Gaussian Broadcast Channel with Partial Feedback

Amos Lapidoth ETH Zurich CH-8092 Zurich, Switzerland lapidoth@isi.ee.ethz.ch Yossef Steinberg Technion- Israel Institute of Technology Haifa 32000, Israel ysteinbe@ee.technion.ac.il Michèle Wigger Telecom ParisTech 75634 Paris Cedex 13, France michele.wigger@telecom-paristech.fr

Abstract—We present new achievable regions for the two-user Gaussian broadcast channel with noiseless feedback from one of the users. Our regions improve on previous achievable regions. *Classification: Information theory, communications.*

I. CHANNEL MODEL

We consider a two-receiver broadcast scenario where a single transmitter wishes to send Message M_1 to Receiver 1 and an independent message M_2 to Receiver 2. The messages M_1 and M_2 are assumed to be uniformly distributed over the sets $\{1, \ldots, \lfloor 2^{nR_1} \rfloor\}$ and $\{1, \ldots, \lfloor 2^{nR_2} \rfloor\}$, where *n* denotes the block-length and R_1 and R_2 the rates of transmission.

The transmission takes place over a memoryless discretetime Gaussian broadcast channel (BC). The time-t received symbols corresponding to the transmitted symbol x_t are thus

$$Y_{1,t} = x_t + Z_{1,t}$$
 and $Y_{2,t} = x_t + Z_{2,t}$,

where $\{Z_{1,t}\}$ and $\{Z_{2,t}\}$ are independent sequences of independent and identically distributed zero-mean Gaussian random variables of variances $\sigma_1^2 > 0$ and $\sigma_2^2 > 0$.

The transmitter is assumed to have feedback from Receiver 2. Thus, it can compute X_t not only as a function of the messages M_1 and M_2 but also of the previous channel outputs $Y_2^{t-1} \triangleq (Y_{2,1}, \ldots, Y_{2,t-1})$:

$$X_t = x_t^{(n)} \left(M_1, M_2, Y_2^{t-1} \right).$$

The channel inputs are subject to an average power constraint $\frac{1}{n} \mathsf{E} \left[\sum_{t=1}^{n} X_t^2 \right] \leq P$. The two receivers decode their intended message based on the observed output sequences $Y_1^n = (Y_{1,1}, \ldots, Y_{1,n})$ and $Y_2^n = (Y_{2,1}, \ldots, Y_{2,n})$, respectively. In the described setup achievability of a pair of nonnegative rates (R_1, R_2) is defined as usual.

II. RESULTS

Theorem 1. A rate pair (R_1, R_2) is achievable whenever

$$R_{1} \leq \frac{1}{2\eta} \log \left(\frac{\det \left(\mathsf{K}_{U1} + \mathsf{K}_{U2} + BB^{\mathsf{T}}\sigma_{2}^{2} + \mathsf{I}_{\eta}\sigma_{1}^{2}\right)}{\det \left(\mathsf{K}_{U2} + BB^{\mathsf{T}}\sigma_{2}^{2} + \mathsf{I}_{\eta}\sigma_{1}^{2}\right)} \right)$$
$$R_{2} \leq \frac{1}{2\eta} \log \left(\frac{\det \left(\mathsf{K}_{U2} + (B + \mathsf{I}_{\eta})(B + \mathsf{I}_{\eta})^{\mathsf{T}}\sigma_{2}^{2}\right)}{\det(\mathsf{I}_{\eta}\sigma_{2}^{2})} \right)$$

for some positive integer η , two positive semi-definite $\eta \times \eta$ -matrices K_{U1}, K_{U2} , and a strictly lower-triangular $\eta \times \eta$ -matrix B such that

$$\operatorname{tr}\left(\mathsf{K}_{U1}+\mathsf{K}_{U2}+\mathsf{B}\mathsf{B}^{\mathsf{T}}\sigma_{2}^{2}\right)\leq\eta P,$$

and where I_{η} denotes the $\eta \times \eta$ identity matrix.

Theorem 2. A rate-pair (R_1, R_2) is achievable whenever

$$\begin{split} R_1 &\leq \frac{1}{4\pi} \int_0^{2\pi} \log \left(1 + \frac{\mathcal{S}_{U1}(\omega)}{\mathcal{S}_{U2}(\omega) + |H(\omega)|^2 \sigma_2^2 + \sigma_1^2} \right) \, \mathrm{d}\omega \\ R_2 &\leq \frac{1}{4\pi} \int_0^{2\pi} \log \left(\frac{\mathcal{S}_{U2}(\omega)}{\sigma_2^2} + |H(\omega) + 1|^2 \right) \, \mathrm{d}\omega \end{split}$$

for some strictly causal filter with Fourier-Transform H and some power-spectral densities S_{U1} and S_{U2} that satisfy:

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\mathcal{S}_{U1}(\omega) + \mathcal{S}_{U2}(\omega) + |H(\omega)|^2 \sigma_2^2 \right) \, \mathrm{d}\omega \le P.$$

The region in Theorem 2 is a subset of the region in Theorem 1. The reason for also presenting the possibly smaller region in Theorem 2 is that for this second region it is possible to partly determine the optimal parameters (see the following Remark 3), which seems out of reach for the first region.

Remark 3. For a specific choice of the filter H it is possible to derive the optimal power-spectral densities S_{U1}^* and S_{U2}^* . For brevity the description of these waterfilling-type solutions is omitted.

Specializing the achievable region in Theorem 2 for different values of α to the choice of parameters $H(\omega) = \sqrt{(-2\pi)^2}$

 $-\frac{\sqrt{\frac{\alpha^2 P^2}{\sigma^2(\alpha P + \sigma^2)}}e^{-i\omega}}{1-\sqrt{\frac{\sigma^2}{\alpha P + \sigma^2}}e^{-i\omega}}, \ \mathcal{S}_{U2}(\omega) = 0, \text{ and the optimal } \mathcal{S}_{U1}^*(\omega)$ recovers the achievable region in [1]. However, in general this choice of parameters is not optimal, and our achievable region in Theorem 2 is larger than the achievable region in [1]. In

In Theorem 2 is larger than the achievable region in [1]. In fact, even the achievable region in Theorem 1 with parameter $\eta = 2$ can be larger than the region in [1]. The same techniques can be applied for the double sided feedback. This direction is under investigation now.

ACKNOWLEDGMENT

The authors would like to thank Young-Han Kim for discussions in early stages of this work. The work of Y. Steinberg was supported by the Israel Science Foundation, grant no. 280/07.

REFERENCES

 S. R. Bhaskaran, "Gaussian Broadcast Channel with Feedback," IEEE Trans. on Inf. Theory, vol. 54, no. 11, p. 5252–5257, Oct. 2008.