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Abstract—Flash helping has recently been shown to be an
effective technique for describing additive noise to a decoder. It is
shown here to be effective also in assisting the encoder: it achieves
the helper capacity on the single-user Gaussian channel, on the
multiple-access Gaussian channel, on the Exponential channel,
and on the discrete modulo-additive noise channel. Most of the
results hold irrespective of whether the helper observes the noise
causally or noncausally.

I. INTRODUCTION

Flash helping has recently been proposed as a capacity-
achieving technique that allows a helper observing the channel
noise to describe it over a rate-limited bit-pipe to the receiver
in order to facilitate reliable communication [2]. This tech-
nique was extended in [3] to some multi-terminal settings, but
with the help still being provided to the decoder(s). Here we
consider help to the encoder. In this setting, one distinguishes
between two cases: the noncausal case, where the encoder
receives the description of the entire noise sequence before
it begins to transmit, and the causal case where the time-k
transmitted symbol is only allowed to depend on help related
to the noise sequence up-to time-k. As we shall see, flash
helping is applicable to both settings. As a matter of fact, in
all but one of the cases we consider, the two settings lead to
identical capacities.1 In those cases, we prove achievability for
the causal case and the converse for the noncausal case.

The idea behind flash helping is to satisfy the rate constraint
on by providing the help with great precision but infrequently.
To see why this can outperform schemes that provide help with
moderate precision continuously, consider a Gaussian noise
channel where the noise variance is N > 0, the maximal-
allowed average power is P > 0, and the helper’s rate is
Rh > 0. For concreteness, assume noncausal helping. The
moderate-but-steady approach would describe the n-length
noise sequence using nRh bits and thus result in per-noise-
symbol mean squared-error (MSE) N2−2Rh (assuming an ideal
Gaussian rate distortion codebook [4]). The estimate, which
is known to the encoder prior to transmission, can be viewed
as “dirt” in Costa’s writing-on-dirty-paper setting and can be
effectively canceled without any power penalty [5]. The re-
maining effective noise is the estimation error. This moderate-
but-steady approach thus leads to an achievable rate of

1

2
log
(

1 +
P

N2−2Rh

)
. (1)

An extended version of this paper has appeared in [1].
1The exception is the discrete modulo-additive noise channel.

Alternatively, one could describe the different noise samples
with different rates: One could describe the k-th noise symbol
using rk ≥ 0 bits with corresponding MSE N2−2rk , as long as
the description rate averaged over the block length n satisfies

1

n

n∑
k=1

rk ≤ Rh, rk ≥ 0. (2)

By allocating the k-th symbol the power Pk ≥ 0 with

1

n

n∑
k=1

Pk ≤ P, Pk ≥ 0 (3)

one could obtain the average rate

1

n

n∑
k=1

1

2
log

(
1 +

Pk
N2−2rk

)
. (4)

The following proposition addresses the maximization of (4)
subject to (2) and (3). It shows that, as n tends to infinity, the
maximum is not achieved by choosing rk and Pk constant but
by flash helping, where rk is zero for all k’s other than some `
for which it equals nRh. In other words, rk = nRh ·1{k = `},
where ` is in [1 : n] (the set {1, . . . , n}), and 1{statement}
equals 1 if the statement is true and 0 otherwise.

Proposition 1 (The Flash-Helping inequality). Let N, P, and
Rh be positive and {rk} and {Pk} satisfy (2) and (3). Then

1

n

n∑
k=1

1

2
log

(
1 +

Pk
N2−2rk

)
≤ 1

2
log

(
1 +

P

N

)
+Rh. (5)

Equality is achieved as n tends to infinity if Pk ≡ P and
rk ≡ nRh · 1{k = `} for some ` ∈ [1 : n].

Proof: Omitted. For a proof, see [1, Appendix B].
The rest of the paper is organized as follows. In Section II

we consider the single-user additive noise channel, and in
Section III the multiple-access channel (MAC). Section IV
treats the Exponential channel. In doing so, it demonstrates
how to assist the encoder when the input alphabet is restricted
to the nonnegative reals—a case that also occurs, e.g., in
the free-space optical channel [6]. Finally, in Section V it
is shown that a discrete-alphabet variant of noncausal flash
helping is capacity achieving on the modulo-additive noise
channel, thereby highlighting the structural similarity of the
problems for finite and infinite alphabets.
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II. THE SINGLE-USER CHANNEL

Consider the channel depicted in Figure 1, whose time-k
output Yk is

Yk = xk + Zk, (6)

where xk ∈ R is its time-k input, and the noise samples
{Zk} are IID ∼ N (0,N), i.e., independent and identically
distributed centered Gaussians of variance N > 0.

M encoder +
Xn

Znhelper

(nRh bits)T

decoder
Y n

M̂

Fig. 1. The encoder-assisted single-user additive noise channel.

A rate-R message set M for a blocklength-n transmission
is a set with 2nR elements. For concreteness we assume that
M = {1, . . . , 2nR}. Since the decoder receives no help, it
guesses the message based on the output sequence y alone. It
is thus a mapping ψdec : Rn → M that maps y ∈ Rn to the
decoder’s guess m̂.

The operation of the encoder and the helper depends on
whether the help is provided noncausally or causally. A
noncausal helper observes the entire noise sequence before de-
scribing it to the encoder. Only after obtaining this description
does the encoder begin to transmit. More formally, a noncausal
blocklength-n helper-encoder pair φnc-help, φnc-enc can be de-
scribed as follows: The helper is a mapping φnc-help : Rn → T ,
where T is a set of size 2nRh , which, for concreteness, is
assumed to be the set {1, . . . , 2nRh}. We refer to the result
of applying φnc-help to the noise sequence Zn as the latter’s
description T . (Here and throughout we use Ak to denote
(A1, . . . , Ak), and we use An and A interchangeably.) The
noncausal encoder φnc-enc : M× T → Rn is presented with
the message m to be transmitted and with the description t of
the noise sequence zn. It then produces the length-n sequence
x(m, t), which for every m ∈ M must satisfy the average
power constraint E

[
‖x(m,T )‖2

]
≤ nP. Here, ‖·‖ denotes the

Euclidean norm, and P > 0 is the maximal-allowed average
power, which is assumed throughout to be strictly positive.
(Otherwise the capacity is, of course, zero.)

Unlike the noncausal helper, a causal helper cannot see
the entire noise sequence before describing it. It provides the
description piece by piece, with the piece provided at time k
being a function of the noise sequence only up to time k.
The encoder, for its part, cannot wait for all the pieces before
commencing with transmission: the symbol it sends at time k
can only depend on the message and the pieces it received by
that time. More formally, a causal helper describes the noise
sequence zn by an n-tuple (t1, . . . , tn), where tk takes value in
a set Tk and can depend only on the noise samples zk through
time k. A blocklength-n causal helper is thus described by n
functions {φ(k)c-help}nk=1, where φ

(k)
c-help : Rk → Tk maps zk to

tk ∈ Tk. To guarantee that the total description length does
not exceed nRh bits, we impose the cardinality bound

|T1 × · · · × Tn| ≤ 2nRh . (7)

The time-k channel input xk(m, t1, . . . , tk) produced by the
encoder is determined by the message m and by the descrip-
tions t1, . . . , tk received by time k. A blocklength-n causal
encoder is thus described using n mappings {φ(k)c-enc}nk=1 where

φ(k)c-enc : M×T1 × · · · × Tk → R (8)

and we require that

1

n

n∑
k=1

E
[
xk
(
m, t1(Z1), t2(Z2), . . . , tk(Zk)

)2] ≤ P (9)

for all m ∈M. The supremum of all rates that allow for arbi-
trarily small probability of error (averaged over all messages)
is the capacity C(Rh). Imposing a causality constraint cannot,
of course, increase capacity.

Theorem 2. The capacity of the average-power constrained
additive Gaussian noise channel with a noncausal helper is

C(Rh) =
1

2
log
(

1 +
P

N

)
+Rh (10)

= C(0) +Rh (11)

and can also be achieved with a causal helper.

We shall prove achievability for a causal helper and the
converse for a noncausal one. The achievability part of the
proof relies on Bennett’s [7] classical result on high-resolution
scalar quantization, which we quote from [8, Theorem 6.2]:

Theorem 3 (High-resolution scalar quantization). Let Z
be a random variable satisfying E

[
Z2+δ

]
< ∞ for some

δ > 0 and having a density fZ(·) satisfying ‖fZ‖1/3 ,( ∫
R fZ(z)1/3 dz

)3
<∞. 2 Then there exists an L-level scalar

quantizer which quantizes Z to Ẑ so that

lim
L→∞

L2 · E
[
(Z − Ẑ)2

]
=

1

12
‖fZ‖1/3. (12)

Proof of Theorem 2:
Achievability: We consider time-sharing between two schemes:
the “no-help” scheme and the “with-help” scheme. The former
is used (1 − τ) of the time without help and the latter τ of
the time with the help of a b2Rh/τc-level scalar quantizer
of the noise. Here 0 < τ < 1 is arbitrary but will later
approach zero from above. The data rate in the no-help
scheme can be arbitrarily close to C(0) while using an average
transmission power not exceeding P. Its contribution to the
overall achievable rate is thus (1− τ)C(0) and will, when we
later let τ ↓ 0, converge to C(0).

Consider now the with-help scheme. The helper describes
the k-th noise sample Zk using a MSE-minimizing L-level
quantizer, where

L = b2Rh/τc, (13)

2In fact, the noise distribution need not have a density. It suffices that in its
Lebesgue decomposition the part that is absolutely continuous with respect
to the Lebesgue measure have a density of finite order-1/3 norm.

2020 IEEE Information Theory Workshop (ITW)

 



and the sample is reconstructed from this description as Ẑk,
where Ẑk is the conditional expectation of Zk given the
description, so

E
[
Ẑ2
k

]
≤ N, (14)

and the quantization error Z̃k = Zk − Ẑk satisfies (12). The
encoder uses a codebook whose codewords {x(m)} are drawn
independently and uniformly over the n-dimensional sphere
of radius

√
nP, where x(m) denotes the m-th codeword and

xk(m) its k-th component. To transmit the message m, it
produces at time k the channel input xk(m) − Ẑk. This,
by (14), requires power at most P+N. The receiver observes
the sum of this input and Zk, i.e., xk(m)+ Z̃k. Using nearest-
neighbor decoding, rates arbitrarily close to

1

2
log

(
1 +

P

E
[
(Z − Ẑ)2

]) (15)

can be transmitted reliably [9]. The achievable rate with time
sharing is thus

(1− τ)C(0) + τ
1

2
log

(
1 +

P

E
[
(Z − Ẑ)2

]) (16)

with power
(1− τ)P + τ(P + N). (17)

(The excess power τN can be eliminated by using power
P − τN/(1 − τ) in the no-help phase. This will reduce
the achievable rate in the no-help phase by an amount that
vanishes as τ ↓ 0 because, being concave, the capacity C(0)
is continuous in P > 0.) It follows from (13) and (12) that the
expression in (16) converges to the RHS of (11) as τ ↓ 0, so
that the achievability proof is complete.
Converse: The converse follows from the upper bound in [10,
Sec. VI] by substituting zero for σ2

Z .

Note that the achievability proof does not rely on the noise
being Gaussian: It suffices for the quantization MSE of the
optimal scalar quantizer to have the proper high-resolution
asymptotic behavior, namely,

lim
L→∞

L2 E
[
(Z − Ẑ)2

]
<∞. (18)

Hence:

Remark 4 (Non-Gaussian noise). Consider the additive non-
Gaussian noise channel where the noise {Zk} is IID with
a distribution satisfying the hypotheses of Theorem 3. Its
capacity C(Rh) with a causal helper is then bounded by

C(Rh) ≥ C(0) +Rh, (19)

where C(0) is the channel’s capacity in the absence of a helper.

To prove the converse, it was required in [10, Sec. VI] that
the conditional entropy n−1H(M |Y, T ) tends to zero. This
follows from Fano’s inequality and the convergence to zero
of the probability of error in guessing M based on Y. But
it also follows from Fano’s inequality and the convergence to
zero of the probability of error in guessing M based on Y

and T . Hence, the converse would apply also if the decoder
were cognizant not only of the channel output sequence Y but
also of the noise’s description T . Thus:

Remark 5. On the Gaussian channel, no rate exceeding the
RHS of (10) is achievable even if the noise’s description
presented to the encoder is also presented to the decoder.

III. THE MULTIPLE-ACCESS CHANNEL

We next consider help to the encoders on a multiple-access
channel. We focus on the additive-noise MAC of Figure 2,
whose time-k output Yk is

Yk = x1,k + x2,k + Zk, (20)

where x1,k and x2,k are the time-k channel inputs, and the
noise {Zk} is IID. Depending on the scenario, the helper
observes the noise causally or noncausally and provides its
rate-Rh1 description T1 to Encoder 1 and its rate-Rh2 descrip-
tion T2 to Encoder 2. (In the noncausal case T1 and T2 are
functions of Zn; in the causal case they are n-tuples whose
k-th component is a function of Zk.) Based on the respective
descriptions of the noise and on the respective messages, the
encoders produce the inputs X1(m1, T1) and X2(m2, T2). (In
the causal case the k-th component of X1(m1, T1) must be a
function of m1 and the first k components of T1 and likewise
X2(m2, T2).) We require that the average power constraints

E
[
‖Xi(mi, Ti)‖2

]
≤ nPi, i = 1, 2, (21)

be satisfied, where P1,P2 > 0 are the maximal-allowed
average powers for the two users. The total description rate is
denoted Rh,

Rh = Rh1 +Rh2 (22)

and the capacity region C(Rh1 , Rh2).

M1 encoder1

M2 encoder2

+

Xn
1

Xn
2

+

Zn

decoder
Y n

helper
T2

T1

(M̂1, M̂2)

Fig. 2. The additive noise MAC with encoder-assistance.

As in the single-user case, our achievability result holds
for causal help and arbitrary noise distribution (satisfying the
hypotheses of Theorem 3) and the converse for noncausal help
but with Gaussian noise. Noteworthy is that for Gaussian noise
the capacity region C(Rh1 , Rh2) depends on the rates Rh1 and
Rh2 only via their sum Rh. In stating the result we shall use
“+” to denote Minkowski set addition.

Theorem 6. If the noise satisfies the hypotheses of Theorem 3,
then all rate pairs (R1, R2) in the set

C(0, 0) +
{

(R1, R2) ∈ R+ × R+ : R1 +R2 ≤ Rh
}

(23)
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are achievable with causal helping. If the noise is Gaussian,
then no rate pair outside this set is achievable even with a
noncausal helper; this set is then the capacity region.

Proof: Omitted. For a proof, see [1, Theorem 6]

IV. THE EXPONENTIAL CHANNEL

The inputs to the channel we consider next must be non-
negative. This makes it tricky for the encoder to subtract its
estimate of the noise, because this subtraction might lead to
a negative input. Nevertheless, a minor modification of our
technique can nonetheless achieve capacity. The channel we
study is the additive noise channel of (6), but with different
constraints: The input xk is nonnegative and we require that its
time-averaged expectation, i.e., “average power” be bounded
by the maximal-allowed average power P

1

n

n∑
k=1

E[Xk] ≤ P, (24)

where P > 0. The noise, which need not be nonnegative, is
assumed to be of mean N ≥ 0. This channel reduces to the
Exponential channel [11], [12] when N is positive and Zk is
a mean-N Exponential, i.e., of density

fZ(z) =
1

N
exp

(
− z

N

)
1{z ≥ 0}. (25)

It reduces to the free-space optical channel [6] when Zk is a
centered Gaussian.

In the absence of help, the capacity of the Exponential
channel is [11]

1

2
log

(
1 +

P

N

)
. (26)

We show that, also for this channel, the availability of help to
the encoder increases capacity by the rate of the help.

Theorem 7. The capacity of the Exponential channel with help
to the encoder is

C(Rh) =
1

2
log

(
1 +

P

N

)
+Rh (27)

= C(0) +Rh, (28)

regardless of whether the help is provided to the encoder
causally or non-causally and regardless of whether the help
that is provided to the encoder is also provided to the decoder.
Moreover, if the noise is not necessarily Exponential but
satisfies the hypotheses of Theorem 3, then the RHS of (28)
is achievable with causal help, provided we interpret C(0) as
the capacity of the channel of said noise without help.

Proof: Again we use time-sharing between a “no-help”
scheme, where the channel is used for (1 − τ) of the time
without help, and the “with-help” scheme where the channel
is used for τ of the time with help at rate Rh/τ . In the no-help
scheme, the channel is used with average power P and rate
C(0) and therefore contributes to the overall rate (1−τ)C(0).
We will again let τ ↓ 0 and thus drive this contribution to C(0).
In the with-help scheme, which we describe next, we add to the

channel input a constant A that (most of the time) allows the
subtraction of the encoder’s noise estimate. Adding a constant
to the channel input does not impair communication.

Fix some A > 0. (After letting τ ↓ 0 we shall let A tend to
infinity.) Define

Fk = 1
{
|Zk| ≤ A}, (29)

and note that the hypotheses of Theorem 3 guarantee that

lim
A→∞

Pr(Fk = 1) = 1. (30)

Transmit
xk(m) + A− Ẑk, (31)

where {x(m)} are codewords that are drawn independently,
each with IID ∼ PX components, where PX is an input dis-
tribution that satisfies the power and nonnegativity constraints
and has finite differential entropy.

Let f̃ be the conditional density of Z given |Z| ≤ A. Note
that if fZ satisfies the hypotheses of Theorem 3, then so does
f̃ . The helper uses a MSE-minimizing L-level scalar quantizer
for f̃ , where

L = 2Rh/τ . (32)

Let Ẑk denote the conditional expectation under f̃ of Zk given
its description. Since the support of f̃ is contained in the
interval [−A,A],

0 ≤ A− Ẑk ≤ 2A. (33)

It follows from (31) and (33) that the transmitted power in the
with-help scheme is upper bounded by P + 2A. The overall
power is thus upper-bounded (1 − τ)P + τ(P + 2A), which
approaches P as τ ↓ 0. (One can also reduce the power in
the no-help scheme to P− 2Aτ/(1− τ) to guarantee that no
excess power is used and then use the continuity of C(0).)

The corresponding received symbol is xk(m)+A−Ẑk+Zk.
Upon subtracting the constant A, the receiver obtains

Ỹk = xk + Z̃k, (34)

where Z̃k = Zk − Ẑk. Let ∆̃2 denote the conditional MSE
estimation error given “no overflow,”

∆̃2 = E
[
Z̃2
k |Fk = 1

]
. (35)

Conditional on Fk = 1, the density of Zk is f̃ for which the
quantizer was designed, so

lim
L→∞

L2 · ∆̃2 =
1

12
‖f̃‖1/3. (36)

To study the achievable rates in the with-help scheme,
we study the mutual information I(X;Y ). Using the chain
rule and upper-bounding I(X;F |Y ) by H(F ), we obtain the
following bound:

I(X;Y ) ≥ I(X;Y, F )−H(F ) (37)
= I(X;Y |F )−H(F ) (38)
≥ I(X;Y |F = 1) Pr(F = 1)−H(F ) (39)
= I(X; Ỹ |F = 1) Pr(F = 1)−H(F ). (40)
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The contribution of the with-help scheme to the overall rate
is thus at least τI(X; Ỹ |F = 1) Pr(F = 1) − τH(F ). The
second term will vanish as τ ↓ 0, so we focus on the first.
Lower-bounding the (conditional) differential entropy of Ỹ by
that of X , and recalling that the differential entropy is upper-
bounded by that of a Gaussian of equal variance,

τI(X; Ỹ |F = 1) ≥ τh(PX)− τ

2
log
(
2πe∆̃2

)
. (41)

By (36) and (32),

lim
τ↓0

τI(X; Ỹ |F = 1) ≥ Rh, (42)

and the overall achievable rate is thus lower-bounded by

C(0) +Rh Pr(F = 1). (43)

The achievability proof of C(0) + Rh is now concluded by
letting A tend to infinity and recalling (30).
Converse: The converse follows by exploiting the Markovity
Z (−− T (−− T and the entropy-maximizing properties of
Exponential random variables; cf. [10, Sec. VI].

V. THE MODULO-ADDITIVE NOISE CHANNEL

By studying the modulo-additive noise channel, we demon-
strate that a discrete-alphabet variant of flash helping can also
achieve the capacity of some channels with finite alphabets.
Here, however, a noncausal helper is used in the achievability
proof.

Consider the modulo-additive noise channel

Yk = xk + Zk, (44)

where xk, Zk, and Yk all take values in the modulo-additive
group X = {0, 1, . . . , |X | − 1}, and “+” denotes addition
modulo |X |. Irrespective of the input sequence {xk}, the noise
sequence {Zk} is distributed IID according to PZ of entropy
H(Z). The helper observes the noise sequence noncausally
and describes it to the encoder at an average rate not exceeding
Rh. The setup is thus similar to the one of Section II with a
noncausal helper, except for the finite channel alphabet and
the absence of a power constraint.

Theorem 8. The capacity of the modulo-additive noise chan-
nel with noncausal help at the encoder is

C(Rh) = min{log |X | −H(Z) +Rh, log |X |} (45)
= min{C(0) +Rh, log |X |}. (46)

Proof: Achievability is shown exactly as in the case
where help is available at the decoder [3]: the helper describes
the noise (almost) losslessly at entropy-rate H(Z) during
Rh/H(Z) of the time, and does not describe it at all during
the remaining time (assuming Rh ≤ H(Z)). During the “with-
help” phase, the encoder cancels the noise based on the
helper’s description while communicating noise-free at rate
log |X |. During the “no-help” phase, the channel is treated
as a standard modulo-additive noise channel with achievable

rate C(0) = log |X | − H(Z) [4, Thm. 7.2.1]. The average
achievable rate is thus

Rh

H(Z)
log |X |+

(
1− Rh

H(Z)

)(
log |X | −H(Z)

)
(47)

which simplifies to C(0) +Rh. If Rh exceeds H(Z), then the
first scheme is used throughout, thereby achieving log |X |.
Converse: We establish the following chain of inequalities for
a uniformly drawn message M and any sequence of coding
schemes of vanishing probabilities of error:

nR = H(M) (48)
= I(M ;Y, T ) +H(M |Y, T ) (49)
≤ I(M ;Y, T ) + nδn (50)
= I(M ;T )︸ ︷︷ ︸

=0

+ I(M ;Y|T ) + nδn (51)

= H(Y|T )−H(Y|M,T ) + nδn (52)
≤ H(Y)−H(Y|M,T,X) + nδn (53)
= H(Y)−H(Z|T ) + nδn (54)
≤ H(Y)−max{nH(Z)− nRh, 0}+ nδn (55)
≤ n

(
log |X | −max{H(Z)−Rh, 0}+ δn

)
(56)

= n
(
min{C(0) +Rh, log |X |}+ δn

)
(57)

where (50) holds for some {δn} tending to zero by Fano’s
inequality; (51) holds since the helper is incognizant of the
message, so that T is independent of M ; (54) follows because
Y = X + Z and because (M,X) (−− T (−− Z is a Markov
chain; and (55) holds because I(Z;T ) ≤ H(T ) ≤ nRh and
because (conditional) entropy is nonnegative. The converse
follows by dividing by n and letting n tend to infinity.
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