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Encoder-Assisted Communications Over
Additive Noise Channels

Amos Lapidoth , Fellow, IEEE, and Gian Marti , Student Member, IEEE

Abstract— A coding technique that is based on flash helping is
proposed for communicating over additive noise channels where
a helper observes the noise and can describe it to the encoder
over a noise-free rate-limited bit pipe. The technique is applicable
irrespective of whether the helper observes the noise causally or
noncausally. On the single-user channel of general noise, the rate
it achieves is the sum of the channel’s capacity without a helper
and the rate of the bit pipe. For Gaussian noise and under an
average-power constraint, it is optimal. Analogous results are
derived for the additive noise multiple-access channel and the
single-user Exponential channel. The approach is applicable also
in some (noncausal) discrete settings, as demonstrated on the
discrete modulo-additive noise channel.

Index Terms— Additive noise, exponential channel, gaussian
noise, helper, modulo-additive noise, multiple-access channel.

I. INTRODUCTION

FLASH helping has recently been proposed as a capacity-
achieving technique that allows a helper observing the

noise to describe it over a rate-limited bit-pipe to the
receiver [1]. This technique was extended in [2] to some multi-
terminal scenarios, but with the help still being provided to the
receiver(s). Here we consider help to the transmitter. Since the
help now affects the transmitted signal, care must be exercised
in accounting for its effect on the transmitted power.

Causality also becomes an important issue. We distinguish
between two cases: the noncausal case, where the transmitter
obtains the helper’s description of the entire noise sequence
before it begins to transmit, and the causal case where the
transmitter’s time-k symbol is only allowed to depend on help
related to the noise sequence up to time-k. As we shall see,
flash helping is applicable to both cases. In fact, in all but one
of the scenarios we consider, the two cases lead to identical
capacities.1 In those scenarios in which causality is immaterial,
we prove achievability for the causal case and the converse for
the noncausal case.

The converse for encoder assistance is typically trickier than
for decoder assistance. The latter is often proved using the Cut-
Set bound [3, Theorem 15.10.1], which shows that rate-Rh

decoder assistance cannot increase capacity by more than Rh.
For encoder assistance no such cut-set bound exists. As the
example in Appendix A shows, on a general state-dependent
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1The exception is the discrete modulo-additive noise channel.

discrete memoryless channels (whose output is not necessarily
the sum of the input and state), a rate-Rh description of
the state sequence to the encoder could potentially increase
capacity by more than Rh. In fact, even on a two-state channel,
a rate-1 helper could potentially increase capacity by an
arbitrarily large amount (provided that the input and output
alphabets are sufficiently large).

To introduce the technique, we first consider the single-
user additive Gaussian noise channel under an average-power
constraint. The helper observes the noise and provides a rate-
Rh description of it to the encoder. The symbols produced by
the encoder thus depend not only on the transmitted message
but also on the helper’s description of the noise.

In the noncausal case, the description of the noise is
provided to the encoder before transmission begins. Such
a scenario may arise if the encoder is located next to an
interfering transmitter. The interference, comprising the inter-
ferer’s codeword, can be viewed as noise, which is known
to the interfering transmitter. If a rate-limited channel exists
between the two, then the interferer—which is cognizant of
the codeword it is about to transmit—can use it to describe
the interference to the encoder noncausally.

In the causal case the time-k symbol produced by the
encoder can only depend on the message and the help it has
received until time-k, with the latter depending only on the
noise samples up to that time. Such a scenario may arise in our
example if the two transmitters are not synchronized. In this
case the interfering transmitter—which may only be cognizant
of the message it is currently transmitting and not of the one
succeeding it—may only be able to describe the remaining
symbols in its frame (block). In the extreme case where its
frame is just ending, it can only describe the present noise
symbol.

The key idea behind flash helping is to satisfy the rate
constraint on the bit pipe by providing the help with great
precision but infrequently. To see why this can outperform
schemes that provide help with moderate precision continu-
ously, consider the single-user Gaussian noise channel with
noise variance N > 0, maximal-allowed average power P > 0,
and helper rate Rh > 0 bits/channel-use. (Throughout this
paper all logarithms are to base two, and all rates are in
bits per channel-use.) Further assume noncausal helping. The
moderate-but-steady approach would describe the n-length
noise sequence using nRh bits and thus result in per-noise-
symbol mean squared-error (MSE) N2−2Rh (assuming an ideal
Gaussian rate distortion codebook [3]). The estimate, which is
known to the encoder prior to transmission, could be viewed as

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 09,2020 at 06:55:32 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4742-5124
https://orcid.org/0000-0001-6848-0213


6608 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

“dirt” in Costa’s writing-on-dirty-paper setting. Using Costa’s
coding technique, this dirt could be effectively subtracted off
without any power penalty [4], and the remaining effective
noise would thus comprise the estimation error. This moderate-
but-steady approach thus leads to an achievable rate of

1
2

log
(

1 +
P

N2−2Rh

)
. (1)

With flash helping we can do better. The idea is to describe
the different noise samples with different rates: one could
describe the k-th noise symbol using rk ≥ 0 bits with
corresponding MSE N2−2rk , as long as the total description
rate averaged over the block length n satisfies

1
n

n∑
k=1

rk ≤ Rh, rk ≥ 0. (2)

By allocating the k-th symbol the power Pk ≥ 0 with

1
n

n∑
k=1

Pk ≤ P, Pk ≥ 0 (3)

one could obtain the average rate

1
n

n∑
k=1

1
2

log
(

1 +
Pk

N2−2rk

)
. (4)

The next proposition addresses the maximization of (4)
subject to (2) and (3). It shows that, as n tends to infinity,
the maximum is not achieved by choosing rk and Pk constant
(leading to (1)) but by flash helping, where rk is zero for
all k’s other than some � for which it equals nRh. Thus,
rk = nRh ·1{k = �}, where � is in [1 : n] (the set {1, . . . , n}),
and 1{statement} equals 1 if the statement is true and 0
otherwise.

Proposition 1 (The Flash-Helping Inequality): Let N, P,
and Rh be positive and {rk} and {Pk} satisfy (2) and (3).
Then

1
n

n∑
k=1

1
2

log
(

1 +
Pk

N2−2 rk

)
≤ 1

2
log

(
1 +

P

N

)
+Rh. (5)

Equality is achieved as n tends to infinity if Pk ≡ P and
rk ≡ nRh · 1{k = �} for some � ∈ [1 : n].

Proof: See Appendix B.
The rest of the paper is organized as follows. Section II

treats the single-user additive noise channel and Section III its
multiple-access counterpart. Section IV treats the Exponential
channel. In doing so, it demonstrates how to assist the encoder
when the input alphabet is restricted to the nonnegative reals,
a case that also occurs, e.g., in the free-space optical channel
[5]–[9], where the noise is Gaussian but the input nonnegative.
Finally, in Section V it is shown that a discrete-alphabet
variant of noncausal flash helping is capacity achieving on
the modulo-additive noise channel.

II. THE SINGLE-USER CHANNEL

Consider the channel depicted in Figure 1, whose time-k
output Yk is

Yk = xk + Zk, (6)

where xk ∈ R is its time-k input, and the noise samples
{Zk} are IID ∼ N (0,N), i.e., independent and identically
distributed centered Gaussians of variance N > 0.

A rate-R message set M for a blocklength-n transmission
is a set with 2nR elements. For concreteness we assume that
M = {1, . . . , 2nR}. Since the decoder receives no help,
it guesses the message based on the output sequence y alone.
It is thus a mapping ψdec : R

n → M that maps y ∈ R
n to the

decoder’s guess m̂.
The operation of the encoder and the helper depends

on whether the help is provided noncausally or causally.
A noncausal helper observes the entire noise sequence before
describing it to the encoder. Only after obtaining this descrip-
tion does the encoder begin to transmit. More formally,
a noncausal blocklength-n helper-encoder pair φnc-help, φnc-enc

can be described as follows: The helper is a mapping
φnc-help : R

n → T , where T is a set of size 2nRh , which, for
concreteness, is assumed to be the set {1, . . . , 2nRh}. We refer
to the result of applying φnc-help to the noise sequence Zn as
the latter’s description T . (Here and throughout we use Ak to
denote (A1, . . . , Ak), and we use An and A interchangeably.)
The noncausal encoder φnc-enc : M × T → R

n is presented
with the message m to be transmitted and with the description
t of the noise sequence zn. It then produces the length-n
sequence x(m, t), which for every m ∈ M must satisfy the
average power constraint E

[
‖x(m,T )‖2

]
≤ nP, where ‖ · ‖

denotes the Euclidean norm, and

P > 0 (7)

is the maximal-allowed average power, which is assumed
throughout to be strictly positive. (Otherwise the capacity is,
of course, zero.)

Unlike the noncausal helper, a causal helper cannot see
the entire noise sequence before describing it. It provides the
description piece by piece, with the piece provided at time-
k being a function of the noise sequence only up to time k.
The encoder, for its part, cannot wait for all the pieces before
commencing with transmission: the symbol it sends at time k
can only depend on the message and the pieces it received
by that time. More formally, a causal helper describes the
noise sequence zn by an n-tuple (t1, . . . , tn), where tk takes
values in the set Tk and can depend only on the noise samples
zk through time k. A blocklength-n causal helper is thus
described by n functions {φ(k)

c-help}n
k=1, where φ(k)

c-help : R
k → Tk

maps zk to tk ∈ Tk. To guarantee that the overall description
length does not exceed nRh bits, we impose the cardinality
bound ∣∣T1 × · · · × Tn

∣∣ ≤ 2nRh . (8)

(The converse we shall present goes through also under
the weaker constraint that the entropy H(T1, . . . , Tn) not
exceed nRh.) The time-k channel input xk(m, t1, . . . , tk) pro-
duced by the encoder is determined by the message m and by
the descriptions t1, . . . , tk received by time k. A blocklength-n
causal encoder is thus described using n mappings {φ(k)

c-enc}n
k=1

where

φ(k)
c-enc : M×T1 × · · · × Tk → R (9)
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Fig. 1. The encoder-assisted single-user additive noise channel.

and we require that

1
n

n∑
k=1

E

[
xk

(
m, t1(Z1), t2(Z2), . . . , tk(Zk)

)2
]
≤ P,

∀m ∈ M. (10)

(The converse we shall present goes through also under the
weaker constraint that the average over m ∈ M of the left-
hand side of (10) does not exceed P.)

The supremum of all rates that, with the message m chosen
uniformly at random from M, allow for arbitrarily small
probability of error is the capacity C(Rh).

Imposing a causality constraint cannot, of course, increase
capacity. Indeed, given a causal helper-encoder pair, we can
define a noncausal pair of equal performance by considering
the noncausal helper with T being T1 × · · · × Tn and with
T (Zn) being

(
T1(Z1), T2(Z2), . . . , Tn(Zn)

)
and by consider-

ing the noncausal encoder whose time-k output corresponding
to m and T is xk

(
m, t1(Z1), t2(Z2), . . . , tk(Zk)

)
.

Theorem 2: The capacity of the average-power constrained
additive Gaussian noise channel with noncausal or causal help
is

C(Rh) =
1
2

log
(

1 +
P

N

)
+Rh (11)

= C(0) +Rh. (12)

We shall prove achievability assuming causal help and the
converse assuming noncausal help. The achievability part of
the proof relies on Bennett’s [10] classical result on high-
resolution scalar quantization, which we quote from [11,
Theorem 6.2]:

Theorem 3 (High-Resolution Scalar Quantization): Let the
random variable Z satisfy E

[
Z2+δ

]
<∞ for some δ > 0 and

have a density fZ(·) satisfying2

‖fZ‖1/3 �
(∫

R

fZ(z)1/3 dz
)3

<∞. (13)

For every positive integer L there then exists an L-level scalar
quantizer ẐL for Z such that

lim
L→∞

L2 · E
[
(Z − ẐL)2

]
=

1
12

‖fZ‖1/3. (14)

Proof of Theorem 2:
Achievability: We consider time-sharing between two schemes:
the “no-help” scheme and the “with-help” scheme. The former

2In fact, the noise distribution need not have a density. It suffices that in its
Lebesgue decomposition the part that is absolutely continuous with respect
to the Lebesgue measure have a density of finite order-1/3 norm.

is used (1 − τ) of the time without help and the latter τ of
the time with the help of a �2Rh/τ �-level scalar quantizer
of the noise. Here 0 < τ < 1 is arbitrary but will later
approach zero from above after we let the blocklength tend to
infinity.3 The data rate in the no-help scheme can be arbitrarily
close to C(0) while using an average transmission power not
exceeding P. Its contribution to the overall achievable rate is
thus (1 − τ)C(0) and will, when we later let τ ↓ 0, converge
to C(0).

Consider now the with-help scheme. Let fZ denote the
density of the variance-N Gaussian distribution. Since it is
bounded and decays exponentially, it has a finite order-
1/3 norm. In fact, its order-1/3 quasinorm ‖fZ‖1/3 equals
33/2 · 2πN.

The helper describes the k-th noise sample Zk using a
MSE-minimizing L-level quantizer, where

L = �2Rh/τ� (15)

and the sample Zk is reconstructed from its description as
ẐL,k, where ẐL,k is the conditional expectation of Zk given
its description, so

E
[
Ẑ2

L,k

]
≤ N (16)

and the quantization error Z̃k = Zk − ẐL,k behaves asymp-
totically as in (14). The encoder uses a codebook whose
codewords {x(m)} are drawn independently and uniformly
over the n-dimensional sphere of radius

√
nP, where x(m)

denotes the m-th codeword and xk(m) its k-th component.
To transmit the message m, it produces at time k the channel
input xk(m) − ẐL,k. This, by (16), requires power at most
P+N. The receiver observes the sum of this input and Zk, i.e.,
xk(m)+Z̃k. Using nearest-neighbor decoding, rates arbitrarily
close to

1
2

log

(
1 +

P

E
[
(Z − Ẑ)2

]
)

(17)

can be transmitted reliably [12]. Here and for the rest of the
achievability proof we write Z for Zk and Ẑ for ẐL,k. The
achievable rate with time sharing is thus

(1 − τ)C(0) + τ
1
2

log

(
1 +

P

E
[
(Z − Ẑ)2

]
)

(18)

3We want to allow coding also over the symbols that are transmitted during
the “with-help” phase. For the random coding argument to apply, the “with-
help” phase must operate in the large blocklength regime, i.e. nτ must tend
to infinity. The order of limits is thus crucial: we fix τ > 0 and let n tend to
infinity (in order to be in the large blocklength regime) and only then let τ
approach zero.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 09,2020 at 06:55:32 UTC from IEEE Xplore.  Restrictions apply. 



6610 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

with power
(1 − τ)P + τ(P + N). (19)

(The excess power τN can be eliminated by using power
P − τN/(1 − τ) in the no-help phase. This will reduce
the achievable rate in the no-help phase by an amount that
vanishes as τ ↓ 0 because, being concave, the capacity C(0)
is continuous in P > 0.)

We next conclude the achievability part of the proof by
showing that (18) tends to C(0) + Rh as τ ↓ 0. Since the
first term in (18) converges to C(0), we need to show that
the second is asymptotically bounded from below by Rh. This
we do using (15) and (14):

τ

2
log

(
1 +

P

E
[
(Z − Ẑ)2

]
)

=
τ

2
log

(
1 +

P

L−2
(

1
12‖fZ‖1/3 + oL(1)

)
)

(20)

=
τ

2
log

(
1 +

(
�2Rh/τ �

)2
P

1
12‖fZ‖1/3 + oL(1)

)
(21)

≥ τ

2
log

(
1 +

(2Rh/τ − 1)2P
1
12‖fZ‖1/3 + oL(1)

)
(22)

=
τ

2
log

(
22Rh/τ

(
2−2Rh/τ +

(1 − 2−Rh/τ )2P
1
12‖fZ‖1/3+oL(1)

))
(23)

= Rh +
τ

2
log

(
2−2Rh/τ +

(1 − 2−Rh/τ )2P
1
12‖fZ‖1/3 + oL(1)

)
(24)

τ↓0→ Rh, (25)

where oL(1) stands for a term that tends to zero as L → ∞
(which happens as a consequence of τ ↓ 0). Here (20) holds
by (14); (21) follows from (15); and in the last step we used
the fact that the argument of the logarithm in (24) converges to

P
1
12�fZ�1/3

as τ ↓ 0. This concludes the proof of achievability.

Converse: The converse is very similar to one that appears
in [13] and can, in fact, be deduced from [13] by substituting
zero for σ2

Z there. Nevertheless, we include the argument for
completeness and because the proofs of the other converses in
this paper build on it.

Consider a sequence of noncausal helper-encoder pairs and
corresponding decoders for which the probability of error
tends to zero as the blocklength tends to infinity. For each
blocklength, apply the helper-encoder pair to a message M
that is drawn uniformly over M, so H(M) = nR and hence,

nR = I(M ;Y, T ) +H(M |Y, T ) (26)

≤ I(M ;Y, T ) +H(M |Y) (27)

≤ I(M ;Y, T ) + nδn (28)

= I(M ;Y|T ) + nδn (29)

= h(Y|T ) − h(Y|T,M) + nδn (30)

= h(Y|T ) − h(Y|T,M,X) + nδn (31)

= h(Y|T ) − h(Y|T,X) + nδn (32)

= h(Y|T ) − h(Z|T ) + nδn (33)

= h(Y|T ) − h(Z) + I(Z;T ) + nδn (34)

≤ h(Y|T ) − h(Z) +H(T ) + nδn (35)

≤ h(Y|T ) − n

2
log(2πeN) + nRh + nδn, (36)

where (28) holds for some δn
n→∞→ 0 by Fano’s inequality

and by assuming that the probability of error vanishes as
n→ ∞; (29) holds because T is independent of M ; and (33)
holds because Y = X + Z where (X,M) �−− T �−− Z
forms a Markov chain. We now bound h(Y|T ) in terms
of the probability mass function (PMF) pT (·) of T . Key is
that, conditional on T , the random variables Xk and Zk are
independent. Using Var[X |Y ] to denote the variance of X
given Y (and hence being a random variable that is computable
from Y ),

h(Y|T )

≤
n∑

k=1

h(Yk|T ) (37)

=
n∑

k=1

∑
t∈T

pT (t)h(Yk|T = t) (38)

≤
n∑

k=1

∑
t∈T

pT (t)
1
2

log
(
2πeVar[Yk|T = t]

)
(39)

≤
n∑

k=1

1
2

log

(
2πe

∑
t∈T

pT (t)Var[Yk|T = t]

)
(40)

=
n∑

k=1

1
2

log
(
2πe E

[
Var[Yk|T ]

])
(41)

=
n∑

k=1

1
2

log
(
2πe

(
E
[
Var[Xk|T ]

]
+ E

[
Var[Zk|T ]

]))
(42)

≤
n∑

k=1

1
2

log
(
2πe

(
Var[Xk] + Var[Zk]

))
(43)

=
n

2

n∑
k=1

1
n

log
(
2πe

(
Var[Xk] + N

))
(44)

≤ n

2
log

(
2πe

n∑
k=1

1
n

(
Var[Xk] + N

))
(45)

≤ n

2
log

(
2πe

(
P + N

))
, (46)

where (40) follows from Jensen’s inequality and the concavity
of the logarithm; (42) holds because X �−− T �−− Z
forms a Markov chain; (43) holds by the law of total variance
(conditioning reduces variance) [14, p. 69]; (45) follows again
from Jensen’s inequality; and (46) follows from the power
constraint on the channel input. Thus, returning to (36) and
using (46),

R ≤ 1
n
h(Y|T ) − 1

2
log(2πeN) +Rh + δn (47)

≤ 1
2

log
(
2πe

(
P + N

))
− 1

2
log(2πeN) +Rh + δn (48)

=
1
2

log
(

1 +
P

N

)
+Rh + δn. (49)

As n tends to infinity, δn approaches zero, and the right-hand
side (RHS) converges to the RHS of (11).
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Fig. 2. The additive noise multiple-access channel with help to the encoders.

Inspecting our achievability proof, we note that it does
not rely on the noise being Gaussian: it suffices that the
quantization MSE of the optimal scalar quantizer have the
proper high-resolution asymptotic behavior, namely,

lim
L→∞

L2 · E
[
(Z − Ẑ)2

]
<∞. (50)

Hence:
Remark 4 (Non-Gaussian Noise): Consider the additive

non-Gaussian noise channel where the noise {Zk} is IID
with a distribution satisfying the hypotheses of Theorem 3.
Its capacity C(Rh) with causal help is then lower-bounded by

C(Rh) ≥ C(0) +Rh, (51)

where C(0) is the channel’s capacity in the absence of help.
The tightness of (51) for non-Gaussian noise is discussed

in [15]. It is shown there [15, Theorems 4.12 and 4.13] that
for general noise,

C(Rh) ≤ IG(0) +Rh + min
{

1
2
,
1
2

log
(

1 +
N

P

)}
, (52)

where IG(0), which cannot exceed C(0), is the mutual infor-
mation in the absence of help between the channel input and
output when the input is N (0,P). The difference between this
bound and the RHS of (51) never exceeds half a bit, and tends
to zero as P/N tends to infinity.

To prove the converse we needed to establish that the
normalized conditional entropy n−1H(M |Y, T ) tends to zero;
see (28). This, we showed, follows from Fano’s inequality and
the convergence to zero of the probability of error in guessing
M based on Y. But it also follows from Fano’s inequality and
the convergence to zero of the probability of error in guessing
M based on Y and T . Hence, the converse would apply also
if the decoder were cognizant not only of the channel output
sequence Y but also of the noise’s description T . Thus:

Remark 5: On the Gaussian channel, no rate exceeding the
RHS of (11) is achievable even if the noise’s description
presented to the encoder is also presented to the decoder.

III. THE MULTIPLE-ACCESS CHANNEL

We next consider help to the encoders on a multiple-access
channel (MAC). We focus on the additive noise MAC of
Figure 2, whose time-k output Yk is

Yk = x1,k + x2,k + Zk, (53)

where x1,k and x2,k are the time-k channel inputs, and the
noise {Zk} is IID. Depending on the scenario, the helper
observes the noise causally or noncausally and provides its
rate-Rh1 description T1 to Encoder 1 and its rate-Rh2 descrip-
tion T2 to Encoder 2. (In the noncausal case T1 and T2 are
functions of Zn; in the causal case they are n-tuples whose
k-th component is a function of Zk.) Based on the respective
descriptions of the noise and on the respective messages,
the encoders produce the inputs X1(m1, T1) and X2(m2, T2).
(In the causal case the k-th component of X1(m1, T1) must be
a function of m1 and the first k components of T1 and likewise
X2(m2, T2).) We require that—irrespective of the transmitted
messages (m1,m2)—the average power constraints

E
[
‖Xi(mi, Ti)‖2

]
≤ nPi, i = 1, 2, (54)

be satisfied, where
P1,P2 > 0 (55)

are the maximal-allowed average powers for the two users.
The total description rate is denoted Rh,

Rh = Rh1 +Rh2 (56)

and the capacity region C(Rh1 , Rh2).
As in the single-user case, our achievability result in the

following theorem holds for causal help and arbitrary noise
distribution (satisfying the hypotheses of Theorem 3) and the
converse for noncausal help but with Gaussian noise. In stating
the result we use “+” to denote Minkowski set addition.
Noteworthy is that, for Gaussian noise, the capacity region
C(Rh1 , Rh2) depends on the rates Rh1 and Rh2 only via their
sum Rh.

Theorem 6: If the noise satisfies the hypotheses of
Theorem 3, then all rate pairs (R1, R2) in the set

C(0, 0) +
{
(ρ1, ρ2) ∈ R+ × R+ : ρ1 + ρ2 ≤ Rh

}
(57)

are achievable with causal help. If the noise is Gaussian, then
no rate pair outside this set is achievable even with noncausal
help; this set is then the capacity region.

Proof:
Achievability: We first prove achievability (for causal help).
Again we consider a time-sharing scheme between two
schemes: the “no-help” scheme, which is used (1 − τ) of the
time, and the “with-help” scheme, which is used τ of the time.
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No help is provided in the “no-help” scheme, and its contri-
bution to the overall rate region is thus (1 − τ) C(0, 0) (with
C(0, 0) being the MAC’s no-help capacity region for powers
P1,P2). This will tend to C(0, 0) when we later let τ approach
zero.

In the “with-help” scheme we differentiate between
the inputs at odd times and even times. At odd times,
Encoder 1 receives help at rate 2Rh1/τ and Encoder 2 receives
none.4 The help to Encoder 1 is in the form of a scalar
quantization of the noise Zo with

L1 = 22Rh1/τ (58)

levels, with corresponding noise reconstruction Ẑo, and corre-
sponding estimation error Z̃o (= Zo − Ẑo) satisfying

lim
L1→∞

L2
1 · E

[
(Zo − Ẑo)2

]
=

1
12

‖fZ‖1/3. (59)

(As we did in the single-user case, we are dropping the
time indices.) At these odd times, Encoder 1 subtracts its
estimate Ẑo of the noise Zo (with a power penalty that vanishes
as τ ↓ 0).

At the even times the roles are reversed: the help is provided
to Encoder 2, and it is Encoder 2 that subtracts its estimate
of the noise from its input. The corresponding number of
quantization levels and noise estimates are defined in an
analogous way.

We now consider the “super-MAC” with Encoder 1 input
X̃1 � (X1,o, X1,e), Encoder 2 input X̃2 � (X2,o, X2,e),
and output Ỹ � (Yo, Ye). The inputs X1,o, X2,o, X1,e, and
X2,e we consider are IID according to some distribution P̃X

that satisfies both power constraints and that has finite dif-
ferential entropy, e.g., N (0,min{P1,P2}). The terms defin-
ing the capacity of the super-MAC, namely, I(X̃1; Ỹ |X̃2),
I(X̃2; Ỹ |X̃1), and I(X̃1, X̃2; Ỹ ) can now be lower bounded by
lower-bounding the differential entropy of the output by that of
the input and by upper-bounding the differential entropy of the
equivalent noise (i.e., estimation error) by that of a Gaussian
of equal second moment. For example,

I(X̃1; Ỹ |X̃2)
= h(Ỹ |X̃2) − h(Ỹ |X̃1, X̃2) (60)

≥ h(X̃1) − h(Z̃o) − h(Z̃e) (61)

≥ 2 h(P̃X) − 1
2 log

(
2πeE

[
Z̃2

o

])
− 1

2 log
(
2πeE

[
Z̃2

e

])
, (62)

with the other terms, namely I(X̃2; Ỹ |X̃1) and I(X̃1, X̃2; Ỹ )
treated similarly.

When we scale these lower bounds by one-half (to account
for the fact that in using the super-MAC once we are using
the original channel twice) and by τ (to account for the fact
that we use the “with-help” scheme only τ of the time) we
obtain—upon taking τ to zero and recalling (59) and (58)—
the second term in the Minkowski sum on the RHS of (57).

4Describing the same noise sample Zk at rate τ−1Rh1 to Encoder 1 and
at rate τ−1Rh2 to Encoder 2 is suboptimal because it is not as beneficial as
describing it to only one of them at rate τ−1(Rh1 + Rh2 ). The presented
scheme allows us to pool the resources. An equivalent approach would be to
break up the “with-help” phase into two subphases: in one subphase the noise
would be described only to Encoder 1 and in the other only to Encoder 2.

For example, we obtain from (62)

τ

2
I(X̃1; Ỹ |X̃2)

≥ τh(P̃X ) − τ

4
log

(
2πeE

[
Z̃2

o

])
− τ

4
log

(
2πeE

[
Z̃2

e

])
(63)

= τ
(
h(P̃X) − 1

2
log(2πe)

)
− τ

4
log

(
E
[
Z̃2

o

])
− τ

4
log

(
E
[
Z̃2

e

])
(64)

= τ

(
h(P̃X) − 1

2
log(2πe)

)
− τ

4
log

(
L−2

1

(
1
12

‖fZ‖1/3 + oL(1)
))

− τ

4
log

(
L−2

2

(
1
12

‖fZ‖1/3 + oL(1)
))

(65)

=
τ

2
logL1 +

τ

2
logL2

+ τ

(
h(P̃X) − 1

2
log

(
2πe
12

‖fZ‖1/3 + oL(1)
))

(66)

τ↓0→ Rh1 +Rh2 (67)

with a similar asymptotic analysis for (τ/2)I(X̃2; Ỹ |X̃1) and
(τ/2)I(X̃1, X̃2; Ỹ ).

Converse: We now turn to the converse for noncausal help on
the Gaussian channel. Define T � (T1, T2). Let M1 andM2 be
drawn independently and uniformly over their corresponding
support sets, and let X1 and X2 be their encoding.

nR1 = H(M1) (68)

= I(M1;Y, T ) +H(M1|Y, T ) (69)

≤ I(M1;Y, T ) +H(M1,M2|Y, T ) (70)

≤ I(M1;Y, T,X2) + nδn (71)

= I(M1;Y|T,X2) + nδn (72)

= h(Y|T,X2) − h(Y|T,X2,X1,M1) + nδn (73)

= h(Y|T,X2) − h(Z|T,X2,X1,M1) + nδn (74)

= h(X1 + Z|T ) − h(Z|T ) + nδn (75)

≤ h(X1 + Z|T ) − h(Z) + nRh + nδn (76)

≤ n

2
log(2πe(P1 + N)) − n

2
log(2πeN) + nRh + nδn

(77)

= n

(
1
2

log
(

1 +
P1

N

)
+Rh + δn

)
, (78)

where (71) holds for some δn → 0 by Fano’s inequality and
by introducing X2; (72) holds because M1 is independent of
(T,X2); (73) holds because X1 is computable from (M1, T );
(74) holds because Z = Y − (X1 + X2); (75) holds because
Z �−− T �−− (M1,X1,X2) and X1 �−− T �−− X2 form
Markov chains; and (77) can be derived along the lines leading
to (46).

Analogously,

R2 ≤ 1
2

log
(

1 +
P2

N

)
+Rh + δn. (79)
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As to the sum of the rates,

n(R1 +R2)
= I(M1,M2;Y, T ) +H(M1,M2|Y, T ) (80)

≤ I(M1,M2;Y, T ) + nδn (81)

= I(M1,M2;Y|T ) + nδn (82)

= h(Y|T ) − h(Y|T,M1,M2,X1,X2) + nδn (83)

= h(Y|T ) − h(Z|T ) + nδn (84)

≤ h(X1 + X2 + Z|T ) − h(Z) + nRh + nδn (85)

≤ n

2
log(2πe(P1 + P2 + N)) − n

2
log(2πeN) + nRh + nδn

(86)

= n

(
1
2

log
(

1 +
P1 + P2

N

)
+Rh + δn

)
, (87)

where (83) holds because X1 and X2 are computable from
(T,M1,M2); (84) holds because Z = Y − (X1 + X2) and
Z �−− T �−− (M1,M2,X1,X2); (85) can be derived as in
(33)–(36); (86) holds because, conditional on T , the vectors
X1, X2 and Z are independent (so their covariance matrices
add) and because the IID Gaussian maximizes differential
entropy subject to a trace constraint on the covariance matrix
(this is in direct analogy to (37)–(46)); and (87) follows from
straightforward algebra.

Letting n→ ∞ and recalling the capacity region C(0, 0) of
the Gaussian MAC without help [16, Theorem 4.4]

C(0, 0) =

{
(R1, R2) ∈ R+ × R+ :

R1 ≤ 1
2

log
(

1 +
P1

N

)
R2 ≤ 1

2
log

(
1 +

P2

N

)

R1 +R2 ≤ 1
2

log
(

1 +
P1 + P2

N

)}
(88)

concludes the proof.

IV. THE EXPONENTIAL CHANNEL

The inputs to our next channel must be nonnegative. This
constraint makes it tricky for the encoder to subtract its
estimate of the noise, because this subtraction might lead to
a negative input. Nevertheless, a minor modification of our
technique can achieve capacity. The channel we study is the
additive noise channel of (6), but with different constraints:
The input xk is nonnegative and we require that its time-
averaged expectation, i.e., “average power” be bounded by the
maximal-allowed average power P

1
n

n∑
k=1

E [Xk] ≤ P, (89)

where P > 0. The noise, which need not be nonnegative, is
assumed to be of mean N ∈ R. This channel reduces to the
Exponential channel [17], [18] when N is positive and Zk is
a mean-N Exponential, i.e., of density

fZ(z) =
1
N

exp
(
− z

N

)
1{z ≥ 0}. (90)

It reduces to the free-space optical channel [5]–[9] when Zk

is a centered Gaussian.
In the absence of help, the capacity of the Exponential

channel is [17]
1
2

log
(

1 +
P

N

)
. (91)

We next show that, also for this channel, the availability of
causal or noncausal help to the encoder increases capacity by
the rate of the help.

Theorem 7: The capacity of the Exponential channel with
help to the encoder is

C(Rh) =
1
2

log
(

1 +
P

N

)
+Rh (92)

= C(0) +Rh, (93)

regardless of whether the help is provided to the encoder
causally or noncausally and regardless of whether the help that
is provided to the encoder is also provided to the decoder.
Moreover, if the noise is not necessarily Exponential but
satisfies the hypotheses of Theorem 3, then the RHS of (93)
is achievable with causal help, provided we interpret C(0) as
the capacity of the channel of said noise without help.

Proof:
Achievability: We prove the achievability of the RHS of (93)
for general noise and causal help and the converse for Expo-
nential noise with noncausal help to the encoder that is also
provided to the decoder.

Again we use time-sharing between a “no-help” scheme,
where the channel is used for (1 − τ) of the time without
help, and the “with-help” scheme where the channel is used
for τ of the time with help at rate Rh/τ . In the no-help scheme,
the channel is used with average power P and rate C(0) and
therefore contributes to the overall rate (1 − τ)C(0). We will
again let τ ↓ 0 and thus drive this contribution to C(0). In
the with-help scheme, which we describe next, we add to the
channel input a constant A that (most of the time) allows the
subtraction of the encoder’s noise estimate. The constant can
be subtracted by the receiver and therefore does not impair
communication.

Fix some A > 0. (After letting τ ↓ 0 we shall let A tend to
infinity.) Define

Fk = 1
{
|Zk| ≤ A}, (94)

and note that the hypotheses of Theorem 3 guarantee that

lim
A→∞

Pr(Fk = 1) = 1 (95)

and hence
lim

A→∞
H(Fk) = 0. (96)

Let the time-k transmitted symbol be

xk(m) + A − Ẑk, (97)

where Ẑk (to be defined shortly) is an estimate of the time-k
noise sample, and where {x(m)} are codewords that are drawn
independently, each with IID ∼ PX components, where PX is
an input distribution that satisfies the power and nonnegativity
constraints and has finite differential entropy.
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Let f̃ be the conditional density of Zk given Fk = 1, i.e.,
given |Zk| ≤ A. Note that if fZ satisfies the hypotheses of
Theorem 3, then so does f̃ . The helper uses a MSE-minimizing
L-level scalar quantizer for f̃ , where

L = 2Rh/τ (98)

and Ẑk denotes the conditional expectation under f̃ of Zk

given its description. Since the support of f̃ is contained in
the interval [−A,A],

0 ≤ A − Ẑk ≤ 2A. (99)

It follows from (97) and (99) that the transmitted power in the
with-help scheme is upper bounded by P + 2A. The overall
power is thus upper-bounded by (1− τ)P+ τ(P+2A), which
approaches P as τ ↓ 0. (One can also reduce the power in
the no-help scheme to P − 2Aτ/(1 − τ) to guarantee that no
excess power is used and then use the continuity of C(0).)

The corresponding received symbol is xk(m)+A−Ẑk+Zk.
Upon subtracting the constant A, the receiver obtains

Ỹk = xk(m) + Z̃k, (100)

where
Z̃k = Zk − Ẑk. (101)

Let Δ̃2 denote the conditional MSE estimation error given
“no overflow,”

Δ̃2 = E
[
Z̃2

k

∣∣ Fk = 1
]
. (102)

Conditional on Fk = 1, the density of Zk is f̃ for which the
quantizer was designed, so

lim
L→∞

L2 · Δ̃2 =
1
12

‖f̃‖1/3. (103)

To study the achievable rates in the with-help scheme,
we study I(X ;Y ). (As in the previous proofs, we now drop
the time indices.) Using the chain rule and upper-bounding
I(X ;F |Y ) by H(F ),

I(X ;Y ) ≥ I(X ;Y, F )−H(F ) (104)

= I(X ;Y |F ) −H(F ) (105)

≥ I(X ;Y |F = 1)Pr(F = 1) −H(F ) (106)

= I(X ; Ỹ |F = 1)Pr(F = 1) −H(F ). (107)

The contribution of the with-help scheme to the overall rate
is thus at least τI(X ; Ỹ |F = 1)Pr(F = 1) − τH(F ). The
second term will vanish as τ ↓ 0, so we focus on the first.
Lower-bounding the (conditional) differential entropy of Ỹ by
that of X , and recalling that the differential entropy is upper-
bounded by that of a Gaussian of equal variance,

τI(X ; Ỹ |F = 1) ≥ τh(PX ) − τ

2
log

(
2πeΔ̃2

)
. (108)

This inequality, (103), and (98) imply that

lim
τ↓0

τI(X ; Ỹ |F = 1) ≥ Rh, (109)

and the overall achievable rate is thus lower-bounded by

C(0) +Rh Pr(F = 1). (110)

The achievability proof of C(0) + Rh is now concluded by
letting A tend to infinity (while recalling (95)).

Converse: Assume Exponential noise, that M is drawn uni-
formly from its support set, that X is the result of encodingM ,
and that the help T is provided to both encoder and decoder.

nR = I(M ;Y, T ) +H(M |Y, T ) (111)

≤ I(M ;Y, T ) + nδn (112)

= I(M ;Y|T ) + nδn (113)

= h(Y|T ) − h(Y|M,T,X) + nδn (114)

= h(Y|T ) − h(Z|M,T,X) + nδn (115)

= h(X + Z|T ) − h(Z|T ) + nδn (116)

≤ h(X + Z|T ) − h(Z) + nRh + nδn (117)

≤ h(X + Z) − h(Z) + nRh + nδn (118)

≤
n∑

k=1

h(Xk + Zk) − n log(eN) + nRh + nδn (119)

≤
n∑

k=1

log(eE [Xk + Zk]) − n log(eN) + nRh + nδn

(120)

≤ n log

(
1
n

n∑
k=1

E [Xk] + N

)
−n log N + nRh + nδn

(121)

≤ n log(P + N)−n log N + nRh + nδn, (122)

where (119) holds by the chain rule (and the fact that con-
ditioning reduces entropy) and because the mean-N Expo-
nential distribution is of differential entropy log(eN); (120)
holds because, of all distributions on the nonnegatives with
mean μ, the Exponential distribution maximizes differential
entropy [3] and has differential entropy log(eμ); (121) follows
from the concavity of the logarithm; and (122) follows from
the expectation constraint on the channel input (89). Dividing
both sides of (122) by n and then letting n tend to infinity
establishes that

R ≤ log
(

1 +
P

N

)
+Rh (123)

and thus concludes the proof of the converse.

V. THE MODULO-ADDITIVE NOISE CHANNEL

We next study the modulo-additive noise channel and
demonstrate that a discrete-alphabet variant of flash helping
can also achieve the capacity of some channels with finite
alphabets. We only consider noncausal helping.

The time-k output Yk of the modulo-additive noise channel
of time-k input xk is

Yk = xk + Zk, (124)

where Zk denotes the time-k noise; xk , Zk, and Yk all take
values in the modulo-additive group X = {0, 1, . . . , |X |− 1};
and “+” denotes addition modulo |X |. Irrespective of the input
sequence {xk}, the noise samples {Zk} are IID according to
some PMF PZ of entropy H(Z). In a blocklength-n commu-
nication, the helper observes the noise sequence noncausally
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and describes it to the encoder prior to transmission with at
most nRh bits. The setup is thus similar to the one of Section II
with a noncausal helper, except for the finite channel alphabet
and the absence of a power constraint.

Theorem 8: The capacity of the modulo-additive noise
channel with noncausal help to the encoder is

C(Rh) = min{log |X | −H(Z) +Rh, log |X |} (125)

= min{C(0) +Rh, log |X |}. (126)

Proof:
Achievability: Achievability is similar to the one for the case
where the help is provided to the decoder [2] because, in the
absence of power considerations, it does not matter whether
it is the decoder or encoder that subtracts the noise: If Rh

exceeds H(Z), the helper can describe the noise sequence
(almost) losslessly and the encoder can subtract it from
its codeword to achieve (almost) noise-free communication.
Otherwise, the helper describes the noise (almost) losslessly
at rate H(Z) during Rh/H(Z) of the time, and does not
describe it at all during the remaining time. During the “with-
help” phase, the encoder subtracts the noise based on the
helper’s description and communicates (nearly) noise-free at
rate log |X |. During the “no-help” phase, the channel is treated
as a modulo-additive noise channel without a helper, a channel
whose capacity is C(0) = log |X |−H(Z) [3, Theorem 7.2.1].
The aggregate achievable rate is thus

Rh

H(Z)
log |X | +

(
1 − Rh

H(Z)

)(
log |X | −H(Z)

)
(127)

which simplifies to C(0) +Rh.

Converse: We establish the following chain of inequalities for
a uniformly drawn message M and any sequence of coding
schemes of vanishing probabilities of error:

nR = H(M) (128)

= I(M ;Y, T ) +H(M |Y, T ) (129)

≤ I(M ;Y, T ) + nδn (130)

= I(M ;T )︸ ︷︷ ︸
=0

+ I(M ;Y|T ) + nδn (131)

= H(Y|T ) −H(Y|M,T ) + nδn (132)

≤ H(Y) −H(Y|M,T,X) + nδn (133)

= H(Y) −H(Z|T ) + nδn (134)

≤ H(Y) − max{nH(Z)− nRh, 0} + nδn (135)

≤ n
(
log |X | − max{H(Z) −Rh, 0} + δn

)
(136)

= n
(
min{C(0) +Rh, log |X |} + δn

)
(137)

where (130) holds for some {δn} tending to zero by Fano’s
inequality; (131) holds because the helper is incognizant of
the message and, consequently, T is independent of M ;
(133) holds because conditioning reduces entropy; (134) fol-
lows because Y = X + Z and because (M,X) �−−
T �−− Z forms a Markov chain; and (135) holds because
I(Z;T ) ≤ H(T ) ≤ nRh and because (conditional) entropy is
nonnegative. The converse now follows by dividing by n and
letting n tend to infinity.

APPENDIX A
NO CUT-SET BOUND FOR

ENCODER ASSISTANCE

We provide an example of a state-dependent discrete
memoryless channel (SD-DMC) (albeit not an additive noise
channel) whose encoder-assisted capacity can exceed its
unaided capacity by more than the helper rate, i.e., for which
C(Rh) > C(0) + Rh. This explains why the Cut-Set bound,
which is so useful in analyzing decoder assistance, is not
applicable to encoder assistance.

Consider the SD-DMC whose state S is uniform over the
set S = {“red”, “blue”}. The receiver observes the state in the
sense that the channel output has the form (S, Y ), where S
is the channel state. Here Y is the “output number,” which
is an element of [1 : η]. The channel input is a pair (σ, x),
where σ ∈ S is the “input color,” and x ∈ [1 : η] is the
“input number.” If the input color matches the state, then the
output number is identical to the input number. Otherwise, it is
uniformly distributed over [1 : η].

Suppose now that help at rate Rh = 1 is provided causally
to the encoder. Denoting the resulting capacity C(Rh),

C(Rh) ≥ log η, (138)

because, when Rh = 1, the helper can describe the state to
the encoder precisely, and the latter can then choose its input
color to match the state so as to obtain a clean channel from
the input number to the output number.

Next consider C(0). Given the input color σ and the input
number x, the output color (which equals the state) is uniform
over S. If it is equal to the input color, then the output number
is equal to the input number, else it is uniform over [1 : η].
Thus, for τ, σ ∈ S and x, y ∈ [1 : η],

W
(
(τ, y)

∣∣(σ, x)) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 if (τ = σ) ∧ (y = x),

0 if (τ = σ) ∧ (y �= x),
1
2η if τ �= σ.

(139)

Since S is independent of the input,

I
(
(Σ, X); (S, Y )

)
= I(Σ, X ;Y |S) (140)

= H(Y |S) −H(Y |Σ, S,X) (141)

= H(Y |S) − Pr(Σ �= S)H(Y |Σ, S,X,Σ �= S) (142)

= H(Y |S) − 1
2

log η (143)

≤ 1
2

log η. (144)

We conclude that

C(1) ≥ C(0) +
1
2

log η, (145)

with C(1) − C(0) being unbounded in the number of
states.
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APPENDIX B
PROOF OF PROPOSITION 1

1
n

n∑
k=1

1
2

log
(

1 +
Pk

N2−2rk

)

=
1
n

n∑
k=1

1
2

log
(

1 +
Pk

N
· 22rk

)
(146)

≤ 1
n

n∑
k=1

1
2

log
((

1 +
Pk

N

)
· 22rk

)
(147)

=
1
n

n∑
k=1

[
1
2

log
(

1 +
Pk

N

)
+ rk

]
(148)

=
1
n

n∑
k=1

1
2

log
(

1 +
Pk

N

)
+

1
n

n∑
k=1

rk (149)

≤ 1
n

n∑
k=1

1
2

log
(

1 +
Pk

N

)
+Rh (150)

≤ 1
2

log

(
1
n

n∑
k=1

[
1 +

Pk

N

])
+Rh (151)

=
1
2

log

(
1 +

1
N

· 1
n

n∑
k=1

Pk

)
+Rh (152)

≤ 1
2

log
(

1 +
P

N

)
+Rh, (153)

where (147) follows because rk ≥ 0 implies 22rk ≥ 1 and
because the logarithm is monotonically increasing, (150) fol-
lows from the condition (2), (151) follows from the concavity
of the logarithm, and finally (153) follows from the condition
(3) and again the fact that the logarithm is increasing.

As to the conditions guaranteeing equality as n → ∞, let
Pk ≡ P and rk ≡ nRh · 1{k = �} for some integer �. Then

1
n

n∑
k=1

1
2

log
(

1 +
Pk

N2−2 rk

)

=
n− 1
2n

log
(

1 +
P

N

)
+

1
2n

log
(

1 +
P

N
· 22nRh

)
(154)

=
n− 1
2n

log
(

1 +
P

N

)
+

1
2n

log
((

2−2nRh +
P

N

)
· 22nRh

)
(155)

=
n− 1
2n

log
(

1 +
P

N

)
+

1
2n

log
(

2−2nRh +
P

N

)
+Rh,

(156)

which approaches the RHS of (5) as n tends to infinity.
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