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On the AWGN MAC With Imperfect Feedback
Amos Lapidoth, Fellow, IEEE, and Michèle Wigger, Member, IEEE

Abstract—New achievable rate regions are derived for the two-
user additive white Gaussian multiple-access channel with noisy
feedback. The regions exhibit the following two properties. Irre-
spective of the (finite) Gaussian feedback-noise variances, the re-
gions include rate points that lie outside the no-feedback capacity
region, and when the feedback-noise variances tend to zero the re-
gions converge to the perfect-feedback capacity region.

The new achievable regions also apply to the partial-feedback
setting where one of the transmitters has a noisy feedback link and
the other transmitter has no feedback at all. Again, irrespective of
the (finite) noise variance on the feedback link, the regions include
rate points that lie outside the no-feedback capacity region. More-
over, in the case of perfect partial feedback, i.e., where the only
feedback link is noise-free, for certain channel parameters the new
regions include rate points that lie outside the Cover–Leung region.
This answers in the negative the question posed by van der Meulen
as to whether the Cover–Leung region equals the capacity region
of the Gaussian multiple-access channel with perfect partial feed-
back.

Finally, we propose new achievable regions also for a setting
where the receiver is cognizant of the realizations of the noise se-
quences on the feedback links.

Index Terms—Capacity, concatenated codes, Gaussian noise,
linear feedback schemes, multiple-access channel, noisy feedback,
partial feedback.

I. INTRODUCTION

I N [5], Gaarder and Wolf showed that perfect feedback from
the receiver to the transmitters increases the capacity of some

memoryless multiple-access channels (MACs). That this also
holds for the two-user additive white Gaussian noise (AWGN)
MAC was shown by Ozarow in [13], where he also determined
the capacity region of this channel with perfect feedback. Here,
we study the capacity region of the two-user AWGN MAC when
the feedback is imperfect. We consider the following settings:

• noisy feedback, where the feedback links are corrupted by
AWGN;

• noisypartial feedback, whereoneof the two transmittershas
a noisy feedback link whereas the other transmitter has no
feedback at all;
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• perfect partial feedback, where one of the two transmitters
has a perfect (noise-free) feedback link whereas the other
transmitter has no feedback at all; and

• noisy feedback with receiver side-information, where both
transmitters have noisy feedback links and the receiver (but
not the transmitters) is cognizant of the feedback-noise se-
quences.

The last setting arises, for example, when the receiver actively
feeds back a quantized version of the channel output over perfect
feedback links, and the feedback noises model the quantization
noises, which are known to the receiver. (The MAC with quan-
tized feedback has also been considered in [16] but under the as-
sumption of a rate limitation on the feedback links and for the
discrete memoryless case.) We show that in all these settings the
capacity region is strictly larger than the no-feedback capacity
region. Moreover, we show that for noisy feedback the capacity
region tends to Ozarow’s perfect-feedback capacity region [13]
as the feedback-noisevariances tend tozero.Finally, in thecaseof
perfect partial feedback we show that for certain channel parame-
ters the capacity region strictly contains the Cover–Leung region
[4], a region that was originally derived for the perfect-feedback
setting and that was later shown by Carleial [2] and (for the dis-
crete memoryless case) by Willems and van der Meulen [21] to be
achievable also in the perfect partial-feedback setting. This an-
swers in the negative the question posed by van der Meulen in
[18] as to whether the Cover–Leung region equals the capacity
region of the AWGN MAC with perfect partial feedback.

To derive these results we propose coding schemes for the
described settings and analyze the rates that they achieve.
The idea behind our schemes is to generalize Ozarow’s
capacity-achieving perfect-feedback scheme to imperfect feed-
back. Ozarow’s scheme is based on the following strategy. The
transmitters first map their messages onto message points in the
interval . They then successively refine the receiver’s
estimates of these message points by sending scaled versions of
the receiver’s linear minimum mean-squared errors (LMMSE)
of the message points. Besides achieving capacity, Ozarow’s
scheme has the advantage of a double-exponential decay of
the probability of error. However, a drawback of the scheme
is that it is extremely sensitive to noise on the feedback links:
it does not achieve any positive rate if the feedback links are
not noise-free [9]. To overcome this weakness, we propose to
apply an outer code around a modified version of Ozarow’s
scheme where the transmitters—rather than refining the mes-
sage points—successively refine the input symbols from the
outer code. We further modify Ozarow’s scheme by allowing
the transmitters to refine the input symbols by sending arbitrary
linear updates (i.e., not necessarily LMMSE-updates) and by
allowing the number of refinements of each input symbol to
be a constant, which can be optimized and which does not
grow with the blocklength. These modifications yield a scheme
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which achieves high rates also for channels with imperfect
feedback. In particular, for noisy feedback and for noisy partial
feedback our scheme exhibits the following key properties:

• for all finite feedback-noise variances, our scheme achieves
rate points that lie outside the capacity region without feed-
back, and

for noisy feedback
• the scheme achieves rate regions that converge to Ozarow’s

perfect-feedback capacity region when the feedback-noise
variances tend to zero.

Previous achievable regions for the AWGN MAC with imper-
fect feedback were given by Carleial [2], by Willems et al. [23]1,
and by Gastpar [6]. Carleial [2] and Willems et al. [23] gener-
alized the Cover–Leung coding scheme [4]. Gastpar’s result is
also based on Ozarow’s scheme and on the idea of modifying it
to use only a finite number of refinements which does not grow
with the blocklength.2 All these regions collapse to the no-feed-
back capacity region when the feedback-noise variances ex-
ceed a certain threshold. Moreover, as the feedback-noise vari-
ances tend to zero the regions in [2] and [23] converge to the
Cover–Leung region, which is a strict subset of Ozarow’s re-
gion [1].3

Kramer studied the discrete memoryless MAC with imperfect
feedback, and presented a coding scheme for this setup that is
based on code trees [10], [12].

Outer bounds on the capacity region of the AWGN MAC with
noisy feedback were derived by Gastpar and Kramer [7] and
Tandon and Ulukus [17] based on the idea of dependence-bal-
ance [8]. These outer bounds do not in general coincide with
any known achievable regions.

The rest of the paper is outlined as follows. This section is
concluded with remarks on notation. Section II describes the
channel models in more detail; Section III discusses some pre-
vious achievability results. Section IV describes our results and
the new coding schemes for the setting with noisy feedback.
Section V shows the setting with noisy or perfect partial feed-
back. Section VI shows the setting with noisy feedback where
the receiver has side-information. Finally, Section VII summa-
rizes the paper.

In the following, denotes the -dimensional column vector
; denotes the diagonal matrix

with diagonal entries ; denotes the identity
matrix; denotes the transpose of a matrix , its determi-
nant, and its trace. Also, for zero-mean random vectors
and we define the covariance matrices and

. For a two-dimensional rate region we denote
by its closure and by its interior.

II. CHANNEL MODEL

This paper focuses on the AWGN MAC with two transmitters
that wish to transmit messages and to a single receiver.

1The result in [23] is for the discrete memoryless case, but it easily extends
to the Gaussian case.

2The idea of using a finite number of refinements was already mentioned in
[15]. However, only in combination with zero rate or nonvanishing probability
of error.

3It can be shown that the achievable rate region in [6] converges to Ozarow’s
region when the feedback-noise variances tend to zero.

Fig. 1. AWGN MAC with noisy feedback.

The two messages are assumed to be independent and uniformly
distributed over the discrete finite sets and .

To describe the channel model (see Fig. 1), we introduce the
sequence of independent and identically distributed (IID)
zero-mean variance- Gaussian random variables that will be
used to model the additive noise at the receiver. Using this se-
quence we can describe the time- channel output corre-
sponding to the time- channel inputs and by

The sequence is assumed to be independent of the mes-
sages . Also, we introduce the IID sequence of bi-
variate zero-mean Gaussians of covariance ma-
trix

(1)

where and . The sequence
is used to model the additive noise cor-

rupting the feedback links. The time- feedback output at
Transmitter can then be modeled as

The sequence is assumed to be independent of
.

The transmitters observe the feedback outputs in a causal
fashion, i.e., they compute their time- channel inputs and

after observing all prior feedback outputs
and . Thus, for , Transmitter
computes its channel inputs by mapping the Message and
the previous feedback outputs into the time-
channel input

(2)

for some sequences of encoding functions

(3)
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where denotes the blocklength of the scheme. We only allow
encoding functions that satisfy the power constraints

(4)

where the expectation is over the messages and the realiza-
tions of the channel, i.e., the noise sequences , , and

.4

A blocklength- powers- feedback-code of rate pair
is a triple

where

and where and are of the form (3) and satisfy

(4). In the following we say that a rate pair is achiev-
able if for every and every sufficiently large there ex-
ists a blocklength- powers- feedback code of rates ex-
ceeding and such that the average probability of
a decoding error

tends to zero as the blocklength . The set of all achiev-
able rate pairs for this setting is called the capacity region and
is denoted .

The case corresponds to the special case when
the feedback links are noise-free. We refer to this setting as the
“perfect-feedback” setting and denote the capacity region by

; i.e.

where is the 2 2 all-zero matrix.
In addition to the noisy-feedback setting we also consider

the “partial-feedback” setting (see Fig. 2) where only one of
the two transmitters has feedback. We assume that the trans-
mitter with feedback is Transmitter 2. For the partial-feedback
setting (2) and (3) are modified by requiring that the sequence

be a function of Message only. Since
the sole feedback link can be noisy we shall refer to this set-
ting also as “noisy partial feedback” and denote its capacity
region by , where de-
notes the noise variance on the feedback link to Transmitter
2. In the special case of , i.e., when the sole feed-
back link is noise-free, we refer to the setting as “perfect par-
tial feedback” (see Fig. 3) and denote the capacity region by

.
By the “no-feedback” setting we refer to the classical

MAC where neither transmitter has a feedback link. In this
case, (2) and (3) have to be modified so both sequences

and are functions of the
respective messages only. We denote the capacity region of this
MAC by .

4The achievability results in this paper remain valid also when the expected
average block-power constraints (4) are replaced by average block-power con-
straints that hold with probability 1.

Fig. 2. AWGN MAC with noisy partial feedback.

Fig. 3. AWGN MAC with perfect partial feedback.

Finally, we also consider a noisy-feedback setting where the
receiver perfectly knows the realizations of the Gaussian noise
sequences and corrupting the feedback signals
(see also Fig. 4).5 We refer to this setting as the “noisy feed-
back with receiver side-information” setting. For this setting the
formal description of the communication scenario is the same as
in the noisy-feedback setting, except for the decoder which
is of the form

We denote the capacity region of the MAC with noisy
feedback and perfect receiver side-information by

.

III. PREVIOUS RESULTS

We survey some previous results that are needed in the sequel.
The capacity region of the classical AWGN MAC without

feedback was independently determined by
Cover [3] and Wyner [25] and is given by the set of all rate pairs

satisfying

(5a)

(5b)

(5c)

5Since we do not consider any delay constraints and the receiver cannot ac-
tively feed back a signal, it does not matter whether the receiver learns the feed-
back-noise sequences �� � and �� � causally or acausally.
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Fig. 4. AWGN MAC with noisy feedback and receiver side-information.

The capacity region of the AWGN MAC with perfect feed-
back was determined by Ozarow [13]:

(6)

where is the set of all rate pairs sat-
isfying

(7a)

(7b)

(7c)

We next describe some properties of the regions
and that will

be needed in subsequent sections. Some of the properties,
Remarks III.2–III.4 and Remark III.8, were reported in [13].

Definition III.1: The parameter (for short )
is defined as the unique solution in the interval of the fol-
lowing quartic equation in

(8)

Remark III.2: Equation (8) is equivalent to the right-hand
side (RHS) of (7c) being equal to the sum of the RHSs of (7a)
and (7b).

That (8) has a unique solution in the interval can be
seen as follows. At the left-hand side (LHS) of (8) is
smaller than its RHS, whereas for the LHS is larger.
Since the expressions on both sides of (8) are continuous, by
the Intermediate Value Theorem there must exist at least one
solution to (8) in . The uniqueness of the solution follows
by noting that the LHS of (8) is strictly increasing in whereas
the RHS is strictly decreasing in .

Fig. 5. Perfect-feedback capacity region with an example of� � � , and
� for � � � � � .

Next, we discuss the region and examine the
rate constraints (7) defining the region. The RHS of single-rate
constraint (7a) and the RHS of (7b) are both strictly decreasing
in , whereas the RHS of the sum-rate constraint (7c) is
strictly increasing in . By these properties, by Definition III.1,
and by Remark III.2 we have the following.

Remark III.3: For the sum of the RHSs of the single-
rate constraints (7a) and (7b) equals the RHS of the sum-rate
constraint (7c); for the sum of the RHSs of (7a) and
(7b) is strictly larger than the RHS of (7c); and for
the sum of the RHSs of (7a) and (7b) is strictly smaller than the
RHS of(7c).

Remark III.4: For every the rate region
has the shape of a pentagon and for every

the rate region has the shape of
a rectangle. Furthermore, all rectangles
for are strictly contained in the rectangle

, and thus in (6) it is enough to take the
union over all .

For the next two observations we introduce the notation of a
dominant corner point as in [14]. A corner point of a given rate
region is called dominant if it is of maximum sum-rate in the
considered region.

Remark III.5: To every boundary point of
that has sum-rate larger or equal

to there exists a such that this
point is a dominant corner point of the region
(see Fig. 5).

Remark III.5 follows by Remark III.4, by continuity consid-
erations, and by the monotonicities of the constraints (7a)–(7c),
see Remark III.3. To state the next observation we define the
following.

Definition III.6: For each , we define
as the set of all rate pairs sat-

isfying
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Similarly, as the set of all rate pairs
satisfying

Notice that by Remark III.4,

. Also, for every
the regions and

are rectangles with dominant corner point equal to one of the
dominant corner points of (see Fig. 5). By
these observations and by Remark III.5 we obtain the following.

Remark III.7: The perfect-feedback capacity region can be
expressed as

(9)

The final remark follows from Remark III.5 and from the
strict monotonicity in of the RHS of the sum-rate constraint
(7c).

Remark III.8: The dominant corner point of the rectangle
is the only rate point of maximum sum-rate in

.
Next, we present an achievability result for general discrete

memoryless MACs and AWGN MACs with perfect feedback
due to Cover and Leung [4]. The scheme is known to achieve
capacity for a specific class of discrete memoryless MACs with
perfect feedback [20]. However, for general channels it can be
suboptimal, e.g., for Gaussian channels. For Gaussian channels
the optimization problem defining the Cover–Leung region is
solved by jointly Gaussian inputs, see [1], [19], and therefore
the Cover–Leung region is given by

where comprises all rate pairs
satisfying

(10a)

(10b)

(10c)

Carleial [2] and Willems [21] independently proved that to
achieve the Cover–Leung region it suffices
that only one of the two transmitters have a perfect feedback
link, i.e., they proved that the Cover–Leung region is achievable
also in a perfect partial-feedback setting. Thereupon, van der

Meulen in a survey paper on multiple-access channels with
feedback [18] posed the question whether the Cover–Leung re-
gion equals the capacity region for discrete memoryless MACs
or AWGN MACs with perfect partial feedback. We will answer
this question in the negative for Gaussian channels by proving
that for certain channel parameters there exist rate
pairs that lie outside the Cover–Leung region
but that are achievable in the perfect partial-feedback setting.

For the AWGN MAC with perfect partial feedback Willems,
van der Meulen, and Schalkwijk proposed a coding scheme [22]
which is based on the scheme by Schalkwijk and Kailath [15].
Unfortunately, the achievable rate region can only be stated in
an implicit form and is difficult to evaluate analytically and to
compare to the Cover–Leung region.

In [2] Carleial proposed a coding scheme for the discrete
memoryless MAC and the AWGN MAC with “generalized”
feedback. In the Gaussian case, “generalized” feedback in-
cludes as special cases noisy feedback, noisy partial feedback,
and perfect partial feedback. We present Carleial’s region for
the AWGN MAC with noisy feedback in Appendix A, where
we also prove that if the feedback noise variances and
exceed a certain threshold depending on the channel parameters

, and , then Carleial’s region collapses to the no-feed-
back capacity region in (5) (Proposition A.3 in Appendix A).
For perfect partial feedback and for perfect feedback Carleial’s
scheme equals the Cover–Leung region .
Hence, in the case of perfect feedback Carleial’s scheme is
known to be strictly suboptimal for the two-user AWGN MAC.

Another coding scheme for the MAC with imperfect feed-
back was proposed by Willems et al. in [23]. Although pro-
posed for discrete memoryless channels, the modifications to
treat the Gaussian case are straightforward, and we state their
achievable rate region for the AWGN MAC with noisy feed-
back in Appendix B. Like Carleial’s scheme, Willems et al.’s
scheme collapses to the no-feedback capacity region when the
feedback-noise variances and exceed a certain threshold
(Proposition B.3 in Appendix B), and for perfect feedback or
perfect partial feedback the region equals the Cover–Leung re-
gion. Thus, for very noisy feedback, for perfect feedback, and
for perfect partial feedback Carleial’s region and Willems et
al.’s region coincide.

IV. NOISY FEEDBACK

In this section we focus on the setup with noisy feedback.
For this setup we present new achievable regions and, based
on these new regions, we derive new qualitative properties
of the capacity region (Section IV-A). We also present the
coding schemes corresponding to our new achievable regions
(Sections IV-B–IV-D).

A. Results

In this section we present our results for noisy feedback. We
begin with some definitions. For given positive integer ; -di-
mensional column-vectors ; and -matrices ,
we define the matrix:

(11)
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the matrix

(12)

the matrix

(13)

the matrix

(14)

the block-diagonal matrix

(15)

and the matrix

(16)

Our first achievable region for noisy feedback is obtained
by evaluating the rates that are achieved by the concatenated
scheme in Section IV-C1. (An alternative formulation of this
achievable region is presented in Section D-A of Appendix D.)

Definition IV.1: Let be a positive integer, let be -di-
mensional vectors, let be strictly lower-triangular
matrices, and let be a matrix. Depending on the matrix

the rate region is defined
as follows.

• If the product is nonsingular,6 then
is defined as

the set of all rate-pairs satisfying the three rate
constraints (18), at the bottom of the page, where and

are defined in (11) and (13) and where denotes the
Kronecker product.

• If the product is singular but , then
is defined as the

6Whenever � � is larger than 1, there is no loss in optimality in restricting
attention to matrices so that is nonsingular. However, for completeness,
we consider all possible choices of the matrix .

set of all rate pairs satisfying (18) when the
matrix is replaced by the -dimensional row-vector
obtained by choosing one of the nonzero rows of .7

• If , then is de-
fined as the set containing only the origin.

Definition IV.2: Define the rate region
(or for short ) as

(17)

where the union is over all tuples sat-
isfying the trace constraints (19), at the bottom of the page
and where the matrices , and are defined in (12),
(14)–(16).8

Theorem IV.3 (Noisy Feedback): The capacity region
of the two-user AWGN

MAC with noisy feedback contains the rate region
, i.e.,

Proof: The proof is based on the concatenated scheme
in Section IV-C1. As will be described ahead, for each
choice of parameters , , , , , our concatenated
scheme achieves the capacity region of the AWGN MAC

in (37) scaled by a factor , i.e., it

achieves the region . The
details of the proof are omitted.

Remark IV.4: Evaluating the achievable region
seems to be difficult even numerically.

More easily computable (but possibly smaller) achievable
regions are obtained by taking the union on the RHS of

7When is singular then the two rows of are linearly dependent and it
does not matter which nonzero row is chosen.

8Since and are strictly lower-triangular, the matrix � is
nonsingular and its inverse exists.

(18a)

(18b)

(18c)

(19a)

(19b)
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(17) only over a subset of the parameters
satisfying (19). In Appendixes E and F we present two such
subsets and their corresponding achievable regions (Corollaries
E.3 and F.2). In Section IV-C2, we present more general
guidelines on how to choose the parameters , , , , ,

.

Proposition IV.5 (Monotonicity and Convergence of the Re-
gion ): The achievable region satisfies
the following three properties.

1) Given , , , it is monotonically decreasing in
with respect to the Loewner order, i.e., for positive

semidefinite matrices and :

2) Given and , it is continuous in and
, i.e., for all , :

3) Given , , , it converges to the perfect-feedback
achievable region as the feedback-noise
variances tend to 0 irrespective of the feedback-noise cor-
relations, i.e.,

(20)

Proof: See Section IV-E1.

Specializing Theorem IV.3 to symmetric channels, i.e., to
and , and to and the

choice of parameters , , , , and presented in Section
E-A in Appendix E yields the following Corollary IV.6.

Corollary IV.6 (Symmetric Noisy Feedback Channels—Sub-
optimal Choice of Parameters): The capacity region

of the symmetric two-user AWGN
MAC with noisy feedback, i.e., where

contains all rate pairs satisfying the rate constraints
(21a) and (21b), shown at the bottom of the page. In particular,
it contains the equal-rate point whenever it satisfies (22),
shown at the bottom of the page.

From Corollary IV.6 it is easily seen that the capacity of the
symmetric noisy-feedback setup is larger than the no-feedback
capacity, no matter how large (but finite) the feedback-noise
variance is. The following stronger result holds.

Theorem IV.7 (Noisy Feedback is Always Beneficial): For
every feedback-noise covariance matrix

where the inclusion is strict.
Proof: Follows by Theorem V.6 ahead, which estab-

lishes that noisy partial feedback always increases capacity,
and by observing that—since Transmitter 1 can always ig-
nore its feedback—noisy feedback cannot be worse than
noisy partial feedback, i.e., for all covariance matrices

:

Specializing Theorem IV.3 to perfect feedback, i.e.,
, and to the choice of parameters presented in

Section F-A in Appendix F yields the following remark.

Remark IV.8 (Perfect Feedback): For the two-user AWGN
MAC with perfect feedback our concatenated scheme achieves
all rate pairs inside the region , i.e.,

(21a)

(21b)

(22)
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Proof: Is based on the specific choice of parameters in Sec-
tion F-A, i.e., on the regions in Remark F-3 in
Appendix F. For details, see Section IV-E2.

We next consider the noisy-feedback setting in the asymptotic
regime where the noise variances on both feedback links vanish.
Proposition IV.9 shows that our achievable regions in Theorem
IV.3 converge to the point of maximum sum-rate in
when the feedback-noise variances tend to zero, irrespective of
the feedback-noise correlation.

Proposition IV.9 (Convergence to Maximum Sum-Rate of
): Our achievable region satisfies

(23)

Thus, by Remark III.7, our achievable regions in Theorem IV.3
asymptotically approach the point of maximum sum-rate in the
perfect-feedback capacity region.

Proof: Follows directly by Proposition IV.5, Part 3), and
by Remark IV.8.

Remark IV.10: We can strengthen Proposition IV.9, as fol-
lows. Inclusion (23) remains valid if the region

is replaced by the union , where the

regions are defined in Definition F.1 in Ap-
pendix F, and represent the regions achieved by our concatenated
scheme for the specific choice of parameters presented in Section
F-A (Appendix F).

Our last achievability result for noisy feedback is based on
the rate-splitting scheme in Section IV-D1. Before stating the
result in Proposition IV.13, we define the following.

Definition IV.11: For fixed ; fixed -dimen-
sional vectors , ; strictly lower-triangular
matrices ; and matrix define the region

as the set of all
rate pairs that for some nonnegative
summing to satisfy the following two conditions:

and

(24)
where is defined in (13).

Similarly, define the region
analogously to the

region , but
with exchanged indices 1 and 2.

Definition IV.12: Define the rate region
(or for short )

as

where the union is over all tuples
satisfying the trace constraints (19) for powers and

, noise variance , and feedback-noise co-
variance matrix . Similarly, define the region

(or for short ) as

where the union is over all tuples satis-
fying the trace constraints (19) for powers and , noise
variance , and feedback-noise covariance matrix

.

Proposition IV.13 (Rate-Splitting for Noisy Feedback):
The capacity region con-
tains the region
for any , and it contains the region

for any :

and

Proof: The rate region is achieved by the rate-split-
ting scheme in Section IV-D1. The analysis is based on
Theorem IV.3, on the capacity of a Gaussian multi-input an-
tenna/multi-output antenna channel with noise sequences that
are temporally-white but correlated across the antennas, and on
a genie-aided argument as in [14] and [24, p.419]. The details
are omitted.

Proposition IV.14 (Monotonicity and Convergence
of Regions and ): The achievable region

satisfies the following three
properties.

1) Given , it is monotonically decreasing
in with respect to the Loewner order, i.e., for pos-
itive semidefinite matrices and :

2) Given and , it is continuous in ,
and , i.e., for all :

3) Given , it converges to the per-
fect-feedback achievable region
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as the feedback-noise variances tend to 0 irrespective of the
feedback-noise correlations, i.e.,

Similarly, for .
Proof: Follows from Proposition IV.5 and because for

fixed , and the RHS of (24) satisfies the
following three properties. It is monotonically decreasing in

with respect to the Loewner order, it is continuous in

, and it converges to as the feedback-noise
variances tend to 0 irrespective of the feedback-noise correla-
tions. The details are omitted.

With the rate-splitting extension in Section IV-D1 and Propo-
sitions IV.13 and IV.14, Remark IV.8 and Proposition IV.9 can
be generalized to all the boundary points of the capacity region

.

Remark IV.15 (Perfect Feedback): For the two-user AWGN
MAC with perfect feedback our rate-splitting scheme in
Section IV-D1 achieves all rate pairs in Ozarow’s perfect-feed-
back capacity region :

(25)

In fact, for each there exists a so that

(26a)

and a so that

(26b)

Proof: By Remark III.7, (25) follows directly from (26).
For a proof of (26), see Section IV-E3.

Proposition IV.16 (Convergence to Boundary of ):
For every we can find some

so that

(27a)

Similarly, for every we can find some
so that

(27b)

Thus, by Remark III.5 and Definition III.6, our achievable
regions in Proposition IV.13 asymptotically approach all
boundary points of the perfect-feedback capacity region.

Proof: See Section IV-E4.

Propositions IV.13 and IV.16, combined with Remark III.7,
yield the following continuity result.

Theorem IV.17 (Continuity of Noisy-Feedback Capacity Re-
gion): For all :

Proof: See Section IV-E5 for details.

B. Simple Scheme

We present a simple coding scheme for the noisy-feed-
back setting. It is a special case of the concatenated
scheme in Section IV-C1: the simple scheme with param-
eters coincides with the
concatenated scheme for noisy feedback with parame-
ters ,

, , . We present the

simple scheme here separately, because it is easier and yet
powerful enough to establish Corollary IV.6 and Theorem
IV.7.

Prior to communication a blocklength- , rate- codebook
and a blocklength- , rate- codebook are generated and

revealed to both transmitters and to the receiver. The codewords
of codebook are chosen independently with the compo-
nents of the th codeword chosen
IID zero-mean unit-variance Gaussian. The codebook is
drawn similarly. Messages and are then transmitted
over channel uses by sending each symbol of the -length
codewords and over two consecutive channel
uses. More precisely, at odd time steps , for

, Transmitter 1 sends

(28)

and Transmitter 2 sends

(29)

At even time steps , for , Transmitter 1
sends

(30)
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and Transmitter 2 sends

(31)

To ensure that the two input sequences and
satisfy the power constraints (4), the parameters

, and are chosen as to simultane-
ously satisfy

(32a)

and

(32b)

The receiver uses an optimal decoding rule to decode Messages
and based on the observed sequence of channel outputs

.
To describe the performance of the scheme, let ,

and be independent zero-mean Gaussian random vari-
ables, where and are of variance 1 and and
of variance . Independent thereof, let the pair be a
zero-mean bivariate Gaussian of covariance matrix as
defined in (1). Also, let and be defined as

and and be defined as

The performance of the simple scheme is then described as fol-
lows. The scheme achieves all nonnegative rate pairs
that simultaneously satisfy

(33a)

(33b)

(33c)

or, equivalently, as obtained by evaluating the mutual informa-
tion expressions on the RHSs of (33), it achieves all nonnegative
rate pairs that simultaneously satisfy

and

for some choice of the parameters
satisfying (32).

C. Concatenated Scheme

We first present our concatenated coding scheme with general
parameters in Section IV-C1; in Section IV-C2 we then give
guidelines on how to choose the parameters of this concatenated
scheme.

1) Scheme: We propose an encoding scheme with a concate-
nated structure where each of the encoders and the decoder con-
sists of an outer part and an inner part. (Here the inner parts are
the parts that are closer to the physical channel, see Fig. 6.) In
our scheme the various parts fulfill the following tasks. The outer
encoders map the messages into codewords (without using the
feedback) and feed these codewords to their corresponding inner
encoders. The inner encoders produce for every fed symbol a se-
quence of channel inputs to the MAC with feedback, for some
positive integer . In particular, when fed the symbol ,
Inner Encoder 1 produces inputs which depend on and on
the observed feedback outputs; all symbols fed to the inner en-
coder are treated in the same way. Inner Encoder 2 is analogously
defined. The symbols which the MAC outputs for every pair of
input symbols are then linearly mapped by the inner de-
coder to a pair of estimates , and the estimates are fed to
the outer decoder. Thus, the outer decoder is fed with a vector in

every channel uses. Based on the sequence of vectors pro-
duced by the inner decoder, the outer decoder then decodes the
transmitted messages.

Consequently, the inner encoders and the inner decoder trans-
form each subblock of channel uses of the original MAC into
a single channel use of a “new” time-invariant and memoryless
MAC which for given inputs and produces the
channel output . We denote the new MAC by

. We can then think of the overall scheme as
a no-feedback scheme over the new MAC .
As a consequence, the capacity of the original MAC with feed-
back, which we denote by , is inner bounded by the
capacity of the new MAC without feedback
but scaled by to account for the fact that to send the symbols

over the new MAC the original channel is used times.
We first sketch some of the properties of the inner encoders

and the inner decoder and postpone their detailed description
to after the description of the outer encoders and decoder. We
choose the inner encoders and the inner decoder so that the MAC

can be described by

(34)
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Fig. 6. Structure of concatenated scheme.

where is a deterministic 2 2 matrix and where is a bi-
variate Gaussian whose law does not depend on the pair of in-
puts . Also, the inner encoders are designed so that if
both outer encoders satisfy a unit average block-power con-
straint (over time and messages) and if at every epoch the sym-
bols produced by the outer encoders are zero-mean (when aver-
aged over the messages), then the channel inputs to the original
MAC satisfy the average power constraints (4).

For the outer code (encoders and decoder) we choose a
capacity achieving zero-mean code for the MAC

under an average block-power constraint of 1. Note
that there is no loss in optimality in restricting ourselves to
zero-mean codes because subtracting the mean of the code
can only reduce its average power (averaged over time and
messages) and does not change the performance on an additive
noise MAC such as (34). We shall need the property that the
outer encoders produce zero-mean symbols in the power-anal-
ysis of the input sequences to the original channel .

For the inner encoders and the inner decoder we choose linear
mappings. To obtain a compact description of the linear map-
pings we stack the channel inputs, , produced
by Inner Encoder in an -dimensional column vector

and similarly we stack the feedback outputs, ,
observed by Inner Encoder in the -dimensional vector

We can then describe our choice of the inner encoders as fol-
lows. When fed the input symbol , Inner Encoder pro-
duces

(35)

where are -dimensional column vectors and are
matrices which are strictly lower-triangular (because the feed-
back is causal). Also, as previously mentioned, we restrict the
inner encoders to produce sequences of inputs to the original
MAC that satisfy the average block-power con-
straints (4) when the outer encoders feed them with zero-mean
sequences of unit average block-power. By (35) this is the case

whenever the trace constraints (19) are satisfied. Thus, in the
following we only allow for vectors and and for strictly
lower-triangular matrices and satisfying (19).

To describe our linear choice of the inner decoder, we stack
the outputs , which the original MAC produces for
the pairs of inputs , into the -di-
mensional column vector

We can then express the estimates produced by the outer decoder
by

(36)

for some matrix of our choice .
In the following we describe the MAC as

induced by , , and . Given inputs ,
it produces the vector of estimates

(37)

where the 2 2-matrix is given by

(38)

where is defined in (11), and where the noise vector is a
zero-mean bivariate Gaussian

(39)

for , , and
. (Notice, that since and are strictly

lower-triangular matrices, the matrix is non-
singular and the inverse exists.) Defining the matrix

(40)

we can express the matrix in (38) as

(41)

and the noise vector in (39) as

(42)



LAPIDOTH AND WIGGER: ON THE AWGN MAC WITH IMPERFECT FEEDBACK 5443

For fixed , the mapping (40) from to is one-to-
one, and thus we can parameterize our concatenated scheme for
noisy feedback by the parameters .

Note that by choosing , and
as the 2 1 matrix with unit entries, our scheme reduces to the
capacity-achieving scheme for the original MAC
without feedback subject to the power constraints (4).

2) Choice of Parameters: Given channel parame-
ters , determining for each rate
pair in a set of parameters

that achieves this rate pair seems to be
analytically intractable. Instead, we present guidelines on how
to choose parameters and discuss the two choices of parameters
in Section E-A (Appendix E) and Section F-A (Appendix F)
that lead to Corollary IV.6 and Proposition IV.8.

For the purpose of describing our guidelines, throughout this
section, we replace the symbols and fed to the inner en-
coders by the independent standard Gaussians and .

We start with the matrix . Given parameters ,
and , the matrix should be chosen as , where

(43)
By (36), (41), and (42) this choice implies that

(44)

and hence we call the matrix the LMMSE-es-
timation matrix. The choice is op-
timal in the sense that the corresponding region

contains all
regions that correspond to
other choices of . The optimality of the LMMSE-estimation
matrix can be argued as follows. When (44) holds, then even
additionally revealing (or any linear combinations thereof)
to the outer decoder does not increase the set of achievable
rates in our scheme. Obviously, choosing for
any nonsingular 2-by-2 matrix is also optimal. In particular,
when every nonsingular matrix is an optimal choice for

.
We next consider the choice of parameters

and first focus on the special case of perfect feedback. This spe-
cial case is in view of Ozarow’s capacity result [13] only of lim-
ited interest, but it provides insight on how to choose the param-
eters for other settings, e.g., the perfect partial-feedback setting
(see Section V-C2) and the noisy feedback-setting with receiver
side-information (Section VI-B2).

For perfect feedback and a fixed , the parameters
should be chosen such that Inner Encoder

, for , produces as its th channel input a scaled
version of the LMMSE-estimation error of when observing

, i.e.

(45a)

and

(45b)

for some real numbers and . In fact,
every choice of parameters not satisfying (45) can be strictly
improved (with an appropriate choice of ) so as to achieve a
larger region (see Appendix C).

For general noisy feedback, it is not optimal to choose
as in (45) when the channel outputs

are replaced by the feedback outputs
and . Intuitively, the reason is

that with such a choice the inner encoders introduce too much
feedback noise into the forward communication.

For the general setup it seems infeasible to derive the
set of optimal parameters . However, it is
easily proved that the parameters have to
be chosen so that they satisfy both power constraints (19a)
and (19b) with equality, since otherwise there exists a choice
of parameters which corresponds to a larger achievable re-
gion. This readily follows from the alternative formulation
of in Section D-A (Ap-
pendix D), because the RHSs of (148) (which determine

) can always be increased
by changing the last entry of , i.e., , or the last entry of

, i.e., .
We finally consider the choice of . If the goal is to maximize

the single rates, it is trivially optimal to choose irrespec-
tive of the channel parameters . If in contrast
the goal is to maximize the sum-rate it seems infeasible to derive
the optimal . However, numerical results indicate that the larger
the feedback-noise variances are, the smaller the parameter
should be chosen. It is easily proved that in the extreme case
of no feedback the sum-rate is maximized by choosing .
In contrast, in the extreme case of perfect feedback we prove in
Section IV-E2 that with the choice of parameters suggested in
Section F-A (Appendix F) the maximum sum-rate of our con-
catenated scheme converges to the perfect-feedback sum-rate
capacity as the parameter tends to infinity.

In the remaining, we discuss the two specific choices of the
parameters given presented in Section
E-A (Appendix E) and in Section F-A (Appendix F). For both
choices, the parameter is the LMMSE-estimation matrix and
the parameters are such that when specialized to
perfect feedback they satisfy (45). In the choice in Section E-A,
each inner encoder allocates the same power for all channel in-
puts. The achievable region corresponding to this choice is pre-
sented in Corollary E.3, and includes as special case the result on
the symmetric setup in Corollary IV.6. In the choice in Section
F-A, the inner encoders use the power-allocation strategy sug-
gested by [11] for perfect feedback. The corresponding achiev-
able region is presented in Corollary F.2, and includes as special
case the achievable region for perfect feedback in Remark F.3
used in the proof of Propositions IV.9 and IV.16 and Theorem
IV.17.

D. Extensions of the Concatenated Scheme

In the following three subsections we present three exten-
sions of our concatenated scheme by rate-splitting it with other
schemes. The idea of rate-splitting was introduced in [2] and
[13].
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1) Rate-Splitting With No-Feedback Scheme: In this first ex-
tension we combine our scheme with a no-feedback scheme em-
ploying IID Gaussian codewords. This extension was inspired
by the rate-splitting scheme proposed by Ozarow for perfect
feedback [13]. Only one transmitter applies the rate-splitting.
For the description we assume it is Transmitter 1. Thus, Trans-
mitter 1 splits Message of rate into two independent
parts: Message of rate and Message of rate

, where and sum up to . Here, NF stands
for “no-feedback” and CS stands for “concatenated scheme.”

We first present a rough overview of the scheme. We start
with the encodings. Transmitter 1 uses a fraction of its available
power , for some , to produce a sequence by
encoding Message using Gaussian codewords9 (without
using the feedback). With the rest of the power it
produces a sequence of the same length by encoding Message

using our concatenated scheme and the outputs of the
feedback link. It sends the sum of the two produced sequences
over the channel. If the concatenated scheme is of parameter
and its outer code is of blocklength , then both sequences are
of length . Transmitter 2 produces a sequence of equal length
by encoding Message with power using the concatenated
scheme and sends this sequence.

We next present a rough overview of the decoding at the re-
ceiver. The receiver first decodes the pair by using
the inner and the outer decoder of our concatenated scheme and
treating the transmission of Message as additional noise.
From its guess of the receiver cannot recover the
sequences produced by our concatenated scheme because it is
incognizant of the feedback noise. Nevertheless, it can form an
estimate of both produced sequences (pretending that its guess
of is correct) and subtract the sum of the estimates
from the received signal. Based on the resulting difference the
receiver finally decodes message , which concludes the
decoding.

In the following we describe the scheme in more detail.
Given , Transmitter 1 picks the codeword

corresponding to from
its Gaussian codebook. Given , Transmitter
1 feeds to Outer Encoder 1, which picks the codeword

corresponding to from
its codebook and feeds it to Inner Encoder 1. Similarly, given

, Transmitter 2 feeds to Outer Encoder 2, which
picks the codeword corresponding
to and feeds it to Inner Encoder 2. Denoting the parameters
of the inner encoders by , and , respectively, Inner
Encoder 1 forms the -dimensional vectors

(46)

and Inner Encoder 2 forms the -dimensional vectors

(47)

where for :

9To satisfy the powers constraints the Gaussian codewords should be of vari-
ance slightly less than � . However, this is a technicality which we ignore.

The signal transmitted by Transmitter 1 is the sum of the vectors
in (46) and the vectors

i.e.,

(48)

where

The signal transmitted by Transmitter 2 is described by the vec-
tors in (47), as follows:

(49)

where

Notice that if satisfy (19) for powers
and , noise variance and feedback-noise covariance
matrix and if the outer code’s codewords are zero-mean
and average block-power constrained to 1, then for sufficiently
large blocklength the input sequences (48) and (49) satisfy the
power constraint (4) with arbitrary high probability.

We next describe the decoding. The receiver first decodes the
pair based on the tuple by treating
the codeword as additional noise and by applying the
inner and outer decoders of the concatenated scheme. Let
and denote the receiver’s guesses of the messages
and , and let and
denote the corresponding codewords in the outer codes. The re-
ceiver then attempts to estimate and subtract the influence of the
concatenated scheme (see (46) and(47)) by computing for each

the difference

(50)

where the -dimensional vector is defined as

If the receiver decoded and correctly, i.e., if
and , then (50) corresponds to

Finally, the receiver decodes Message based on the
differences using an optimal decoder for a Gaussian

-input -output antenna channel where the noise
sequences are white but correlated across antennas. Notice
that because of the correlation of the noise sequences across
antennas, the scheme might be improved if correlated Gaussian
codewords are used to transmit Message .

2) Rate-Splitting With Carleial’s Scheme: Our second ex-
tension is based on modifying Carleial’s rate-splitting scheme
[2]. Carleial’s scheme combines a variation of the Cover–Leung
scheme [4] with a no-feedback scheme by means of rate-split-
ting. Here, we propose to modify his scheme by replacing the
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no-feedback scheme with our concatenated scheme. Since for
, and our concatenated scheme re-

sults in an optimal no-feedback scheme, our proposed extension
includes Carleial’s scheme as a special case. In the following we
roughly sketch the idea behind our extended scheme. For more
details see Appendix H.

Our scheme is a Block–Markov scheme of blocklength .
Each block of channel uses is divided into blocks,
each of length for positive integers and , i.e., we assume
that . Each transmitter splits its message
into two sequences of independent submessages: Transmitter

, for , splits its message into a sequence
of independent submessages of
rates and into a sequence of independent submessages

of rates . The rates and
should be nonnegative and sum to , but otherwise

can be chosen arbitrary depending on the parameters of the
setting. Similarly, for Transmitter 2. (Here, the subscript CL
stands for “Cover–Leung” and the subscript CS stands for
“concatenated scheme.”)

As in Carleial’s scheme, after each block
Transmitter 1 and Transmitter 2 decode the other transmitter’s
submessage and based on their feedback out-
puts. The two transmitters can accomplish the decodings in two
different ways. Transmitter 1 either directly decodes Message

, or it first decodes before decoding the desired
message . Which alternative is better depends on the
specific parameters of the setting.

The encoding is performed as follows. To encode messages
Transmitter , for , uses Carleial’s

variation of the Cover–Leung scheme and to encode messages
it uses our concatenated scheme. More specifi-

cally, before the transmission in Block starts,
Transmitter chooses the codewords for messages ,

, and from the corresponding Gaussian
codebooks and produces an -length sequence of power ,
for some , by taking a linear combination of the
chosen codewords. It also produces an -length sequence of
power by encoding message using the outer
and inner encoders of our concatenated scheme where is the
parameter of the inner code and is the blocklength of the outer
code. It sends the sum of the two produced sequences in Block
. In Block Transmitter picks the codewords for mes-

sages and from the corresponding Gaussian
codebooks and sends a linear combination of power of these
codewords.

After each Block the receiver decodes
messages , , and . It first
decodes messages and using inner and outer
decoder of our concatenated scheme and treating the sequences
produced by encoding messages , ,

and as additional noise. From its guess of
the receiver cannot recover the sequences

produced by our concatenated scheme because it is incognizant
of the feedback noise. Nevertheless, it can form an estimate of
both produced sequences (pretending that its guess is correct)
and subtract the sum of the estimates from the received signal.
Based on the resulting difference and based on similar differ-

ences which resulted in the previous block, it then decodes
messages . After the last block
the receiver decodes the pair . More gen-
eral decoding orders at the receiver could be considered, but for
simplicity, we restrict attention to this order.

3) Interleaving and Rate-Splitting With Carleial’s Scheme:
Our third extension is based on rate-splitting an interleaved ver-
sion of Carleial’s Cover–Leung scheme with an interleaved ver-
sion of our concatenated scheme. We only describe here the gen-
eral structure of the scheme. For more details see Appendix I.

Our scheme is a Block–Markov scheme of blocklenght .
Each block of channel uses is divided into blocks,
each of length and each such block is further divided into

subblocks of length . Thus, it is assumed that and
are positive integers such that . Simi-

larly, each transmitter splits its message into two sequences
of independent submessages: Transmitter , for ,
splits its message into a sequence of independent sub-
messages and into a sequence of
independent submessages . Notice
that the first sequence of submessages is of length , and the
second of length . Messages are of
rate , and Messages of rate . The
rates , and should be nonnegative
and sum to , but otherwise can be chosen arbitrary
depending on the parameters of the setting. (The subscript ICL
stands for “interleaved Cover–Leung” and the subscript ICS
stands for “interleaved concatenated scheme.”)

Similar to the previous extension and similar to Car-
leial’s scheme, the transmitters decode part of the other
transmitter’s messages based on their feedback outputs. Specif-
ically in this scheme, after each subblock ,
Transmitters 1 and 2 decode the other transmitter’s sub-
message and . Following this decoding
step, the transmitters compute “cleaned” feedback outputs,
i.e., they mitigate the influence of the Cover–Leung mes-
sages , and
transmitted in this block on the observed feedback outputs.
Transmitter 1 computes its “cleaned” feedback output more
specifically as follows. It first reconstructs the sequence that
was produced by Transmitter 2 in this subblock to encode
messages , , and (pretending
that its guesses of and are correct). It then
subtracts this reconstructed sequence and the sequence it pro-
duced itself in this subblock to encode , ,
and from its observed feedback outputs. Similarly
for Transmitter 2.

The encoding is performed as follows. To encode Messages
, Transmitter , for , uses an in-

terleaved version of Carleial’s Cover–Leung scheme, and to
encode Messages it uses an interleaved version
of our concatenated scheme. We describe these encodings in
more detail. In a fixed block , Transmitter
sends the sum of two -length sequences. The first sequence
is of power , for some , and consists of sub-
blocks. The th subblock of the sequence, for ,
Transmitter chooses the -length codewords for Messages

, and from
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the corresponding Gaussian codebooks and takes a linear com-
bination of these chosen codewords. We notice that here each
pair of messages , for , is
encoded into Subblocks and , and not—as in Carleial’s
original scheme—into Subblocks and . The second
sequence is of power and produced as follows:
Transmitter first applies its outer encoder to encode Message

, and then feeds the outcome to a modified version of
its inner encoder. The inner encoder is modified as described by
the following two items. 1) Instead of the original feedback the
modified inner encoder uses the “cleaned” feedback mentioned
above, where the influence of the interleaved Cover–Leung type
scheme is mitigated. 2) Unlike the original inner encoder where
the th fed codeword symbol is encoded into subsequent
symbols at positions to , the modified inner en-
coder encodes the th fed codeword symbol into the symbols
at positions , for .

Notice that the chosen interleaving of the modified inner en-
coders preserves the causality of the feedback. Moreover, it im-
plies that in the interleaved sequence the symbols in Subblock
, for , only depend on feedback

outputs of previous subblocks and not on feedback
outputs of the current Subblock . This is the reason why the
modified inner encoder can use the “cleaned” feedback instead
of the original feedback.

The receiver first decodes Messages

and and only thereafter decodes
Messages and . More
specifically, the receiver first decodes Messages

, followed by
Messages , etc.
The receiver then reconstructs the sequences produced to
encode these messages (pretending its guesses are correct) and
subtracts them from the received signal. Based on the resulting
difference, which we call the “cleaned” output signal, the
receiver decodes Messages and .
To this end, it first reverses the interleaving and then applies
the inner and outer decoders of our concatenated scheme.

Notice that in the presented scheme, Messages
and are decoded based on

the “cleaned” output signal and they are encoded using
the “cleaned” feedbacks. The “cleaned” output signal and
the “cleaned” feedbacks correspond to the output signals
and the feedbacks in a situation where only the interleaved
concatenated scheme is employed but not the interleaved
version of Carleial’s Cover–Leung scheme. Therefore, in the
presented rate-splitting scheme there is no degradation in
performance of the interleaved concatenated scheme due to the
rate-splitting with Carleial’s Cover–Leung scheme.

Further, notice that in a given Block
the sum of the two sequences produced to encode Mes-
sages and is of different power in each
of the subblocks. Thus, these sequences introduce dif-
ferent noise levels on the receiver’s decoding of Messages

, and consequently
the rates and should be chosen
depending on .

E. Proofs

1) Proof of Proposition IV.5: We first prove Part 1). To this
end, we show that for every fixed and fixed -dimensional
vectors , , -dimensional matrices , , and

-dimensional matrix , the following two statements hold.
i) For all positive semidefinite matrices and

:

ii) If the choice of parameters , , , , , sat-
isfies the power constraints (19) for a covariance ma-
trix , then it also satisfies these power constraints
for all covariance matrices for which

.
By Definition IV.2, Statements i) and ii) imply that

and thus conclude the proof of Part 1).
We start by proving Statement i). Fix a tuple

. We only prove Statement i)
for the case where is nonsingular. For the case where
is singular but the proof is analogous and therefore
omitted; for the proof is trivial. To establish Statement
i) when is nonsingular, it suffices to show that all three
RHSs of (18) are monotonically decreasing in with
respect to the Loewner order. We only prove the monotonicity
of the RHS of (18a); the monotonicities of the RHSs of (18b)
and (18c) can be shown analogously. Thus, in the following
we fix two positive semidefinite 2 2 matrices and

satisfying and we show that:

(51)

Before proving (51) we recall the following well-known
properties of positive semidefinite matrices. For all positive
semidefinite matrices satisfying and
for all matrices the following properties hold:

(52)

(53)

(54)

(55)

and

(56)

(57)
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Based on these properties and the definition the
following sequence of implications can be proved:

(58)

(59)

(60)

(61)

(62)

(63)

where (58) follows by the linearity of the Kronecker product
and because for every positive semidefinite matrix also

the Kronecker product is positive semidefinite10; where
(58) follows by (52); where (60) follows by (53) and because

; where (61) follows by (52); where (62) follows by
(55); where (63) follows by (54) and (55) and because ,
and thus, by (52), also .

Inequality (51) follows then from (63), from (56), from the
monotonicity of the -function, and from the fact that for
every 2 2 positive semidefinite matrix , for as defined
above, and when is nonsingular:

which holds because for all nonsingular square matrices and
of the same dimension . This concludes

the proof of Statement i).
We next prove Statement ii). It suffices to show that for fixed

parameters , , , , , , the left-hand sides of the power
constraints (19) are monotonically increasing in with
respect to the Loewner order. Similarly to the proof of Statement
i), this can be shown by a sequence of implications based on
(52), on (53), on (57), on the fact that implies

10That � � implies � � � � � can be seen as follows. For every ��-di-
mensional vector � �� � � � � � � � , where we define � �� � � �
for � � ��� � � � � ��, and every 2� 2 positive semidefinite matrix the term
� � � can be written as � � , which is nonnegative since
is positive semidefinite.

, and on the fact that the trace
of a sum equals the sum of the traces. The details are omitted.

We prove Part 2). The inclusion of the LHS in the RHS is
trivial, because for every positive all choices of parameters

, , , , , satisfying the power constraints (19) for
powers and satisfy the power constraints also
for powers and .

The inclusion of the RHS in the LHS is proved as follows. We
fix a rate pair in the interior of ,
i.e.,

(64)

and show that for all sufficiently small the rate pair can
also be achieved with powers and , i.e.,

(65)

We first choose parameters , , , , , so that the
power constraints (19) are satisfied for powers and and
so that

(66)

By (64), such a choice always exists. Moreover, for such a
choice the matrix differs from the all-zero matrix and both
vectors and differ from the all-zero vector. This can be
argued as follows. It is easily shown that if , , or

then the region
is degenerate, i.e., either for all points in the region or

for all points in the region. Consequently, the region
cannot contain any inte-

rior points of , thus contradicting (66).
We next define for each the quantities and

as in (67a) and (67b), shown at the bottom of the next page, and
we define

Since and both differ from , the denominators in (67a)
and (67b) are nonzero and the quantities , , and
are well defined. Moreover, tends to 1 as .

The desired inclusion (65) is then established by showing that
for all sufficiently small the following two statements
hold.

i) The parameters , , , , , satisfy the
power constraints (19) for powers and .

ii) The rate pair lies in the region
.

Statement i) is easily verified by substituting the parameters ,
, , , , into the LHSs of the power con-

straints (19) and using the fact that the parameters , , ,
, , satisfy these power constraints for powers and
. Statement ii) follows because for given parameters , ,
, and the RHSs of Constraints (18)—which define the re-

gion when —are continuous in
the entries of and , and because tends to 1 as .

We finally prove Part 3), i.e., (20). The inclusion of the LHS
in the RHS is trivial, because replacing the intersection on the
LHS by the specific choice can only increase the region,
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and because the region is closed. The inter-
esting inclusion is that the LHS contains the RHS. To prove this
inclusion, we first notice that

where the inclusion and the equality both follow by the mono-
tonicity proved in Part 1). Thus, it remains to show that

(68)

To prove (68), we fix a rate pair in the interior of
, and show that for all sufficiently small

there exists a set of parameters , , , , , satisfying
the following two statements.

i) The parameters satisfy the power
constraints (19) for feedback-noise covariance matrix

and powers and .
ii) The rate pair lies in the region

.
We first notice that by Part 2), for all sufficiently

small the pair lies in the interior of
, i.e.,

This implies that for all sufficiently small there exists a set
of parameters so that

• the power constraints (19) are satisfied for feedback-noise
covariance matrix and powers and

;
• the rate pair satisfies

(69)

The proof is then established by fixing a sufficiently small
, and showing that for all sufficiently small the choice

of parameters satisfies
the above Statements i) and ii).

Statement i) holds because for the LHSs of
the power constraints (19) are continuous in , and be-
cause the parameters
satisfy the power constraints for feedback-noise covari-
ance matrix and powers and

. Statement ii) holds because for
the RHSs of Constraints (18)—which define the region region

when —are contin-
uous in , and because of Inclusion (69).

2) Proof of Remark IV.8: Fix . Specializing
our concatenated scheme to the specific choice of parameters
in Remark F.3 in Appendix F obviously cannot outperform our
concatenated scheme for general parameters. Thus

(70)

We shall show in the following that

(71)

which, combined with (70), establishes the remark.
Recall that for fixed the region is

defined as the set of all rate pairs satisfying Constraints
(72a)–(72c), shown at the bottom of the next page, where

(73a)

(73b)

and where is the unique solution in to (185), i.e., to

We shall shortly prove that the solution to the recursion (73)
is

(74)

(67a)

(67b)
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This implies that for all larger than 1:

and hence for fixed the region contains
all rate pairs satisfying

(75a)

(75b)

(75c)

Notice that when tends to infinity, the RHSs of (75a)–(75c)
tend to the RHSs of the three Constraints (7a)–(7c) evaluated
for . Since Constraints (7a)–(7c) evaluated for
determine the region , Inclusion (71) follows
immediately by (75) and by letting tend to infinity.

In the remaining, we prove (74) in two steps. In the first step
we show that is a fix point of the function
defined as

Notice that has at least one fix point in because
whereas , and because is continuous.

Further notice that every fix point of must also be a solution
to

i.e., a solution to

(76)
The solutions in to (76) are given by and by the
solutions to

(77)

Since is not a fix point of and since
is the unique solution in to (77) (see Definition III.1),

must be a fix point of . This concludes the
first step.

In the second step we use the derived fix-point property of
to prove (74). The proof is lead by induction. For

Condition (74) holds by definition. Assuming that (74) holds
for some fixed , we have

(78)

(79)

(80)

(81)

where (78) follows by the definition of the sequence
for ; (79) follows because by the induction assumption

; (80) follows by the definition of the func-
tion ; and finally (81) follows because by the induction
assumption and because , as shown in the first step,
is a fix point of . Thus, (74) holds also for , which
concludes the induction step and the proof of the remark.

3) Proof of Remark IV.15: We only prove (26a); (26b) can
be proved analogously.

Fix , and define as the unique solution in
to

(82)

(72a)

(72b)

(72c)
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That (82) has exactly one solution in follows by the In-
termediate Value Theorem and the following observations. The
RHS of (82) is continuous and strictly decreasing in ; for
the RHS of (82) is larger or equal to the LHS because

and by Remark III.3; and for tending to 1 the RHS tends
to and thus is smaller than the LHS.

Further, define

and notice that by these definitions:

(83)

and hence

Also, define as the dominant corner point of
the rectangle . The following two remarks on

are from [13], and based on (83).

Remark IV.18: The rate point can be ex-
pressed as

where

Remark IV.19: The rate point cor-
responds to the dominant corner point of the rectangle

, where . We are
now ready to prove Inclusion (26a). For

the RHS of (24) equals , irrespective of
the parameters . Therefore, the region

is given by the set of all rate pairs
which for some nonnegative summing

to satisfy

(84a)

(84b)

Since by Remark IV.19 and Remark IV.8:

and by Remark IV.18:

the triple satisfies (84), and hence

(85)

Inclusion (26a) finally follows because is the

dominant corner point of the rectangle , and
therefore (85) implies that the entire region
is contained in .

4) Proof of Proposition IV.16: We only prove (27a); (27b)
can be proved analogously.

To this end, fix a and choose a power
such that

(86)

Notice that by Remark IV.15 such a power always exists.
Inclusion (27a) follows then because by Proposition IV.14, Part
2:

5) Proof of Theorem IV.17: Fix .
The proof of the -direction follows trivially because
replacing the intersection on the LHS by the specific
choice can only increase the region, because

, and be-
cause by definition the region is closed.
The -direction, i.e.,

follows from (87)–(90), shown at the bottom of the next page,
where (87) follows from Proposition IV.13, (88) follows by
basic rules on sets, (89) follows from Proposition IV.16, and
(90) follows by Remark III.7.

V. PARTIAL FEEDBACK

We now focus on the setup with noisy or perfect partial feed-
back. For this setup we again present new achievable regions,
and based on these new regions we derive new qualitative prop-
erties of the capacity region (Section V-A). We also present the
coding schemes corresponding to these new achievable regions
(Sections V-B–D). They are obtained from the noisy-feedback
schemes in Sections IV-B–D by restricting the set of parameters
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and in the case of the extended schemes by additionally special-
izing Carleial’s scheme to noisy partial feedback.

A. Results

We first present results for noisy partial feedback
(Section V-A1) and then results that hold only for perfect
partial feedback (Section V-A2).

1) Results for Noisy Partial Feedback: Evaluating the rates
achieved by our concatenated scheme with general parameters
in Section V-C1 ahead leads to the achievability result in The-
orem V.3. Before stating the result we define:

Definition V.1: Let be a positive integer, let be -di-
mensional vectors, let be a strictly lower-triangular
matrix, and let be a matrix. Then, depending on the
matrix the rate region is de-
fined as follows.

• If the product is nonsingular,11 then
is defined as the set

of all rate pairs satisfying

(91a)

(91b)

(91c)

where is defined in (11).

11Whenever � � is larger than 1, there is no loss in optimality in restricting
attention to matrices so that is nonsingular.

• If the product is singular but , then
is defined as the set of all

rate pairs satisfying (91) when the matrix
is replaced by the -dimensional row-vector obtained

by choosing one of its nonzero rows.
• If , then is defined

as the set containing only the origin.
An alternative formulation of the region

is presented in Sec-
tion D-B in Appendix D.

Definition V.2: Define

(92)

where the union is over all tuples satisfying
the trace constraints

(93a)

and

(93b)

Theorem V.3 (Noisy Partial Feedback): The capacity region
of the two-user AWGN MAC

with noisy partial feedback to Transmitter 2 contains the rate
region , i.e.,

(87)

(88)

(89)

(90)
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Proof: Follows from Theorem IV.3 by choosing as the
all-zero matrix.

Remark V.4: Evaluating the achievable region
seems to be difficult even numerically.

More easily computable (but possibly smaller) achievable
regions are obtained by taking the union on the RHS of (92)
only over a subset of the parameters
satisfying (93). In Remark E.1 in Appendix E we present such
a subset of parameters. In Section V-C2 we present general
guidelines on how to choose the parameters .

Specializing Theorem V.3 to equal powers channels, i.e.,
, and to and the choice of the parameters

presented in Section E-A (Appendix E) yields the following
Corollary V.5.

Corollary V.5 (Equal Powers and Noisy Partial Feedback):
The capacity region of the two-
user AWGN MAC with noisy partial feedback to Transmitter 2
and equal powers contains all rate pairs
satisfying (94a)–(94c), shown at the bottom of the page.

From Corollary V.5, it follows immediately that for equal-
powers channels noisy partial feedback increases the capacity,
no matter how large the noise variance is. The following
stronger result holds.

Theorem V.6 (Noisy Partial Feedback is Always Beneficial):
For all and

(95)

where the inclusion is strict.
Proof: See Section V-E1.

2) Results for Perfect Partial Feedback: Specializing The-
orem V.3 to perfect partial feedback, i.e., to yields the
following.

Corollary V.7 (Perfect Partial Feedback): The capacity re-
gion of the two-user AWGN MAC
with perfect partial feedback to Transmitter 2 contains the rate
region , i.e.,

Specializing Corollary V.7 to and the choice of param-
eters in Section E-A in Appendix E yields:

Corollary V.8: The capacity region
of the two-user AWGN

MAC with perfect partial feedback to Transmitter 2 contains
all rate pairs satisfying

With this Corollary V.8 at hand we can answer the question
by van der Meulen in [18] whether the Cover–Leung region
equals the capacity region of the MAC with perfect partial feed-
back.

Theorem V.9: Consider a two-user AWGN MAC with perfect
partial feedback. For some powers and noise variance
the inclusion

is strict.
Proof: The inclusion is proved in Section V-E2 by showing

that for powers and noise variance
the region in Corollary V.8 contains rate points that lie strictly
outside the Cover–Leung region.

The last two results are achieved by modifying the rate-split-
ting schemes for noisy feedback in Sections IV-D2 and IV-D3
so as to apply also for perfect partial feedback. For details see
Section V-D.

(94a)

(94b)

(94c)
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Proposition V.10 (Rate-Splitting for Perfect Partial Feed-
back I): The capacity region of
the two-user AWGN MAC with perfect partial feedback to
Transmitter 2 contains all rate pairs which for some
nonnegative summing to , for some nonneg-
ative summing to , and for some choice of

and satisfy

where .
Proof: The rate region is achieved by modifying the

rate-splitting scheme for noisy feedback in Section IV-D2 as
described in Section V-D. Here, the version of the scheme
in Section IV-D2 is chosen where Transmitter 2 decodes the
submessages encoded with the concatenated scheme before de-
coding the submessages encoded with Carleial’s Cover–Leung
scheme. The analysis of the rate-splitting scheme is based on
a genie-aided argument as in [14] and [24]. The details are
omitted.

Proposition V.11 (Rate-Splitting for Perfect Partial Feedback
II): The capacity region of the
two-user AWGN MAC with perfect partial feedback to Trans-
mitter 2 contains all rate pairs which for nonnegative

summing to ; nonnegative
summing to ; and for some

choice of and satisfy
all the 11 constraints (96a)–(96k), shown at the bottom of the
page, where

Proof: The rate region is achieved by modifying the rate-
splitting scheme for noisy feedback in Section IV-D3 so as to
apply also for perfect partial feedback (see Section V-D), and by
choosing the parameters of the concatenated scheme as

(96a)

(96b)

(96c)

(96d)

(96e)

(96f)

(96g)

(96h)

(96i)

(96j)

(96k)
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and as described in Remark E.1 in Appendix E. The proof fol-
lows by accordingly combining Corollary V.8 and the rate con-
straints which arise from the decodings in Carleial’s variation
of the Cover–Leung scheme. Again, a genie-aided argument is
used in the analysis. The details are omitted.

Remark V.12: In the case of perfect partial feedback, for
all channel parameters , the achievable re-
gions by Carleial [2] and Willems et al. [23] (Appendices A
and B) correspond to the Cover–Leung region
(see, e.g., the explanation in [2, Sec. II-C]). Since irrespective
of , the Cover–Leung region is contained in the
two achievable regions in Propositions V.10 and V.11, we con-
clude that Propositions V.10 and V.11 include also Carleial’s
and Willems et al.’s regions for perfect partial feedback.

B. Simple Scheme

If in the simple scheme for noisy feedback in Section IV-B the
parameter is restricted to be 0, then the scheme applies also
to noisy partial feedback. In particular, in this case it achieves
all nonnegative rate pairs that satisfy

for some choice of parameters satis-
fying

and

The simple scheme for noisy partial feedback is included
as a special case in the concatenated scheme for noisy partial
feedback described in the next-following section. However, the
simple scheme suffices to prove Corollaries V.5 and V.8 and
Theorem V.9.

C. Concatenated Scheme

1) Scheme: If in the concatenated scheme for noisy feed-
back in Section IV-C1 the parameter is restricted to be the
all-zero matrix, then this scheme applies also to noisy partial
feedback. In this case, applying the inner encoders with param-
eters , and induces a “new” MAC

of channel law

(97)

where the 2 2 matrix is given by

(98)

where is defined as in (11); and where the noise vector
is a zero-mean bivariate Gaussian

(99)

Defining the matrix

(100)

the channel matrix in (98) and the noise vector in (99) can be
expressed as

(101)

(102)

For fixed and the mapping (100) from to is one-to-
one, and thus we can parameterize our concatenated scheme for
noisy partial feedback by the parameters .

Specializing also the power constraints (19) to the choice
and to noisy partial feedback we see that only parame-

ters , and satisfying (93) are allowed.
2) Choice of Parameters: In the following we describe

guidelines on how to choose the parameters of the concatenated
scheme for noisy partial feedback. The guidelines parallel
the guidelines presented in Section IV-C2 for noisy feedback.
Similarly, the proofs why some of these guidelines are optimal
parallel those in Section IV-C2 and are omitted.

Let , be given, and for the purpose
of description replace the symbols and fed to the inner
encoders by the independent standard Gaussians and . We
start with the matrix . Given parameters the
matrix should be chosen as , where

(103)

The matrix in (103) is called the LMMSE-estima-
tion matrix, since by (97), (101), and (102), choosing

implies:

Choosing is optimal in the sense that the
corresponding region
contains all regions corre-
sponding to other choices of the parameter . Choosing

for some nonsingular 2 2 matrix is also
optimal, and for choosing as any nonsingular matrix
is optimal.

We next consider the choice of the parameters ,
and first focus on the special case of perfect partial feedback.
For perfect partial feedback the parameters should
be chosen so that the inputs produced by Inner Encoder 2 cor-
respond to scaled versions of the LMMSE-estimation errors of
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when observing the past feedback outputs. Thus, for
, they should satisfy

(104)

for some real numbers . Otherwise there exists
a choice of parameters satisfying (104) that—with an appro-
priate choice of the matrix —strictly improves on the orig-
inal choice, i.e., corresponds to a larger region than the original
choice.

A similar choice for noisy partial feedback is not optimal, and
it seems analytically infeasible to determine the optimal choice
of the parameters . However, it is easily seen
that for noisy partial feedback the parameters
should be chosen so that both power constraints (93a) and (93b)
are satisfied with equality; otherwise there exists a choice of
parameters satisfying (93a) and (93b) that strictly improves on
the original choice.

In Remark E.1 (Appendix E), we present for every a
specific (suboptimal) choice of the parameters , and

. For this specific choice, the parameter is the LMMSE-
estimation matrix, the parameters satisfy the
power constraints (93a) and (93b) with equality, and when spe-
cialized to perfect partial feedback satisfy (45b). We
present the corresponding achievable region for and equal
powers, i.e., , in Corollary V.5 and for and
perfect partial feedback in Corollary V.8.

D. Extensions of Concatenated Scheme

The schemes in Section IV-D apply also to noisy partial feed-
back, if the parameter is restricted to be the all-zero matrix,
and if Carleial’s variation of the Cover–Leung scheme is spe-
cialized to noisy partial feedback. For more details see Section
H-A in Appendix H and Section I-A in Appendix I.

E. Proofs

1) Proof of Theorem V.6: We distinguish between the case
of equal powers and of unequal powers. In the case of equal
powers, , we consider the achievable region in
Corollary V.5, and notice that, irrespective of and

, the RHS of the sum-rate constraint (94c) is smaller
than the sum of the RHSs of the single-rate constraints (94a) and

(94b). Thus, for equal powers the achievable region in Corollary
V.5 is a pentagon (and not a rectangle) and there exist achievable
pairs of sum-rate equal to the RHS of (94c), which is
larger than . This concludes the proof in the case
of equal powers.

In the case of unequal powers, , we use the
following rate-splitting/time-sharing strategy. We assume

; the case can analogously be treated.
Transmitter 1 splits its message into two independent
submessages: submessage of rate and submessage

of rate . During a fraction of time Transmitter
1 sends Message using an optimal no-feedback scheme
of power while Transmitter 2 is quiet. During the
remaining fraction of time Transmitters 1 and 2 use
equal powers to send messages and with the
concatenated scheme in Section V-C1. Choosing the param-
eters of the concatenated scheme as proposed in Remark E.1
in Appendix E, by Corollary V.5 (where we replace by

) and by the capacity of a AWGN single-user channel,
the described rate-splitting/time-sharing scheme achieves the
rate pair where , and
are given by (105a) and (105b), shown at the bottom of the
page. The proof of (95) follows then by noting that for every

and every the rate pair has
a sum-rate which is strictly larger than , and
therefore lies strictly outside the no-feedback capacity region

.
2) Proof of Theorem V.9: We consider an AWGN MAC with

powers , noise variance , and with
perfect partial feedback. We prove the theorem by showing that
for this channel the rate point :

—which by Corollary V.8 is achievable—lies outside the
Cover–Leung region . This implies that the
capacity region is strictly larger
than the Cover–Leung region for and

.

(105a)

(105b)
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Before starting with the proof, we have a closer look at the
region and show the following lemma.

Lemma V.13: For and for every
which satisfies

(106)

the rate point given by

(107)

and by (108), shown at the bottom of the page, lies on the
boundary of in the sense that for every

Proof: As a first step we examine Expression (108) and
characterize more explicitly. To this end, we consider
a fixed that satisfies (106). Then, we notice that in
the minimization in (108) the first term is strictly decreasing in

whereas the second term is strictly increasing in .
Also, for the first term in the maximization in (108) is
smaller than the second term, whereas by Condition (106) for

the second term is smaller. Thus, for fixed
satisfying (106) the maximum in (108) is achieved when both
terms are equal, i.e., for given by the unique solution in
to

This implies that the rate pair satisfies all
three rate constraints defining the rectangle
with equality, i.e.,

(109a)

(109b)

and

(109c)

Hence, is the dominant corner point of
the rectangle , and for all the
rate point lies outside the rate re-
gion . In the remaining we show that the
rate point also lies outside the regions

for all not equal to the
pair , and therefore also lies
outside these regions for every . This will then con-
clude the proof of the lemma. We distinguish the following
three cases: 1) and arbitrary; 2) and

; and 3) and . In case 1) the rate point
lies outside the region

because violates the single-rate constraint, see (10a)
and (109a). Similarly, in case 2) the rate point lies outside the
region because in this case violates
the single-rate constraint, see (10b) and (109b). Finally, in case
3), the rate point lies outside the region
because the product is strictly smaller than the product

, and thus the sum violates the sum-rate
constraint; see (10c) and (109c).

We are now ready to prove that the achievable rate point
lies outside the Cover–Leung region .

To this end, we choose and notice that it sat-
isfies Condition (106) for . Hence, Lemma V.13
applies and the rate point ,

(110)

lies on the boundary of the Cover–Leung region
, and in particular for every the

rate point lies strictly outside the Cover–Leung
region . Since

in order to show that the rate point lies strictly outside
it suffices to show that

(111)

(108)
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To prove (111) we could compute —the value of which
maximizes (110)—and and then check Condition (111).
However, it is easier—and sufficient—to show that for all

either

(112)

or

(113)

To this end, note first that the LHS of (112) is decreasing in

, and therefore for all it follows that

On the other hand, the LHS of (113) is increasing in , and thus

for all :

where the inequality follows because

This concludes the proof of the theorem.

VI. NOISY FEEDBACK WITH RECEIVER SIDE-INFORMATION

For the setup with receiver side-information we present
a new achievable region (Section VI-A) and a scheme that
achieves this region (Section VI-B). The proposed scheme is
an extension of the concatenated scheme for noisy feedback in
Section IV-C and exploits the side-information at the receiver.
The simple scheme in Section IV-B and the extended schemes
in Section IV-D can be analogously extended to this setup with

receiver side-information. For brevity, we omit the description
of these latter extensions.

A. Results

Definition VI.1: Let be a positive integer; be -di-
mensional vectors; be strictly lower-triangular
matrices; and be a matrix. Depending on the ma-
trix the rate region
is defined as follows.

• If the product is nonsingular,12 then
is defined as the set

of all rate pairs satisfying

(114a)

(114b)

(114c)

where is defined in (11).
• If is singular but , then

is defined as the set
of all rate pairs satisfying (114) when the
matrix is replaced by the -dimensional row-vector
obtained by choosing one of the nonzero rows of .

• If , then is defined
as the set containing only the origin.

(An alternative formulation of the region
is presented in

Section D-C in Appendix D.)

Definition VI.2: Define the region

(115)

where the union is over all tuples satis-
fying the trace constraints (19).

Theorem VI.3 (Noisy Feedback With Receiver Side-Informa-
tion): The capacity region of
the two-user AWGN MAC with noisy feedback where the re-
ceiver is cognizant of the realization of the feedback-noise se-
quences contains the rate region , i.e.,

Proof: The achievability result is based on the concate-
nated scheme in Section VI-B1. It is obtained from Theorem
IV.3 by setting in the rate expressions in (18)
(but not in the power constraints (19)). The reason why in
(18) we may set is because in the scheme in
Section VI-B1, prior to the decoding, the receiver subtracts
off the influence of the feedback-noise sequences and

. The details of the proof are omitted.

12Whenever � � is larger than 1, there is no loss in optimality in restricting
attention to matrices so that is nonsingular.
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Remark VI.4: Evaluating the achievable region
seems to be difficult even numeri-

cally. More easily computable (but possibly smaller) achievable
regions are obtained by taking the union on the RHS of (115)
only over a subset of the parameters
satisfying (19). In Section G-A (Appendix G) we present
such a subset of parameters and its corresponding achievable
region (Corollary G.2). In Section VI-B2 ahead we present
more general guidelines on how to choose the parameters

for noisy feedback with receiver
side-information.

B. Concatenated Scheme

1) Scheme: In this section we extend our concatenated
scheme to noisy feedback with receiver side-information. We
use the same outer code and the same inner encoders as in the
setting without side-information. The difference is only in the
inner decoder. Thus, when fed the pair of symbols , the
inner encoders produce, as before, sequences of channel inputs

(116)

where , ,
and where are -dimensional vectors and are
strictly lower-triangular matrices satisfying the power con-
straints (19). But, we modify the structure of the inner decoder
so that it computes the estimates not only as a function
of the output sequence but also of the feedback-noise sequences.
Again, we choose a linear mapping, i.e., for ,

, and , the
inner decoder computes

for matrices of our choice. Given
, and an optimal choice for the ma-

trices and subtracts off the contributions to that
come about from the feedback-noise sequences, i.e., an optimal
choice of and satisfies

(117a)

(117b)

Such a choice leads to the following description of the “new”
MAC :

(118)

where the 2 2 matrix is given by

(119)

where is defined as in (11), and where the noise vector is
a zero-mean bivariate Gaussian

(120)

In the following, we shall always assume that and are op-
timally chosen so that the “new” MAC is given by (118)–(120).
We define the matrix

(121)

and hence in (119) and the noise vector in (120) can be
expressed as

(122)

(123)

For fixed the mapping (121) from , to is
one-to-one, and thus we can parameterize our concatenated
scheme for noisy feedback with receiver side-information by

.
All parameters that satisfy the power con-

straints (19) are allowed.
2) Choice of Parameters: As in the previously studied

setups we present guidelines on how to choose the parameters
of the concatenated scheme. The

guidelines parallel the guidelines for noisy feedback and noisy
partial feedback in Sections IV-C2 and V-C2; likewise, also the
proofs of optimality parallel the proofs in Sections IV-C2 and
are omitted.

Let and be given, and for the
purpose of describing our guidelines replace the symbols
fed to the inner encoders by the independent standard Gaussians

. We first present the optimal choice of the parameter .
Given the parameter should be chosen
as , where

(124)

since the corresponding achievable region contains all regions
corresponding to other choices of the matrix . The ma-
trix is called the LMMSE-estimation matrix with
side-information, since by (118), (122), and (123) the choice
in (124)—combined with the optimal choices of and
defined by (117) and (121)—implies that

Obviously, also choosing for some nonsin-
gular 2 2 matrix is optimal, and for choosing as
any nonsingular matrix is optimal.

We next consider the choice of parameters
and focus on the following two special cases:

a) is arbitrary and , i.e., the feedback noises are
perfectly correlated;

b) and arbitrary.
In these cases, given parameter , the parameters

should be chosen so that the inner encoders
produce

(125a)
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and

(125b)

for some real numbers and . Other-
wise, there exists a choice of parameters
of the form (125) that strictly improves on the original choice.

In general, it seems difficult to determine the optimal choice
of the parameters . However, it is easily proved
that the parameters should be chosen so
as to satisfy the power constraints (19a) and (19b) with equality;
otherwise there exists a choice of parameters satisfying (19a)
and (19b) with equality that strictly improves on the original
choice.

In Appendix G, we present a specific choice of the parameters
that guarantees that is the LMMSE-es-

timation matrix with side-information, the power constraints
(19) are satisfied with equality, and satisfy
(125) for all and . We present the corre-
sponding achievable region in Corollary G.2 in Appendix G.

VII. SUMMARY

We have studied four different kinds of two-user AWGN
MACs with imperfect feedback:

• noisy feedback, where the feedback links to both transmit-
ters are corrupted by AWGN;

• noisy partial feedback, where one transmitter has noisy
feedback and the other no feedback;

• perfect partial feedback, where one transmitter has noise-
free feedback and the other no feedback; and

• noisy feedback with receiver side-information, where both
transmitters have noisy feedback and the feedback-noise
sequences are perfectly known to the receiver.

For each of these settings we have presented a coding scheme
(called concatenated scheme) with general parameters, and we
have stated the corresponding achievable regions (Theorem
IV.3, Theorem V.3, Corollary V.7, and Theorem VI.3). We
have improved the concatenated scheme by rate-splitting it
either with a simple no-feedback scheme or with Carleial’s
version of the Cover–Leung scheme. The achievable regions
corresponding to these improvements are stated in Proposition
IV.13 (noisy feedback) and Propositions V.10 and V.11 (per-
fect partial feedback).

The two achievable regions for noisy feedback in The-
orem IV.3 and Proposition IV.13 exhibit the following three
properties. 1) They are monotonically decreasing in the feed-
back-noise covariance matrix with respect to the Loewner order
(Propositions IV.5 and IV.14). 2) They are continuous in the
transmit-powers (Propositions IV.5 and IV.14). 3) They con-
verge to Ozarow’s perfect-feedback regions when the feedback
noise-variances tend to 0, irrespective of the feedback-noise
correlations (Propositions IV.9 and IV.16).

We have further presented guidelines for choosing the param-
eters of our concatenated schemes (Sections IV-C2, V-C2, and
VI-B2), and have suggested (suboptimal) specific choices of the
parameters (Sections E-A, F-A, G-A in Appendixes E–G). The
achievable regions corresponding to these specific choices are

presented in Corollaries IV.6, V.5, V.8, E.3, F.2, Remark F.3,
and Corollary G.2.

These achievable regions—combined with the previously de-
scribed properties of the achievable regions for noisy feedback
in Theorem IV.3 and Proposition IV.13—allowed us to infer the
following.

1) Feedback—no matter how noisy—is strictly better than no
feedback. I.e., irrespective of the feedback-noise variances,
the capacity region with one or two noisy feedback links is
strictly larger than the no-feedback capacity region (Theo-
rems IV.7 and V.6).

2) The noisy-feedback capacity region converges to the per-
fect-feedback capacity region as the feedback-noise vari-
ances on both links tend to zero—irrespective of the feed-
back-noise correlations (Theorem IV.17).

3) The Cover–Leung region in general does not equal ca-
pacity for perfect partial feedback channels (Theorem
V.9). This answers in the negative a question posed by van
der Meulen in [18].

APPENDIX A
CARLEIAL’S REGION

Carleial proved the achievability result for the AWGN MAC
with noisy feedback in Theorem A.2 [2].

Definition A.1: Define the rate region
as the set of all rate pairs

which for some nonnegative numbers
summing to , for some nonnegative numbers
summing to , and for some choice of parameters

satisfy the 13 conditions
(126a)–(126m), shown at the bottom of the next page, where,
for , we define .

Theorem A.2 (Carleial [2]): Consider an AWGN
MAC with noisy feedback of transmit powers ,
noise variance , and feedback-noise covariance matrix

. Irrespective of the noise cor-

relation , the region is
achievable for this channel, i.e.,

Proposition A.3: The rate region
collapses to the no-feedback capacity region
when the feedback-noise variances exceed a certain
threshold depending on the parameters , and . In
particular

for and .
Proof: For all values of the region

trivially contains the no-feed-
back capacity region because the region
obtained by substituting into (126)
coincides with . Thus, it remains to prove
that is included in
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for all exceeding some threshold depending on ,
and .

To this end, we choose and we fix a rate pair
in . We then fix parameters

, two nonnegative numbers and
summing to , and two nonnegative numbers and
summing to so that Constraints (126) are satisfied. We

show in the following that if are sufficiently large,
then lies in .

By (126a) and (126c) the rate satisfies

(127)

and by (126b) and (126d), the rate satisfies

(128)

Furthermore, by (126a), (126b), and (126h), the sum of the rates
satisfies (129), shown at the bottom of the next page.

Notice that for larger than some threshold depending
on —and in particular for and

—irrespective of the chosen parameters
:

(130)

(126a)

(126b)

(126c)

(126d)

(126e)

(126f)

(126g)

(126h)

(126i)

(126j)

(126k)

(126l)

(126m)
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and

(131)

Thus, when exceed a certain threshold depending
on , and , the RHS of (129) is upper bounded by

. We conclude that when are suf-
ficiently large, then by (127)–(131) the rate pair
satisfies (5) and hence lies in the no-feedback capacity region

. This concludes the proof.

APPENDIX B
WILLEMS ET AL.’S REGION

Willems et al. proved an achievability result for the discrete
memoryless MAC with imperfect feedback [23]. The result can
easily be extended to the two-user AWGN MAC with noisy
feedback (Theorem B.2).

Definition B.1: Define the rate region
as the set of all rate pairs

which for some nonnegative numbers and
summing to , for some nonnegative numbers

and summing to , and for some parameters
satisfy the following five constraints:

Theorem B.2 (WillBems et al. [23]): Consider an AWGN
MAC with noisy feedback of transmit powers , noise
variance , and feedback-noise covariance matrix

. Irrespective of the feedback-noise correla-

tion , the region is achiev-
able for this channel, i.e.

Proposition B.3: The rate region
collapses to the no-feedback capacity region
when the feedback-noise variances exceed a certain
threshold depending on the parameters , and . In
particular:

for and .
Proof: Follows along similar lines as the proof of Proposi-

tion A.3 in the previous Appendix, and is omitted.

APPENDIX C
OPTIMALITY OF LMMSE-ESTIMATION ERROR

PARAMETERS FOR PERFECT FEEDBACK

We show that in our concatenated scheme for perfect feed-
back it is optimal to choose the parameters
so that the two inner encoders produce as their th channel in-
puts scaled versions of the LMMSE-estimation errors when es-
timating the fed symbols and based on the previous out-
puts ; see (45).

Proposition C.1: Assume that , i.e., perfect
feedback. If the parameters satisfy the
power constraints (19) but not Conditions (45), then there exist
parameters satisfying both (19) and (45),
and

with the inclusion being strict.
The proof is given after the following lemma.

Lemma C.2: Assume that , i.e., assume
perfect feedback. If the parameters
satisfy (19) but violate (45) then there exist parameters

satisfying the following three conditions:
1) the parameters satisfy (45);
2)

;

(129)
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3) the parameters satisfy (19a) and (19b),
and at least one of them with strict inequality.
Proof: Fix parameters satisfying (19)

but violating (45). Define the following new parameters.
• Let and .
• Let and be so that satisfy (45). (Notice

that given the parameters and there exists exactly one
choice of the parameters and satisfying (45). I.e.,
the scaling coefficients and in (45) are
determined by and .)

• Let .
By construction, our choice trivially sat-
isfies Condition 1 in the lemma. Moreover, since for

the region de-
pends only on , and but not on and (see
Definition IV.1) the regions and

coincide. Thus, also Condition
2 is satisfied.

We are left with proving that the parameters
satisfy also Condition 3. Before doing so, we introduce some
helpful assumptions and notation. Assume in the following
that Inner Encoder 1 and Inner Encoder 2 are fed the in-
dependent standard Gaussians and , respectively. Let

denote the channel outputs of the original MAC
when the inner encoders use the parameters

, and similarly, let denote the
channel outputs of the original MAC when the

inner encoders use the parameters . Also,
let , and denote the th entry of the vectors

, and , respectively, and let ,
and denote the row- column- entry of the matrices

, and , respectively, for and
.

Fix an . By the definition of LMMSE-estima-
tion errors, for all and all real numbers

(132)

with equality if, and only if, for all
. We would like to prove a similar inequality to (132) but

where in the RHS of (132) the outputs are re-
placed by the outputs . To this end, we notice
that since and there exist real numbers

and such that

with probability 1. Combining this observation with Inequality
(132) the desired inequality follows:

(133)

with equality if, and only if

(134)
with probability 1. By (133) and since the parameters

satisfy the power constraints (19), it further
follows that also the parameters satisfy Con-
straints (19). Moreover, since the pairs and
differ, not for all and all equality
(134) can hold and thus the parameters sat-
isfy either (19a) or (19b) with strict inequality. This concludes
the proof of the lemma.

Proof of Proposition C.1: The proof uses Lemma C.2
twice. Fix parameters satisfying (19)
but violating (45). By Lemma C.2, there exist parameters

that satisfy (45) and

(135)

and that satisfy (19a) and (19b), whereby one of them with strict
inequality. Further, since the parameters
satisfy either (19a) or (19b) with strict inequality, there exist pa-
rameters that satisfy both (19a) and (19b)
with equality (but not necessarily (45)) and that correspond to a
strictly larger region (see Section IV-C2). Thus, by (135)

(136)

with the inclusion being strict.
Applying Lemma C.2 again, this time to parameters

, we conclude that there exists a
choice of parameters satisfying both
(19) and (45) and

By (136), this implies

with the inclusion being strict, which concludes the proof.

APPENDIX D
ALTERNATIVE FORMULATION OF ACHIEVABLE REGIONS

We derive an alternative formulation of the
region achieved by our concatenated scheme

when is chosen
as the LMMSE-estimation matrix (as defined
in (43)) and are arbitrary. Recall that
there is no loss in optimality in restricting attention to the
choice , see Section IV-C2. Similarly, we
derive an alternative formulation for the achievable region

when (as
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defined in (103)), and an alternative formulation for the
achievable region
when (as defined in (124)). These alternative
formulations simplify the description of the achievable
regions corresponding to our specific choices of parameters
suggested in Appendixes E–G. In particular, for perfect
feedback the alternative formulation is useful to describe the
achievable region corresponding to the choice of parameters in
Appendix F, see Remark F.3. The region in Remark F.3 is used
in Section IV-E2 to prove that our concatenated scheme for
perfect feedback achieves all points in the interior of Ozarow’s
region (Remark IV.8).

A. Noisy Feedback

Given parameters and , we
derive an alternative formulation for the region achieved by our
concatenated scheme .

To simplify notation, in this section we assume that Inner
Encoder 1 and Inner Encoder 2 are fed independent zero-mean
unit-variance Gaussian random variables and therefore we
denote them by and instead of and . The region
achieved by our concatenated scheme can then be expressed as
the set of all nonnegative rate pairs satisfying

(137a)

(137b)

(137c)

where the conditional law of given and
is determined by the channel law in (37)

(Section IV-C1). Notice that since is the LMMSE-estimation
matrix in (43) (Section IV-C2), by the Gaussianity of
the involved random variables the rate constraints in (137) are
equivalent to

(138a)

(138b)

(138c)

where are the channel outputs produced by the
original channel when the inner encoders are fed
the independent standard Gaussians and .

Denote for each channel use the receiver’s
innovation by , i.e.,

(139)

and the receiver’s LMMSE-estimation errors about the symbols
and by and , i.e.,

(140a)

(140b)

Then, notice that there exists a bijective mapping between the
innovations and the channel outputs , and
by the Gaussianity of the involved random variables, for each

, the tuple is independent of the
previous outputs and innovations .
By the chain rule of mutual information we can therefore rewrite
Constraints (138) as

(141a)

(141b)

(141c)

In the following, we give a more explicit description of the
innovations in terms of the entries of the parameters

. For each , let denote the
th entry of the vector and denote the row- column-

entry of the matrix , for and .
Also, let and denote the
variances of and , and their corre-
lation coefficient. We can then write the innovations as

(142a)

and for as

(142b)

where

(143)

(144)

(145)

and

(146)

(147)
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Evaluating the mutual information expressions in (141) for
the innovations in (142), we conclude that our concatenated
scheme for noisy feedback with parameters
and achieves all rate pairs satisfying
(148a)–(148c), shown at the bottom of the page, where we
defined , , , , ,

.
We conclude this section with a recursive characterization of

the variances and , and the correlation co-
efficients . Defining , , we find for

:

(149a)

(149b)

and consequently, by (142) the recursive expressions
(150)–(152), shown at the bottom of the page.

This alternative formulation is used in Corollaries E.3 and F.2
in Appendixes E and F ahead to describe the regions achieved
by our concatenated scheme for noisy feedback with the specific
choices of parameters described in Section E-A (Appendix E)
and F-A (Appendix F). In particular, it is used to describe the

region achieved in the special case of perfect feedback when
the parameters are chosen as in Section F-A; see Remark F.3.

B. Noisy Partial Feedback

The desired alternative formulation of
can be derived

along the lines shown in the previous Subsection D-A. We omit
the details and only present the result.

Fix a choice of parameters and
. Denote the th entry of the vector

by and denote the row- column- entry of the matrix
by , for and . Our con-

catenated scheme for noisy partial feedback and parameters
achieves all rate pairs

satisfying (153a)–(153b), shown at the bottom of
the page, where, recall that , , ,

, , , and where ,
, , , , and

are defined by , , and (142)–(152) (Sub-
section D-A) except that (143) should be replaced by

(148a)

(148b)

(148c)

(150)

(151)

(152)

(153a)

(153b)

(153c)
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C. Noisy Feedback With Receiver Side-Information

We derive an alternative formulation of the
rate region achieved by our concatenated scheme

for a fixed choice of
parameters and . Denote
the th entry of the vector by and denote the row-
column- entry of the matrix by , for
and . The desired alternative formulation of

can be derived along
the lines described in Section D-A but with the following
two modifications. Instead of being defined as in (140), the
LMMSE-estimation errors and , for ,
are defined as

(154a)

(154b)

and instead of being defined as in (139), the innovation , for
, is defined as

(155)

Notice that by (154) and (155):

We omit the details of the derivation and only state
the resulting alternative formulation of the region

. Our concatenated
scheme for noisy feedback with receiver side-information and
parameters achieves all rate pairs

satisfying (156a)–(156c), shown at the bottom of
the page, where, recall, that , , , and

where , and are defined through
(157)–(159), shown at the bottom of the page.

APPENDIX E
CHOICE OF PARAMETERS I

In Section E-A, we present a specific choice of the parameters
for given . We treat the noisy-feed-

back setting and the noisy or perfect partial-feedback setting.
We denote our choice for noisy feedback by
and our choice for partial feedback by .

As we shall see, our choices are such that and are
LMMSE-estimation matrices. Thus, the region achieved by
our concatenated scheme for noisy feedback with parameters

is obtained by substituting the parameters
into the RHSs of (148) in Section D-A in Appendix D. The
resulting achievable region is presented in Corollary E.3 ahead.
Similarly, the region achieved by our concatenated scheme
for partial feedback with parameters
is obtained by substituting the parameters into the RHSs of
(153a)–(153c) in Section D-B in Appendix D. For brevity we
do not present this latter achievable region.

A. Description of Parameters

Let a positive integer be given. We first consider the
noisy-feedback setting; the partial-feedback setting is treated
only shortly in Remark E.1 at the end of this section.

Instead of describing our choice , and di-
rectly, we will describe how Inner Encoder 1 and Inner En-
coder 2 map the fed symbols to the sequences of channel in-
puts and . This then determines

. The matrix is chosen as the LMMSE-estima-
tion matrix. For the purpose of describing our choice we replace
the pair of input symbols and by the independent standard
Gaussians and .

(156a)

(156b)

(156c)

(157)

(158)

(159)
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The inner encoders are chosen so as to produce

(160)

(161)

and for :

(162)

(163)

where for

(164)

(165)

(166)

(167)

(168)

Notice that Inner Encoder 2 modulates its inputs with an
alternating sequence of or (which is inspired by the
Fourier-MEC scheme in [11]), and it multiplies the noisy
feedback vectors by the matrix before further processing
it (which accounts for the modulation of past inputs). The
presented choice of the inner encoders ensures that the input
sequences to the original MAC satisfy the average
block-power constraints (4). In particular, with the presented
choice all input symbols have the same ex-
pected power , and all input symbols have
the same expected power .

This encoding scheme corresponds to the following parame-
ters of the concatenated scheme:

where the vectors and are defined as the

-dimensional vectors obtained by stacking the -dimensional
column-vector on top of an -dimensional column-
vector with all zero entries, i.e.,

(169)

The parameter is chosen as the LMMSE-estimation matrix
, where recall

(170)
where and .

Remark E.1: A similar choice of the parameters can also be
made in the case of partial feedback. In this case, we choose the
parameters corresponding to the inner encoders and the inner
decoder as in (160)–(170) except for replacing (162) by

and replacing (168) by

We denote the parameters of the concatenated scheme corre-
sponding to this choice by , and .

B. Achievable Region

We present the achievable region corresponding to our con-
catenated scheme for noisy feedback with parameters as pre-
sented in the previous section.

Definition E.2: For a positive integer , define
as the set of all rate-pairs

satisfying the three rate constraints (171), at the bottom of the
next page, where recall that , , ,

, , , where , ,
are defined by (172)–(174), shown at the bottom of

the next page, and where , , and
and are defined by13

(175)

(176)

and , , , , ,
and are defined by (160)–(168) and by (140), and
(143)–(145).

13Notice that for each � � ��� �� and each � � ��� � � � � � � �� we have

�� � � , when � is defined as in (146) or (147) in Section D-A
(Appendix D).
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Corollary E.3 (Noisy Feedback): The capacity region of
the two-user AWGN MAC with noisy feedback contains all rate
regions for positive integers , i.e.,

APPENDIX F
CHOICE OF PARAMETERS II

In Section F-A we present a second choice of the parame-
ters , and given . We only treat the
noisy-feedback setting. The choice we propose is based on ex-
tending the choice of parameters in Section E-A with a form of
power allocation as suggested in [11]. We denote this choice by

.
As we shall see, for our choice is the LMMSE-estimation

matrix. Thus, the achievable region of our concatenated scheme
with parameters is obtained by substi-
tuting the parameters into the RHSs of (148)

in Section D-A. The resulting achievable region is presented in
Corollary F. 2.

A. Description of Parameters

We only consider the noisy feedback setting. An analogous
choice of the parameters for the partial feedback setting is ob-
tained by similar modifications as in Remark E.1 in the previous
Appendix.

We first describe how Inner Encoder 1 and Inner Encoder
2 map the fed symbols to the sequences of channel inputs

and . This, then determines
. The matrix is chosen as the LMMSE-esti-

mation matrix.
The inner encoders use the same linear strategies as in Section

E-A in the previous appendix, with the only difference that here
for every fed symbol, Inner Encoder 1 scales the first produced
symbol by a constant , and similarly Inner Encoder 2 scales
the first produced symbol by the same constant , where

is defined as the solution to

(177)

(171a)

(171b)

(171c)

(172)

(173)

(174)
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Equation (177) has a unique solution in because (177) is
strictly increasing in and by

(178)

Here, (178) holds by the continuity of the expressions in (8),
and because for the RHS of (8) is strictly larger than
its LHS, whereas for the LHS of (8) is
strictly larger than its RHS.

The reason for scaling the first produced symbols by
is to ensure that the correlation coefficient satisfies

. This property is used in the proof of Remark
IV.8 in Section IV-E2, where we show that for perfect feedback
and with the choice of parameters presented in this section our
concatenated scheme achieves the sum-rate capacity.

The trick of reducing the powers of certain channel inputs
and in order to control the next correlation coefficient

was introduced in Kramer’s perfect-feedback scheme [11].
Ozarow uses a different trick in his scheme [13]. He assumes
that the two transmitters share a common randomness, which al-
lows them to vary a specific correlation coefficient by adding
a scaled version of the common randomness to their channel in-
puts and .

For the detailed description of the inner encoders we again re-
place the fed symbols by the independent standard Gaus-
sians and . Then, Inner Encoder 1 produces

(179)

and Inner Encoder 2 produces

(180)

where , , , ,
are defined as in the previous Appendix when the channel inputs

and rather than being defined by (160) and (161) are
now defined by (179) and (180), and where is defined by (177).

The described encodings correspond to the following param-
eters in the concatenated scheme:

and

where denotes the all-zero column-vector and where
and are defined as in the previous

Appendix.
The matrix is chosen as the LMMSE-estimation matrix

, where recall that

where and .

B. Achievable Region

Definition F.1: For each define the rate region
as the set of all rate-pairs sat-

isfying (181a) and (181b), shown at the bottom of the page,
where now (unlike in the previous Appendix)

(182)

(183)

(184)

where is the unique solution in to

(185)

(181a)

(181b)

(181c)
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and where the parameters , , ,
, , , , are

defined as in the previous Appendix, if the input symbols
and rather than being defined by (160) and (161) are now
defined by (179) and (180).

Corollary F.2: For the two-user AWGN MAC with noisy
feedback our concatenated scheme with the parameters de-
scribed in Section F-A achieves all rate pairs in the regions

for positive integers , i.e.

Remark F.3: Specializing the region in Definition F.1 to
perfect feedback, i.e., to , results in the region

, which is defined as the set of all rate pairs
satisfying

(186a)

(186b)

(186c)

where the sequence is recursively defined by
and for by

(187)

and where is the unique solution in to (185).
Proof: Notice that if , then trivially ,

for , and (165)–(168), (175), and (176) result
in

(188)

(189)

(190)

Thus, for perfect feedback the parameters suggested in Sec-
tion F-A are LMMSE-estimation error parameters, which

are optimal for perfect feedback in the sense discussed in
Section IV-C2. The rate expressions in (171) then result in
Expressions (186), and Recursion (174) results in (187).

This concludes the proof of the remark.

APPENDIX G
CHOICE OF PARAMETERS III

In this section, we consider the noisy-feedback setup with
receiver side-information, and we present for each a
specific choice of the parameters , which
we call . As we shall see, the matrix

is chosen as the LMMSE-estimation matrix. Thus, the
achievable region of our concatenated scheme with parameters

is obtained by substituting the parame-
ters into (156). The resulting achievable region
is presented in Corollary G.2.

A. Description of Parameters

Let a positive integer be given. We first describe how
Inner Encoder 1 and Inner Encoder 2 map the fed symbols to
the channel inputs. This then determines . To
simplify the description we replace the symbols and fed
to the inner encoders by the independent standard Gaussians
and . We choose the inner encoders to produce

(191)

(192)

and for :

(193)

(194)

where for the matrix is defined as in
(164) and

(195)

(196)

(197)

(198)

Notice that this choice implies that the th channel input
produced by Inner Encoder 1 is a scaled version of the
LMMSE-estimation error of based on the past feedback
outputs . Similarly, for Inner Encoder 2.

The described encodings correspond to the following param-
eters of the concatenated scheme:
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and

where the vectors and are defined as the
-dimensional vector obtained by stacking the -dimensional

column-vector on top of an -dimensional column-
vector with all zero entries, i.e.,

The matrix is chosen as the LMMSE-estimation matrix
with side-information, i.e.,

where .

B. Achievable Region

Definition G.1: For each define the region
as the set of all rate pairs

satisfying

where , , , and , ,
and are recursively given by (199)–(201), shown at
the bottom of the page, and where , and

and are described by (191)–(198).

Corollary G.2: The capacity region
of the two-user

Gaussian MAC with noisy feedback and receiver side-infor-
mation contains the rate regions for
positive integers , i.e.,

APPENDIX H
RATE-SPLITTING WITH CARLEIAL’S COVER–LEUNG SCHEME

In this section we describe the rate-splitting scheme in
Section IV-D2 in more detail. We consider the version of the
scheme where after each Block Transmitter
1 first decodes Message before decoding .
Similarly, for Transmitter 2.

We first describe the encodings. We start with the en-
codings in Block , for a fixed , where
we assume that from decoding steps in the previous
block both transmitters are cognizant of the pair

. Given ,
, and , Trans-

mitter , for , picks the codewords
, ,

and from the corre-
sponding codebooks, which have independently been generated
by randomly drawing each entry according to an IID zero-mean
unit-variance Gaussian distribution14. Fix correlation coef-
ficients , which are constant over all blocks

. Transmitter computes the following linear
combinations for and :

(202)

where

14To satisfy the power constraints the Gaussian distribution should be of vari-
ance slightly less than 1. However, this is a technicality which we ignore.

(199)

(200)

(201)
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Moreover, Transmitter uses our concatenated code to encode
Message . Specifically, given ,
Transmitter feeds to Outer Encoder , which picks
the codeword corre-
sponding to and feeds it to Inner Encoder . Denoting
the parameters of Inner Encoder by and , Inner Encoder

produces the -dimensional vectors

(203)

where

The signal transmitted by Transmitter is then described by
the sum of the vectors in (202) and (203) as follows. For

and

(204)

where

Notice that if , and satisfy the power constraints
(19) for powers and , noise variance

, and feedback-noise covariance matrix
and if the outer code’s codewords and

are zero-mean and average block-power con-
strained to 1, then the channel input sequences satisfy the power
constraints with arbitrary high probability.

In Block , the two transmitters only send informa-
tion about the pair . Given

and , both transmitters pick the
codewords
and from the
corresponding codebooks and form a linear combination of
power . Thus, defining

the signal transmitted by Transmitter can be described as

(205)

Next, we describe the decodings. We start with the decoding
at Transmitter 2; the decoding at Transmitter 1 is performed sim-
ilarly and therefore omitted; and the decodings at the receiver
are described later on.

Recall that after a fixed block , for ,
Transmitter 2 first decodes Message , followed by
Message . After Block , Transmitter 2 observed

, and additionally is cognizant of the
realizations of , ,

, and . It can thus
compute for :

where

Since the sequence is independent

of the additional information ,
, , and
, Transmitter 2 can optimally de-

code Message based on only.
To this end, it does not apply the inner and outer decoder of the
concatenated scheme, but directly applies an optimal decoder
for a Gaussian single-input antenna/ -output antenna channel
with temporally-white noise sequences which are correlated
across antennas. Let denote Transmitter 2’s guess

of Message and let be the
corresponding codeword of the outer code.

Transmitter 2 then decodes Message as follows. It
first attempts to subtract the influence of the sequence produced
by encoding and to this end computes

which, if Transmitter 2 successfully decoded , equals

Transmitter 2 then decodes Message based on the se-

quences using an optimal decoder for a
Gaussian -input antenna/ -output antenna channel with tem-
porally-white noise sequences correlated across antennas.

As a last element, we describe the decodings at the re-
ceiver. After each block the receiver performs
two decoding steps. In the first step it decodes Messages

while treating the sequences produced
to encode and
as additional noise. For this decoding step the receiver
uses inner and outer decoders of the concatenated scheme.
Let denote the receiver’s guess of the

pair produced in this first step, and let

and be the corre-
sponding codewords of the outer code.
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In the second decoding step, the receiver decodes Messages
and . To this end, it first pre-processes

the outputs observed in blocks and to mitigate the
influence of the sequences produced to encode Messages

. The outputs in block are processed as
follows: For each the receiver computes

(206)

where

Notice that in case the first decoding step was successful, i.e,
in case that and holds for all

, (206) corresponds to

Before describing how the receiver processes the outputs
in block , we notice that the receiver already decoded
Messages , , and
in previous decoding steps. Let ,

, and denote the receiver’s guess of these

messages. Also, for each let and

denote the codewords that in the codebooks used
in the th subblock of block correspond to the guesses

, and let

and denote the codewords that in
the outer code used in block correspond to the guesses

and . The receiver processes the outputs
observed in the block by computing for :

Equipped with the sequences the re-

ceiver finally decodes Messages using
an optimal decoder for a -input antenna/ -output antenna
Gaussian MAC with temporally-white noise that is correlated
across antennas.

After Block the receiver decodes Messages
based on and based on

the sequence . To this end, it again

uses an optimal decoder for a -input antenna/ -output
antenna Gaussian MAC with temporally-white noise that is
correlated across antennas.

A. Noisy and Perfect Partial Feedback

The proposed extension applies also to settings with noisy
or perfect partial feedback to Transmitter 2, if is set to the
all-zero matrix and if Carleial’s scheme for partial feedback
is applied. Thus, our scheme should be modified so that there
are no decodings taking place at Transmitter 1 and so that in

(204) and (205) the term is replaced

by .
Notice that in a setting with perfect partial feed-

back to Transmitter 2 the components of the noise vec-
tors corrupting are uncorrelated, similarly for

and for and

. Thus, optimal decoders for Gaussian multi-input an-
tenna/multi-output antenna channels with uncorrelated white
noise sequences can be used to decode at Transmitter 2
and to decode at the receiver. Moreover, the
observation at the receiver is a degraded version of the
observation at Transmitter 2. Thus, since the receiver
decodes based on , in settings with
perfect partial feedback there is no loss in optimality in the pre-
sented rate-splitting scheme if based on Transmitter
2 first decodes message before decoding .
In particular, the set of achievable rates of the concatenated
scheme is solely constrained by the decoding at the receiver.

APPENDIX I
INTERLEAVING AND RATE-SPLITTING WITH CARLEIAL’S

COVER–LEUNG SCHEME

We describe the scheme in Section IV-D3 in more detail.
We start with the encodings and first consider the encodings
in the th subblock of Block , for a fixed
and . Define . We as-
sume that from decoding steps after previous subblocks

, both transmitters are cognizant
of , ,

.
The encodings in Subblock consist of four steps. In the

first step Transmitter 1 produces an -length vector to encode
messages , , and as follows.
Given , , and

, Transmitter 1 first picks codewords
, , and from

the corresponding codebooks, which have independently been
generated by randomly drawing each entry according to an IID
zero-mean unit-variance Gaussian distribution15. Transmitter 1
then completes the first step by computing the following linear
combination

(207)

15To satisfy the power constraints the Gaussian distribution should be of vari-
ance slightly less than 1. However, this is a technicality which we ignore.
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where is a fixed chosen parameter of the scheme,
which does not depend on . Similarly, for Transmitter 2.

In the second step, Transmitter 1 computes the “cleaned”
feedback vectors , where

for is defined as

(208)

where . Similarly, for

Transmitter 2. Notice that for
the “cleaned” feedback vectors satisfy

where for and :

Thus, they correspond to the feedback vectors of a “cleaned”
channel where the channel outputs are described by the vectors

.
In the third step, Transmitter 1 produces an -length vector to

encode Message using the “cleaned” feedback vectors
in (208) as explained shortly. Assume that at the beginning of
Block Transmitter 1 fed Message to its outer encoder
and that the outer encoder produced the codeword . Let

denote the parameters of Transmitter 1’s modified inner en-
coder. The modified inner encoder then produces the -length
vector

(209)

which is also the -length vector that Transmitter 1 produces in
this third step. Similarly, for Transmitter 2.

In the forth and last step, Transmitter 1 sums the -length
vectors in (207) and (209), and sends the resulting symbols over
the channel. Similarly, for Transmitter 2.

Thus, the signal transmitted by Transmitter in Subblock
can be described as follows:

(210)

where

Notice that if the parameters satisfy the
power constraints (19) for transmit powers and

, noise variance , and feedback-noise covariance
matrix , then the input sequences satisfy the power
constraints (4) with arbitrary high probability.

We next consider the encodings in the last
Block , where the two transmitters
send information about the pairs of messages

.
We consider a fixed subblock .
The transmitters send their channel inputs in this last block

as follows. Given and
, both transmitters choose the

codewords , and from the
corresponding codebooks and send a linear combination of the
chosen codewords over the channel. Thus, the signal
transmitted by Transmitter in Subblock can be described as

(211)

where

We next describe the decoding at Transmitter 2; the decoding
at Transmitter 1 is performed similarly and therefore omitted;
and the decoding at the receiver will be described later.

After each subblock Transmitter 2 de-
codes Message . We consider a fixed Subblock

and define and
so that . Before describing the decoding
of Message at the end of this paragraph, we
notice the following. After Subblock , Transmitter 2 ob-
served the feedback vectors
and is additionally cognizant of Messages ,

, and (assuming
its previous decoding steps were successful) of Messages

. It can therefore
reconstruct the sequences produced to encode these mes-
sages. Moreover, Transmitter 2 can estimate Transmitter
1’s feedback outputs , (even
though it cannot reconstruct them because it is incognizant
of the feedback noises). By subtracting the reconstructed se-
quences and the estimated sequence from its feedback outputs
Transmitter 2 can thus compute the -dimensional vectors

and , which are
defined as
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where we define the vector
; and for

and :

where . Trans-
mitter 2 finally decodes Message based on

, and using
an optimal decoder for a single-input antenna/multi-output
antenna Gaussian channel with correlated but temporally-white
noise sequences.

We next describe the decoding at the receiver. We first con-
sider the decoding of the pair after a fixed
subblock . Define
and so that . Before describing
the decoding of the pair at the end of
this paragraph, we notice the following. In decoding steps
after previous subblocks the receiver has already decoded
Messages ,

, and
. Therefore,

(assuming that these decodings were successful) the receiver
can reconstruct the sequences produced to encode these
messages and subtract them from the output signal. Thus, the
receiver can compute for and
the “cleaned” output vector

and

and it can compute

Notice that the “cleaned” output vector
equals the difference .
Notice further, that even though the “cleaned”
outputs and

do not depend on the
pair , they are correlated with the

noise sequences corrupting and
and should be taken into account by the receiver when
decoding . Thus, the receiver should
decode the pair based on the vectors

, ,

, and . To this end, the receiver first partly
“decorrelates” the vectors by computing
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and for :

The receiver then decodes the pair of mes-
sages based on

and

using an optimal
decoder for a 2-input/2 -output antenna Gaussian MAC with
temporally-white noise sequences correlated across antennas.

After decoding Messages the
receiver decodes Messages . To this
end, it first reverses the interleaving introduced by the modified
inner encoders on the “cleaned” output vectors .
That is, for , it constructs the -dimensional
vector

where denotes the th entry of vector . It then decodes
Messages applying inner and outer de-
coder of the concatenated scheme to the vector .

A. Noisy and Perfect Partial Feedback

The proposed extension can also be applied in settings with
noisy or perfect partial feedback, if is set to the all-zero ma-
trix and if Carleial’s scheme for noisy or perfect partial feedback
is applied. Accordingly, our scheme should be modified so that
there is no decoding taking place at Transmitter 1. Therefore,

in (210) and (211), the term should be

replaced by , for .
Notice that—as in the second extension—for perfect partial

feedback the various vectors computed for the decodings at

Transmitter 2 and for the decodings at the receiver have uncor-
related noise components. Therefore, without loss in optimality,
Transmitter 2 and the receiver can use optimal decoders for
Gaussian multi-input antenna/multi-output antenna channels
with independent white noise sequences.
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