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Abstract—The erasures-only capacity, the listsize capacity, and
the cutoff rate are computed for the modulo-additive noise
channel with a helper. In one scenario the helper provides a
rate-limited description of the noise sequence to the decoder and
in the other to the encoder. In both scenarios the gains in these
capacities thanks to the helper can exceed the helper’s rate.

I. INTRODUCTION

Consider the memoryless modulo-additive noise channel
whose time-k output Yk corresponding to the time-k input xk
is

Yk = xk ⊕ Zk, (1)

where {Zk} ∼ IID QZ is the channel noise; xk, Zk, and
Yk all take values in the set A =

{
0, 1, . . . , |A| − 1

}
; and

“⊕” denotes mod-|A| addition. The channel law QY |X(y |x)
is thus

QY |X(y |x) = QZ(y 	 x), ∀x, y ∈ A, (2)

where “	” denotes mod-|A| subtraction.
In the absence of help, a blocklength-n code consists of a

message set M = {1, 2, . . . , |M|} and an encoding function
f : M→ An, m 7→ x(m) = (x1(m), . . . , xn(m)). Given the
output sequence Y = (Y1, . . . , Yn) = Y n, an erasures-only
decoder declares an erasure if the list

L(y) = {m ∈M : QY|M (y |m) > 0} (3)

contains more than one message and else produces the sole
message in the list. A (zero-error) list decoder returns the
list L(Y). Here QY|M (y |m) =

∏n
i=1QY |X(yi |xi(m)) =

QnY |X(y |x(m)).
The erasures-only capacity Ce-o [1], [2] (a.k.a. zero-

undetected-error capacity [3] and zero-error erasure capac-
ity [4]) is the supremum of the rates R for which there
exists a sequence of blocklength-n coding schemes with
limn→∞

1
n log |M| = R and

lim
n→∞

1

|M|
∑
m∈M

Pr
[
|L(Y)| ≥ 2

∣∣X = x(m)
]

= 0. (4)

The listsize capacity C`(ρ) [5] (a.k.a. zero-error list capacity
[6]) for ρ > 0 is similarly defined but with (4) replaced with

lim
n→∞

1

|M|
∑
m∈M

E
[
|L(Y)|ρ

∣∣X = x(m)
]

= 1. (5)

The Shannon capacity C and the cutoff rate Rcutoff(ρ) are
obtained by replacing L(y) in (4) and (5) with

L(m,y) = {m̃ ∈M : QY|M (y | m̃) ≥ QY|M (y |m)}, (6)

i.e., by replacing the list of messages of positive a-posteriori
probability with the list of messages that are a-posteriori at
least as likely as the transmitted message. From the definitions,

Ce-o ≤ C, C`(ρ) ≤ Rcutoff(ρ). (7)

The cutoff rate can be expressed as [6]

Rcutoff(ρ) = max
PX

E0(ρ, PX)

ρ
, (8)

where E0(ρ, PX) is Gallager’s function

E0(ρ, PX) = − log
∑
y∈Y

(∑
x∈X

PX(x) ·QY |X(y |x)
1

1+ρ

)1+ρ

. (9)

Lemma 1. For ρ > 0, Gallager’s E0 function for the modulo-
additive noise channel with noise PMF QZ satisfies

max
PX

E0(ρ, PX)

ρ
= log |A| − Hρ̃(QZ), (10)

where Hρ̃(·) denotes the Rényi entropy of order ρ̃ , 1
1+ρ .

Proof: Omitted.
Consider now a helper that is incognizant of the transmitted

message M , but that observes the noise sequence Z and
describes it as T , with T taking values in a finite set T ,
and the rate of help Rh defined as lim supn→∞

1
n log |T |. We

distinguish between two kinds of assistance:
Decoder assistance corresponds to the scenario where the

noise description T is revealed to the decoder. The capaci-
ties Ce-o,dec, C`,dec, Cdec, Rcutoff,dec, which are now functions
also of Rh, are then defined by replacing the decoding
lists L(y) and L(m,y) with L(y, t) and L(m,y, t), where
we replace QY|M (y |m) with QY,T |M (y, t |m), i.e., with
QY,T |X(y, t |x(m)) in the respective definitions.

Encoder assistance corresponds to the scenario where T is
revealed noncausally to the encoder. The capacities Ce-o,enc,
C`,enc, Cenc, Rcutoff,enc are defined by replacing the encoding
function with f : M× T → An, (m, t) 7→ x(m, t), and the
decoding lists are constructed with respect to QY|M (y |m) =
ET
[
QY|X,T (y |x(m,T ), T )

]
.

Recent studies of the benefits of decoder assistance [7],
[8] and encoder assistance [9] have shown that the Shannon
capacities Cdec and Cenc of such channels are increased by
the rate of help (until saturating at log |A|). Here we derive
analogous results for the other capacities. We show that the
helper raises the erasures-only capacity to the same value to
which it raises the Shannon capacity, and it raises the listsize
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capacity to the same level it raises the cutoff rate, namely, to
the sum of the rate of help and the cutoff rate.

The results when the rate of help is zero may seem para-
doxical: even if zero in the absence of help, the erasures-only
capacity with zero-rate help is equal to the Shannon capacity.
This paradox is resolved by noting that zero-rate help is not
equivalent to no help: Zero-rate help still allows the helper
to describe the noise, albeit with a number of bits that is
subexponential in the blocklength. As we shall see, such a
description is all it takes to raise the erasures-only capacity
to the Shannon capacity. A similar observation explains why
zero-rate help increases the listsize capacity to the cutoff rate.

II. DECODER ASSISTANCE

A. Erasures-Only Capacity

Theorem 2. The erasures-only capacity of the modulo-
additive noise channel with noise probability mass function
(PMF) QZ and rate-Rh decoder assistance is

Ce-o, dec(Rh) = log |A| −
{

H(QZ)−Rh
}+
, (11)

where {ξ}+ denotes max{0, ξ}.

Proof: The right-hand-side (RHS) of (11) is the Shannon
capacity of this channel with rate-Rh decoder assistance [8,
Theorem 12]. Since the erasures-only capacity never exceeds
the Shannon capacity, we only need to establish achievability.
We consider three cases:
• Case 1: Rh = 0. Let QX be the uniform input distribution,
QX,Y the joint input-output distribution it induces, and QY the
corresponding (uniform) output distribution. Fix ε > 0. Gen-
erate a random codebook {X(m)}m=1,...,2nR of independent
codewords, each having components drawn IID from QX . To
send the message m ∈ M, the encoder transmits the m-th
codeword. The helper produces a one-bit description T =

1
{
Z ∈ A(n)

ε (QZ)
}

of the noise sequence indicating whether
or not it is weakly typical. The decoder receives the tuple
(Y, T ). If T = 0, it declares an erasure; otherwise, it searches
for a message m̃ such that (X(m̃),Y) ∈ A(n)

ε (QX,Y ). If such
an m̃ exists and is unique, it produces m̃. Otherwise, it declares
an erasure.

To prove that undetected errors never occur, we note that
the decoder attempts to decode only if T = 1, and that, as
we next show, in this case the transmitted codeword X(m)
is jointly typical with the received sequence Y. Indeed, since
QX and QY are equiprobable, it follows that for all x,y ∈ An

− 1

n
logQnX(x) = H(QX), − 1

n
logQnY (y) = H(QY ) (12)

and, consequently, X(m) is jointly typical with Y because∣∣∣∣− 1

n
logQnX,Y (X(m),Y)− H(X,Y )

∣∣∣∣
=

∣∣∣∣− 1

n
logQnY |X(Y |X(m))− H(Y |X)

∣∣∣∣ (13a)

=

∣∣∣∣− 1

n
logQnZ(Z)− H(Z)

∣∣∣∣ (13b)

≤ ε, (13c)

where (13a) follows from the chain rule; (13b) holds because
Y = X ⊕ Z, with Z independent of X; and (13c) holds
because, when T is 1, Z ∈ A(n)

ε (QZ).
It remains to establish that the probability of erasure van-

ishes as n tends to infinity. An erasure is declared only if Z

is atypical or if (X(m̃),Y) ∈ A(n)
ε (QX,Y ) for some m̃ 6= m.

The probability of the former tends to zero by the AEP [10],
and the probability of the latter tends to zero whenever

R < I(QX , QY |X) = log |A| − H(QZ). (14)

and ε is sufficiently small.
• Case 2: Rh > H(QZ). Fix 0 < ε < Rh−H(QZ). The code-
book we use in this case comprises all the distinct sequences
in An. The helper indicates by the bit T1 = 1/0 whether the
noise sequence is typical/atypical. If it is typical, the helper
provides an almost lossless description of the noise sequence
by producing as T2 its index in A(n)

ε (QZ). (Otherwise, T2 is
arbitrary.) The decoder, upon receiving (Y, (T1, T2)), declares
an erasure if the noise is atypical, as indicated by T1 = 0.
Otherwise, it reconstructs the noise sequence from T2 and
subtracts it from Y to recover the codeword and hence the
message. The rate log |A| is thus achievable.
• Case 3: 0 < Rh ≤ H(QZ). For any δ > 0, we divide the
transmission block into two parts of relative length Rh

(1+δ)H(QZ)

and 1− Rh
(1+δ)H(QZ) . We then apply the aforementioned coding

schemes for helper rates of (1 + δ)H(QZ) and zero, respec-
tively. The total rate achieved by this time-sharing scheme is

Rh log |A|
(1 + δ)H(QZ)

+

(
1− Rh

(1 + δ)H(QZ)

)(
log |A| − H(QZ)

)
= log |A| − H(QZ) +

Rh

1 + δ
. (15)

The result follows by taking δ ↓ 0.

B. Listsize Capacity

Theorem 3. For ρ > 0, the listsize capacity C`, dec and the
cutoff rate Rcutoff, dec of the modulo-additive noise channel with
noise PMF QZ and rate-Rh decoder assistance are

C`, dec(ρ,Rh) = Rcutoff, dec(ρ,Rh) (16a)

= log |A| −
{

Hρ̃(QZ)−Rh
}+
. (16b)

Proof: In light of (7), it suffices to prove achievability
for C`, dec and the converse for Rcutoff, dec. We begin with
achievability and consider three cases:
• Case 1: Rh = 0. On account of Lemma 1, we only
need to show that C`, dec(ρ, 0) ≥ Rcutoff(ρ). To do so, we
show how—starting with a sequence of codebooks {Cn} for
which limn→∞ E

[
|L(M,Y)|ρ

]
= 1 (without help)—we can

construct a zero-rate helper for which the zero-error list for
said codes satisfies

E
[
|L(Y, T )|ρ

]
≤ E

[
|L(M,Y)|ρ

]
, (17)

and hence limn→∞ E
[
|L(Y, T )|ρ

]
= 1.

We begin by indexing the family Pn of PMFs on A with
denominator n. To send the message m ∈ M, the encoder
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transmits the m-th codeword in Cn, and the helper produces
as T the index of the empirical type P̂Z of the noise sequence.
Since the cardinality of Pn is subexponential in n, the rate of
help is zero.

On our channel (2), T determines the conditional probability
of Y given the message m [10, Theorem 11.1.2]

QY|M (Y |m) = 2−n(H(P̂Z)+D(P̂Z‖QZ)), (18)

so the zero-error list can only contain messages m̃ for which
QY|M (Y | m̃) = QY|M (Y |m), and (17) follows from the
inclusion

L(Y, T ) = {m̃ ∈M : QY,T |M (Y, T | m̃) > 0} (19a)
⊆ {m̃ ∈M : QY|M (Y | m̃) = QY|M (Y |m)} (19b)
⊆ L(m,Y). (19c)

• Case 2: Rh > Hρ̃(QZ). The codebook consists of all
the sequences in An. To send the message m ∈ M ={

1, . . . , |A|n
}

, the encoder transmits the m-th codeword.
As to the helper, we rely on a result on Task Encoding
[11, Theorem 1.2]: if Rh > Hρ̃(QZ), then there exists a
sequence of mappings fn : An →

{
1, . . . , 2nRh

}
with pre-

images f−1
n (t) =

{
z ∈ An : fn(z) = t

}
such that

lim
n→∞

E
[
|f−1
n (fn(Z))|ρ] = 1. (20)

Using this result, let the helper’s description of the noise be
T = fn(Z). Based on (Y, T ), the decoder produces the list

L(Y, T ) =
{
m ∈M : fn(Y 	X(m)) = T

}
. (21)

Its ρ-th moment is

E
[
|L(Y, T )|ρ

]
= E

[∣∣{x ∈ An : fn(Y 	 x) = T
}∣∣ρ] (22a)

= E
[
|f−1
n (fn(Z))|ρ

]
, (22b)

which, by (20), tends to 1 as n tends to infinity.
• Case 3: 0 < Rh ≤ Hρ̃(QZ). For this case we propose time
sharing as in the proof of Theorem 2. The details are omitted.
This concludes the proof of achievability.

We now prove the converse by showing that

Rcutoff, dec(ρ,Rh) ≤ log |A| −
{

Hρ̃(QZ)−Rh
}+
. (23)

The upper bound log |A| holds even for the capacity, so we
focus on the case 0 ≤ Rh < Hρ̃(QZ), for which we need
Arıkan’s lower bound on guessing [12].

Fix any rate-R blocklength-n codebook Cn and rate-Rh
helper. Given (y, t), list the messages m ∈ M in decreasing
order of the likelihood QY,T |M (y, t |m) (resolving ties in
some arbitrary fixed way, e.g., ranking low numerical values
of m higher), and let G(m |y, t) denote the ranking of the
message m in this list, so

|L(m,y, t)| ≥ G(m |y, t). (24)

where the inequality can be strict because of the way ties are
resolved. It follows that the ρ-th moment of |L(m,y, t)| cannot
tend to one unless the ρ-th moment of G(m |y, t) does. We
now establish a necessary condition for the latter:

Create a second list where the messages m ∈M are listed
in decreasing order of their likelihood in the absence of help
(i.e., according to Q̃Y|M (y |m) = QnY |X(y|x(m))), and let
G̃(m|y) denote the ranking in that list of the message m given
y. The functions G(m|y, t) and G̃(m|y) are thus optimal
guessing functions with respect to QM,Y,T and Q̃M,Y in the
sense of minimal ρ-th moment [13, Theorem 6.4]. Since

Q̃Y|M (y |m) =
∑
t∈T

QY,T |M (y, t |m), (25)

it follows from [13, Proposition 6.9] that∣∣T ∣∣ρ · E[G(M |Y, T )
ρ] ≥ E

[
G̃(M |Y)ρ

]
, (26)

where the RHS can be lower bounded as in [12, Eq. (14)]

E
[
G̃(M |Y)ρ

]
≥ (1 + nR)−ρ · 2n(ρR−maxPX E0(ρ,PX)), (27)

where E0 is Gallager’s function for the channel QY |X . It
follows from (26) and (27) that, as n tends to infinity,
E
[
G(M |Y, T )

ρ] cannot tend to one (and hence by (24) nor
can E

[
|L(M,Y, T )|ρ

]
) unless

R ≤ Rh + max
PX

E0(ρ, PX)

ρ
(28a)

= Rh + log |A| − Hρ̃(QZ), (28b)

where (28b) follows from Lemma 1. This establishes the
converse.

Remark 4. The proof of the converse uses the additive nature
of the channel only in (28b), so (8) and (28a) imply that

Rcutoff, dec(ρ,Rh) ≤ Rh +Rcutoff(ρ) (29)

holds for general channels with rate-Rh decoder assistance.

Remark 5. The technique we used to prove achievability in
Case 1 can be used to establish that

Ce-o, dec(Rh) = C(Rh), C`, dec(ρ,Rh) = Rcutoff, dec(ρ,Rh) (30)

on more general DMCs with IID states {Sk}, provided that
Yk is a function of (xk, Sk), and Sk is a function of (xk, Yk).

III. ENCODER ASSISTANCE

A. Erasures-Only Capacity

Theorem 6. The erasures-only capacity of the modulo-
additive noise channel with noise PMF QZ and rate-Rh
encoder assistance is

Ce-o, enc(Rh) = log |A| −
{

H(QZ)−Rh
}+
. (31)

Proof: Since the RHS of (31) is the channel’s Shannon
capacity with encoder assistance [9, Theorem 8], we only need
to establish achievability. The proof builds on the schemes
proposed for Theorem 2. The idea is to convey the assistance
to the decoder with negligible loss in transmission rate. We
consider three cases:
• Case 1: Rh = 0. We propose the following blocklength-
(n + 1) scheme. For any R < log |A| − H(QZ) and ε > 0
sufficiently small, consider a rate-R blocklength-n codebook
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that, when used with decoder assistance as in Theorem 2,
yields no undetected errors and small probability of erasure.
Using (1 + dlog |A|e) bits, the helper conveys to the encoder
the bit T1 = 1

{
QnZ(Zn1 ) ≥ 2−n(H(QZ)+ε)

}
and the noise

sample T2 = Zn+1. To send the message m, the encoder
transmits the codeword x(m), followed by Xn+1 = T1 	 T2,
so that Yn+1 = T1. Equipped with T1, the decoder can proceed
as with decoder assistance. The overall rate is nR/(n + 1),
which approaches R.
• Case 2: Rh > H(QZ). Fix 0 < ε < Rh − H(QZ).
As in Case 1, the helper and encoder can convey the bit
T1 = 1

{
Zn1 ∈ A

(n)
ε (QZ)

}
to the decoder. Additionally, if the

noise is typical, the helper can describe it to the encoder, who
can then subtract it from the codeword.
• Case 3: 0 < Rh ≤ H(QZ). Follows by time sharing.

B. Listsize Capacity

Theorem 7. For ρ > 0, the listsize capacity C`, enc and the
cutoff rate Rcutoff, enc of the modulo-additive noise channel with
noise PMF QZ and rate-Rh encoder assistance are

C`, enc(ρ,Rh) = Rcutoff, enc(ρ,Rh) (32a)

= log |A| −
{

Hρ̃(QZ)−Rh
}+
. (32b)

Proof: We prove achievability of C`, enc and converse for
Rcutoff, enc. For achievability, we consider three cases:
• Case 1: Rh = 0. With negligible rate loss,
dlog |Pn(A)|/ log |A|e extra channel uses can be used to
convey the type of Zn1 to the decoder, and the problem reduces
to that of decoder assistance.
• Case 2: Rh > Hρ̃(QZ). Fix ε, δ > 0 and sufficiently
large blocklength n. The codebook is An, and coding is in
three phases, with Phase 1 of length n1 = n, and Phases 2
and 3 of lengths n2 and n3 to be specified later, but both
negligible compared to n. The helper can thus describe the
noise corrupting the channel in Phases 2 and 3 with negligible
overhead, allowing the encoder to subtract the noise and
thereby enabling error-free transmission in those two phases.

Observing the Phase 1 noise Zn1 (denoted hereafter Z), the
helper conveys its empirical type T2 = P̂Z to the encoder,
who conveys it to the decoder in Phase 2. (Since the number
of types is subexponential, both the length of the helper’s
description T2 and the number of channel uses the encoder
needs to convey T2 to the decoder are negligible.) Thereafter,
P̂Z is known to all parties. Consider two subcases:

(i) Rh ≥ H(P̂Z). In this subcase, the encoder, with the
helper’s assistance, can subtract the Phase 1 noise corrupting
the codeword: Since |>(n)

P̂Z
| ≤ 2nH(P̂Z) ≤ 2nRh , the helper

can set T1 to be the index of Z in >(n)

P̂Z
, so that T1 and T2

jointly determine Z, allowing the encoder to subtract Z from
the codeword in Phase 1. The decoder recovers the codeword
as Y n1 . Phase 3 is unnecessary and zero padding is applied to
exhaust the frame.

(ii) Rh < H(P̂Z). In this subcase, the noise samples in
only nq locations are described and subtracted, where q =
dnRh/H(P̂Z)e/n. The issue is how to choose the locations and

how to convey them to the decoder with negligible overhead.
To this end, we use as location indicator a binary codeword U
in a size-2nε codebook C(P̂Z) ⊂ {0, 1}n, which is specifically
designed for P̂Z, and each of whose codewords has nq
components equal to 1. Prior to transmission, codebooks are
designed and agreed upon by all parties for each possible
P̂Z, i.e., for each PMF in Pn(A). The index of the codeword
U ∈ C(P̂Z) (with the dependence of C on P̂Z henceforth made
implicit) is described using nε bits to the encoder who conveys
it to the decoder in Phase 3. With U known to all parties, the
helper can describe the noise samples at the corresponding
locations, the encoder subtracts them from the codeword, and
the decoder can then be certain of the value of the codeword
at these locations. Paramount is that the noise samples at
the locations indicated by the codeword have an empirical
type that allows their description. This is where the codebook
construction is critical.

To specify how C is constructed and how U is chosen,
we need some notation. Given a binary n-tuple u, we define
I(u) ,

{
i ∈ [1 : n] : ui = 1

}
and ū , 1 − u, so I(u) t

I(ū) = [1: n], where “t” denotes the disjoint union. If I ⊂
[1 : n] is of elements i1 < i2 < · · · < i|I| and z ∈ An, then
z(I) is the tuple (zi1 , zi2 , . . . , zi|I|) ∈ A|I| “picked by I”,
and its empirical type is P̂z(I) ∈ P|I|(A). For simplicity of
notation, z(I(u)) is also denoted z(u).

The codebook C is a type-covering [13, Lemma 2.34] rate-
distortion codebook for some joint type P̂Z,U ≈ P̂Z ◦ Ber(q),
whose Z-marginal is P̂Z, whose U -marginal is Ber(q), and
under which Z and U are “nearly” independent. This near
independence guarantees that the empirical type of Z(U)—
which under P̂Z,U equals PZ|U=1—is approximately P̂Z, so∣∣H(P̂Z(U))− H(P̂Z)

∣∣ < δ. (33)

The codebook C ⊂ {0, 1}n, whose proof of existence is
omitted, is thus such that: (1) |C| = 2nε, (2) each codeword
u ∈ C is of type Ber(q), i.e. |I(u)| = nq, and (3) to each z of
type P̂Z, there corresponds some codeword u ∈ C such that
(z,u) is of type P̂Z,U.

The coding scheme is the following. The helper sets T3 to
be the index of the codeword U ∈ C whose joint type with the
noise Z is P̂Z,U. The index of the codeword U is conveyed to
the decoder in Phase 3. Since the noise sequence Z(U) picked
by I(U) is of type P̂Z(U), and since, by (33),∣∣>(|I(U)|)

P̂Z(U)

∣∣ ≤ 2nqH(P̂Z(U)) < 2n(Rh+δ), (34)

the helper can convey Z(U) to the encoder using some
universal code. In Phase 1, the encoder subtracts the noise
at locations I(U) from the codeword. The decoder, with
the knowledge of U, recovers these nq components received
correctly, and, with P̂Z,U, knows the type of the subsequence
at the remaining n(1 − q) components P̂Z(Ū). Its list is thus
of size∣∣>(|I(Ū)|)

P̂Z(Ū)

∣∣ ≤ 2n(1−q)H(P̂Z(Ū)) (35a)

≤ 2nH(P̂Z)−nqH(P̂Z(U)) < 2n(H(P̂Z)−Rh+δ), (35b)
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where the first inequality of (35b) holds by the convexity of
entropy and the relation P̂Z = qP̂Z(U) + (1− q)P̂Z(Ū).

The duration of Phase 2 and 3 is

n2 =

⌈
log |Pn(A)|

log |A|

⌉
, n3 =

⌈
nε

log |A|

⌉
. (36)

to allow the description of P̂Z in Phase 2 and of the index of
the locator codeword in Phase 3. By letting ε ↓ 0 as n→∞,
the overall assistance rate and transmission rate tend to Rh
and log |A|, respectively.

We next prove that the ρ-th moment of the output list tends
to 1 in both subcases. Conditional on P̂Z, the ρ-th moment of
listsize is upper bounded by

E
[
|L(Y n+n2+n3)|ρ

∣∣ P̂Z

]
≤ 1 + 2nρ(H(P̂Z)−Rh+δ). (37)

Taking the expectation of (37) over P̂Z, upper bounding the
probability of a type class [10, Theorem 11.1.4], and recalling
that the number of types is subexponential in n, the ρ-th
moment of the listsize can be bounded from above by

1 + max
PZ∈Pn(A)

2nρ
(

H(PZ)−ρ−1D(PZ‖QZ)−Rh+δ+o(1)
)
. (38)

This expression tends to 1 as n tends to infinity (for δ small
enough) because

Rh > Hρ̃(QZ) = max
PZ∈P(A)

{
H(PZ)− ρ−1D(PZ‖QZ)

}
. (39)

• Case 3: 0 < Rh ≤ Hρ̃(QZ). Follows by time sharing.
The converse is implied by the following stronger statement.

Claim 8. The cutoff rate of the modulo-additive noise channel
with rate-Rh assistance that is provided to both the decoder
and the encoder is upper bounded (for any ρ > 0) by

Rcutoff, both(ρ,Rh) ≤ log |A| −
{

Hρ̃(QZ)−Rh
}+
. (40)

Here Rcutoff, both is defined with the encoding function having
the form f(m, t) and the decoding list L(m,y, t) correspond-
ing to QY,T |M (y, t |m) = QT (t) ·QY|X,T (y |x(m, t), t).

From this claim, the converse follows because

Rcutoff, enc(ρ,Rh) ≤ Rcutoff, both(ρ,Rh). (41)

Proof of Claim 8. Since the cutoff rate is always upper bounded
by log |A|, we focus on the case 0 ≤ Rh < Hρ̃(QZ). Condi-
tional on T = t, the channel reduces to the non-IID modulo-
additive noise channel QY|X,T=t with the noise distribution
QZ|T=t, and the encoding function m 7→ x(m, t) can be
described using the codebook Ct =

{
x(m, t) : m ∈M

}
.

Fix any rate-Rh helper and any family of rate-R
blocklength-n codebooks {Ct}t∈T . Given t and y, list the mes-
sages in decreasing order of the likelihood QY|M,T (y |m, t) =
QY|X,T (y |x(m, t), t), and denote the ranking of message m
in the list by G(m |y, t), so

|L(m,y, t)| ≥ G(m |y, t). (42)

By Arıkan’s inequality on guessing [12, Section III], the
conditional ρ-th moment of the RHS can be lower bounded
by

E
[
G(M |Y, T )

ρ ∣∣T = t
]

≥ (1 + nR)−ρ · 2nρR−maxPX
E

(n)
0 (ρ,PX,QY|X,T=t), (43)

where E(n)
0 is Gallager’s function of QY|X,T=t, the modulo-

additive noise channel over length-n superalphabets. By ap-
plying Lemma 1 to superalphabets of length n,

max
PX

E
(n)
0 (ρ, PX, QY|X,T=t) = ρ log |A|n − ρHρ̃(QZ|T=t).

(44)

It follows from (43) and (44) by averaging over all t ∈ T that

E
[
G(M |Y, T )

ρ] ≥ (1 + nR)−ρ · 2nρ(R−log |A|)+ρHρ̃(Z |T ).

(45)

The RHS of (45) cannot tend to one as n tends to infinity
unless

R ≤ log |A| − 1

n
Hρ̃(Z |T ) (46a)

≤ log |A| − 1

n
(− log

∣∣T ∣∣+ Hρ̃(Z)) (46b)

= log |A| − Hρ̃(Z) +Rh + o(1), (46c)

where (46b) follows from the chain rule of Rényi entropy [14,
Theorem 3]. This proves Claim 8 and hence the converse.

Remark 9. Claim 8 notwithstanding, for general channels,
Rcutoff, enc(ρ,Rh) − Rcutoff(ρ) can be arbitrarily large, as can
be illustrated by an example like the one in [9, Appendix A].

Remark 10. Some of the paper’s results extend to general
cost-constrained additive-noise channels

Yk = xk + Zk, (47)

where the noise {Zk} is IID with density fZ; the symbols
xk, Zk, Yk ∈ R are real; addition is over the reals; and each
codeword x(m) satisfies

1

n

n∑
k=1

g(xk(m)) ≤ Γ (48)

and

xk(m) ∈ [a, b], ∀ k ∈ [1 : n], (49)

for given g : R→ R+, Γ > 0, and −∞ ≤ a < b ≤ +∞.
For such channels with rate-Rh decoder assistance, the

erasures-only capacity Ce-o, dec is given by

Ce-o, dec(Rh) = Cdec(Rh) (49a)
= max
fX : E[g(X)]≤Γ

I(fX ; fY |X) +Rh; (49b)

and with rate-Rh encoder assistance, the erasures-only capac-
ity Ce-o, enc satisfies

Ce-o, enc(Rh) ≥ max
fX : E[g(X)]≤Γ

I(fX ; fY |X) +Rh, (50)

with the lower bound being tight when fZ is Gaussian, g
quadratic, a = −∞, and b = +∞.
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