

σ2
1

· 22Rh1/τ

)
− τ

2
(83)

which holds for τ ↓ 0 whenever

R0 +R
(1)
1 +R

(0)
2 <

1
2

log
(

1 +
αP

σ2
1

)
+Rh1 . (84)

• Case 3:
(
m̂0, m̂

(0)
2

)
= (1, 1) m̂(0)

1 �= 1
In this case, too, it is immaterial whether or not m̂(1)

1 = 1.
Indeed, when

(
m̂0, m̂

(0)
2

)
= (1, 1), the guess m̂

(0)
1 is

determined by the first sum on the RHS of (59), which
is unaffected by m

(1)
1 . We therefore focus on this sum.

When
(
m̂0, m̂

(0)
2

)
= (1, 1), the sum reduces to

1
n

n(1−2τ)∑
k=1

(
v(1−2τ),k(1) + z1,k − V(1−2τ),k

)2
. (85)

This sum is similar to the one encountered in the single-
user additive Gaussian noise channel when the noise is of
variance σ2

1 and the codebook is Gaussian with power ᾱP.
The probability of an error of the type considered in this
case will thus vanish as n→ ∞ whenever

R
(0)
1 <

1 − 2τ
2

log
(

1 +
ᾱP

σ2
1

)
(86)

which, when τ ↓ 0, reduces to

R
(0)
1 <

1
2

log
(

1 +
ᾱP

σ2
1

)
. (87)
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• Case 4:
(
m̂0, m̂

(0)
2

)
= (1, 1), m̂(1)

1 �= 1
When

(
m̂0, m̂

(0)
2

)
= (1, 1), the guess m̂(1)

1 is determined
by the second sum on the RHS of (59), which is unaffected
by m(0)

1 . We therefore focus on this sum, i.e., on

D′
1 � 1

n

n(1−τ)∑
k=n(1−2τ)+1

22Rh1/τ
(
ŷ1,k −Xk

)2
. (88)

By (53), the correct codeword will accumulate the metric
τσ2

1 on this segment with probability tending to one. For a
wrong codeword, conditioned on ŷ1, the logarithmic MGF
of D′

1 is

Λn(θ) =
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P/n

− 1
2

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P/n

)
. (89)

Therefore, by (63),

1
n

Λn(nθ)

=
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
1,kθ

1 − 2θ 22Rh1/τ P

− 1
2n

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh1/τ P

)
(90)

n→∞→ τ
(22Rh1/τP + σ2

1)θ
1 − 2θ 22Rh1/τ P

− τ

2
log
(
1 − 2θ 22Rh1/τ P

)
(91)

� Λ(θ) (92)

with probability one. By the Gärtner–Ellis Theorem, it fol-
lows as in Cases 1 and 2 that the exponent of the proba-
bility Pr(D′

1 < τσ2
1) is upper-bounded by − τ

2 log
(
1+ P

σ2
1
·

22Rh1/τ
)
. Therefore, by the union bound, the probability

of this error case decays to zero as n→ ∞ whenever

R
(1)
1 <

τ

2
log
(

1 +
P

σ2
1

· 22Rh1/τ

)
. (93)

When τ ↓ 0 it suffices that

R
(1)
1 < Rh1 . (94)

We next study the performance of Decoder 2. Remember
that we treat v(1−2τ) as (Gaussian) noise here. By (61),
the true codeword will accumulate the metric σ2

2(1 − τ) with
probability tending to one. Since we do not try to decode
v(1−2τ), we must only consider two error events at this
decoder.

• Case 1:
(
m̂0, m̂

(0)
2

) �= (1, 1)
As in Case 1 in the analysis of Decoder 1, a candidate
codeword X is independent of ŷ2 in this case, regard-
less of whether or not m̂(1)

0 = 1. Conditioned on ŷ2,

the logarithmic MGF of the metric D2 is given for any
θ < 0 as

Λn(θ) =
1
n

n(1−2τ)∑
k=1

ŷ2
2,kθ

1 − 2θ σ2
2

ᾱP+σ2
2
αP/n

− 1
2

n(1−2τ)∑
k=1

log
(

1 − 2θ
σ2

2

ᾱP + σ2
2

αP/n

)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
2,kθ

1 − 2θ 22Rh2/τ P/n

− 1
2

n(1−τ)∑
k=n(1−2τ)+1

log
(
1 − 2θ 22Rh2/τ P/n

)
. (95)

Therefore, using (64) and (65),

1
n

Λn(nθ) =
1
n

n(1−2τ)∑
k=1

ŷ2
2,kθ

1 − 2θ σ2
2

ᾱP+σ2
2
αP

− 1
2n

n(1−2τ)∑
k=1

log
(

1−2θ
σ2

2

ᾱP+σ2
2

αP

)

+
1
n

n(1−τ)∑
k=n(1−2τ)+1

ŷ2
2,kθ

1 − 2θ22Rh2/τP

− 1
2n

n(1−τ)∑
k=n(1−2τ)+1

log
(
1−2θ 22Rh2/τ P

)
(96)

n→∞→ (1 − 2τ)
σ2
2

ᾱP+σ2
2

(
P + σ2

2

)
θ

1 − 2θ σ2
2

ᾱP+σ2
2
αP

− 1 − 2τ
2

log
(

1 − 2θ
σ2

2

ᾱP + σ2
2

αP

)
+ τ

(22Rh2/τ P + σ2
2)θ

1 − 2θ22Rh2/τP

− τ

2
log
(
1 − 2θ 22Rh2/τ P

)
(97)

� Λ(θ) (98)

with probability one. Again, by the Gärtner–Ellis Theorem,
the error exponent is given as

lim
n→∞

1
n

log Pr
(
D2 < σ2

2

)
= −Λ∗(σ2

2

)
(99)

= − sup
θ<0

{
θσ2

2 − Λ(θ)
}
. (100)

We obtain a lower bound on this error exponent by evalua-
ting the expression on the RHS for θ = − 1

2σ2
2

, which yields

−τ
2

+
1 − 2τ

2
log
(

1 +
αP

ᾱP + σ2
2

)
+
τ

2
log
(

1 +
P

σ2
2

· 22Rh2/τ

)
. (101)

Consequently, this type of error will have vanishing prob-
ability as n→ ∞ whenever

R0 +R
(0)
2 +R

(1)
2 < −τ

2
+

1 − 2τ
2

log
(

1 +
αP

ᾱP + σ2
2

)
+
τ

2
log
(

1 +
P

σ2
2

· 22Rh2/τ

)
(102)
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or, upon letting τ ↓ 0, whenever

R0 +R2 <
1
2

log
(

1 +
αP

ᾱP + σ2
2

)
+Rh2 , (103)

where in the last step we recalled that R(0)
2 +R

(1)
2 = R2.

• Case 2:
(
m̂0, m̂

(0)
2

)
= (1, 1), m̂(1)

2 �= 1
This case is analogous to Case 4 in the analysis of
Decoder 1. Upon letting τ ↓ 0, this type of error will
vanish whenever

R
(1)
2 < Rh2 . (104)

We summarize that, as τ ↓ 0, both decoders will decode
the intended messages reliably whenever there exists some
0 < α < 1 such that

R0 +R1 +R
(0)
2 <

1
2

log
(

1 +
P

σ2
1

)
+Rh1 , (105a)

R0 +R
(1)
1 +R

(0)
2 <

1
2

log
(

1 +
αP

σ2
1

)
+Rh1 , (105b)

R
(0)
1 <

1
2

log
(

1 +
ᾱP

σ2
1

)
, (105c)

R
(1)
1 < Rh1 , (105d)

R0 +R2 <
1
2

log
(

1 +
αP

ᾱP + σ2
2

)
+Rh2 , (105e)

R
(1)
2 < Rh2 . (105f)

We next argue that (105b) is redundant. To this end, we first
note that, except for (105c), the RHS of each of the inequalities
in (105) is increasing in α. Consequently, when checking
whether a rate tuple is achievable, it suffices to choose α to
be so small that (105c) holds with (almost) equality and to
then check whether the other conditions are satisfied. We now
show that (105b) follows from this almost-with-equality form
of (105c) and (105a). To this end, we rewrite (105a) as

R0 +R
(0)
1 +R

(1)
1 +R

(0)
2

<
1
2

log
(

1 +
ᾱP

σ2
1

)
+

1
2

log
(

1 +
αP

ᾱP + σ2
1

)
+Rh1 (106)

and note that, when we subtract the almost-with-equality
version of (105c) from this, we obtain

R0 +R
(1)
1 +R

(0)
2 <

1
2

log
(

1 +
αP

ᾱP + σ2
1

)
+Rh1 . (107)

Since this condition is more restrictive than (105b), the latter
is redundant.

Once we have eliminated (105b), we can simplify the
conditions in an additional way by replacing (105c) and (105d)
with their sum, because, with rate-splitting, we can express R1

as R(0)
1 +R

(1)
1 in whichever way we choose and the split does

not influence any of the remaining inequalities.
Striking out the redundant condition (105b) and performing

the above replacement, we obtain achievability whenever the
following set of inequalities holds:

R0 +R1 + R
(0)
2 <

1
2

log
(

1 +
P

σ2
1

)
+Rh1 , (108a)

R1 <
1
2

log
(

1 +
ᾱP

σ2
1

)
+Rh1 , (108b)

R0 +R2 <
1
2

log
(

1 +
αP

ᾱP + σ2
2

)
+Rh2 , (108c)

R
(1)
2 < Rh2 . (108d)

By writing R
(1)
2 = R2 − R

(0)
2 and applying the Fourier–

Motzkin procedure we obtain the sufficiency of

R0 +R1 <
1
2

log
(

1 +
P

σ2
1

)
+Rh1 , (109a)

R1 <
1
2

log
(

1 +
ᾱP

σ2
1

)
+Rh1 , (109b)

R0 +R2 <
1
2

log
(

1 +
αP

ᾱP + σ2
2

)
+Rh2 , (109c)

R0 +R1 +R2 <
1
2

log
(

1 +
P

σ2
1

)
+Rh1 +Rh2 . (109d)

The last condition is redundant: it can be obtained by replacing
σ2

2 in (109c) with σ2
1 (recall (33)) and adding the result

to (109b). This concludes the proof of achievability.

B. Converse

Fix an encoder, a helper, and two decoders, and consider the
result of transmitting random messages M0, M1, M2 that are
drawn independently and uniformly over their corresponding
support set. Using Fano’s inequality and the fact that T2 takes
values in a set of cardinality of 2nRh2 and therefore has entropy
that is upper-bounded by nRh2 ,

R0 +R2

=
1
n
I(M0,M2;Y2, T2) +

1
n
H(M0,M2|Y2, T2) (110)

≤ 1
n
I(M0,M2;Y2, T2) + δn (111)

=
1
n
I(M0,M2;Y2) +

1
n
I(M0,M2;T2|Y2) + δn (112)

≤ 1
n
I(M0,M2;Y2) + Rh2 + δn, (113)

where limn→∞ δn = 0. Similarly,

R1 =
1
n
I(M1;Y1, T1) +

1
n
H(M1|Y1, T1) (114)

≤ 1
n
I(M1;Y1, T1) + δn (115)

=
1
n
I(M1;Y1) +

1
n
I(M1;T1|Y1) + δn (116)

≤ 1
n
I(M1;Y1) +Rh1 + δn, (117)

and

R0 +R1

=
1
n
I(M0,M1;Y1, T1) +

1
n
H(M0,M1|Y1, T1) (118)

≤ 1
n
I(M0,M1;Y1, T1) + δn (119)

=
1
n
I(M0,M1;Y1) +

1
n
I(M0,M1;T1|Y1) + δn (120)

≤ 1
n
I(M0,M1;Y1) + Rh1 + δn. (121)
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We now have upper bounds on the achievable rates in terms
of the mutual informations I(M0,M2;Y2), I(M1;Y1), and
I(M0,M1;Y1). We next argue that, with the codebook being
fixed, these mutual informations depend on the channel law
fY1,Y2|X only via its marginals fY1|X, fY2|X and that, con-
sequently, the correlation between Z1 and Z2 is immaterial.

Consider first

I(M0,M2;Y2) = H(Y2) −H(Y2|M0,M2). (122)

Since the distribution of (M0,M2) is fixed (uniform), both
quantities on the RHS are determined by the conditional
density fY2|M0,M2 . The latter is determined by fY2|X because,
for a fixed codebook C,

fY2|M0,M2(y2|m0,m2)

=
∑
x∈C

fY2|X,M0,M2(y2|x,m0,m2) · pX|M0,M2(x|m0,m2)

(123)
=
∑
x∈C

fY2|X(y2|x) · pX|M0,M2(x|m0,m2), (124)

where the second equality holds because (M0,M2) �−−
X �−− Y2 forms a Markov chain. Since pX|M0,M2 is
determined by the encoding rule (which is fixed), the mutual
information I(M0,M2;Y2) is determined by the marginal
conditional density fY2|X.

An analogous argument shows that I(M1;Y1) and
I(M0,M1;Y1) are determined by fY1|X. The correlation
between Z1 and Z2 is thus immaterial and we may assume
without loss of generality that—as in the converse of the
standard Gaussian BC—the channel is physically degraded.
It then follows from said converse that [18, Thm. 5.3]

1
n
I(M0,M2;Y2) ≤ 1

2
log
(

1 +
αP

ᾱP + σ2
2

)
, (125a)

1
n
I(M1;Y1) ≤ 1

2
log
(

1 +
ᾱP

σ2
1

)
(125b)

for some α ∈ [0, 1]. Furthermore,

1
n
I(M0,M1;Y1) ≤ 1

n
I(M0,M1,M2;Y1) (126)

=
1
n
I(X;Y1) (127)

≤ 1
2

log
(

1 +
P

σ2
1

)
. (128)

These bounds together with (113), (117), and (121) establish
the converse upon taking n to infinity. �
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