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Constrained Source-Coding With Side Information
Amos Lapidoth, Fellow, IEEE, Andreas Malär, and Michèle Wigger, Member, IEEE

Abstract— The source-coding problem with side information at
the decoder is studied subject to a constraint that the encoder—
to whom the side information is unavailable—be able to compute
the decoder’s reconstruction sequence to within some distortion.
For discrete memoryless sources and finite single-letter distortion
measures, an expression is given for the minimal description
rate as a function of the joint law of the source and side
information and of the allowed distortions at the encoder and
at the decoder. The minimal description rate is also computed
for a memoryless Gaussian source with squared-error distortion
measures. A solution is also provided to a more general problem
where there are more than two distortion constraints and each
distortion measure may be a function of three arguments: the
source symbol, the encoder’s reconstruction symbol, and the
decoder’s reconstruction symbol.

Index Terms— Source coding, Wyner-Ziv coding, side informa-
tion, rate-distortions function, constrained reconstructions.

I. INTRODUCTION

L IKE Wyner and Ziv [1], we study a setting where
a sequence generated by a source is to be described

succinctly to a reconstructor (“decoder”) with access to some
side information. Wyner and Ziv showed that, although the
side information is not available at the describing terminal
(“encoder”), it can be beneficial in improving the trade-off
between the rate of description and the reconstruction distor-
tion. They fully characterized this trade-off for memoryless
sources with single-letter distortion measures. Unlike the case
without side information—since the side information is used
in the reconstruction process, and since the side information
is not available at the describing terminal—the describing
terminal cannot tell how the source sequence it observes
will be reconstructed. In some settings, this is unacceptable.
Steinberg [2] therefore studied the common-reconstruction
problem where an additional restriction is imposed that the
reconstruction sequence be computable with probability nearly
one at the describing terminal. This greatly limits the extent by
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Fig. 1. Constrained Wyner-Ziv coding.

which the reconstruction can depend on the side information.
More generally, there is a tension between the degree by
which the reconstructing terminal utilizes the side information
and the precision with which the describing terminal can
compute the reconstruction sequence. It is this tension that
we study in this paper.

To quantify this tension, we require that the describing
terminal generate an estimate of the sequence that will be
produced at the reconstructing terminal (Figure 1). We then
study the distortions that can be simultaneously achieved at
the describing terminal (“the encoder distortion”) and at the
reconstructing terminal (“the decoder distortion”) as a function
of the description rate. If the encoder’s distortion measure is
the Hamming distance and if the allowed distortion is zero,
then our problem reduces in essence to Steinberg’s common-
reconstruction problem.1 And if the allowed encoder distortion
is infinite, our problem reduces to that of Wyner and Ziv. We
can thus view our problem as a generalization of the Wyner-
Ziv problem and Steinberg’s common reconstruction problem.

For discrete memoryless sources and finite single-letter
distortion measures, we provide a single-letter characterization
of the trade-off between the description rate and the distortions
at the encoder and decoder sides. We also calculate this
trade-off for a memoryless Gaussian source and squared-error
distortion measures. Finally, in Section IV, we generalize the
results to account for more than two constraints and to allow
each distortion measure to depend on three arguments: the
source symbol, the encoder’s reconstruction symbol, and the
decoder’s reconstruction symbol.

Steinberg’s work was also extended in other ways.
Kittichokechai, Oechtering, and Skoglund [3] determined
the rate-distortion function under a common-reconstruction

1Steinberg used a vanishingly small block-error criterion whereas we use
a vanishingly small average-per-symbol error criterion. See Remark 3 in
Section II-B ahead.
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constraint for a modified Wyner-Ziv setup where the
encoder can influence the decoder’s side information
via an action-generator. Ahmadi, Tandon, Simeone, and
Poor [6] presented the rates-distortions function under a
common-reconstruction constraint for a cascade source-coding
problem when the side informations are physically degraded.
Timo, Grant, and Kramer [4], [5], and Ahmadi, Tandon,
Simeone, and Poor [6] derived the rate-distortions function
under a common-reconstruction constraint for two special
cases of the Heegard-Berger/Kaspi problem (the Wyner-Ziv
problem with two decoders): [6] for physically degraded
side informations, and [4], [5] for complementary side
informations. Timo, Grant, and Kramer [5] extended their
work also to a joint source-channel coding setup. Already
in [2], Steinberg studied the implications of the common-
reconstruction constraint on joint source-channel coding for
the degraded broadcast channel and on the simultaneous
transmission of data and state. Vellambi and Timo [7] finally
studied the Heegard-Berger problem under a slightly modified
common reconstruction constraint, where the two receivers
are required to reconstruct each others reconstructions of
the source. For this setup they derived the rate-distortions
function when a) the side-information is physically degraded;
b) the side information is stochastically degraded and a
certain full-support condition holds; or c) also the encoder is
required to reconstruct both receivers’ reconstructions.

Our results in Section II ahead, have recently been extended
by Rezagah and Erkip [8]. They studied the setup where the
two terminals (here termed encoder and decoder) wish to
reconstruct functions of the two sources (here termed source
and side information) and where to achieve this goal they can
alternatingly exchange messages during a given number of
t ≥ 1 rounds. (Our setup corresponds to t = 1 rounds.) They
gave a single-letter characterization of the rates-distortions
regions for discrete-memoryless sources with average-per-
symbol distortion measures and for Gaussian sources with
squared-error distortion measures.

The paper is organized as follows. In the rest of this section
we introduce our notation. In Section II we treat discrete
sources and general distortions, and in Section III Gaussian
sources with quadratic distortions. In Section IV we revisit
discrete sources but this time with more and more general
distortion constraints.

A. Notation

Random variables are denoted by upper-case letters and
their realizations by lower-case letters. Vectors are denoted
by bold-face letters: random vectors by upper-case bold-
face letters, and deterministic vectors by lower-case bold-
face letters. The transpose of a vector a is denoted by aT;
its Euclidean norm by ‖a‖; and the Euclidean inner product
between the vectors a and b by 〈a,b〉.

Sets and events are denoted by calligraphic letters,
e.g., A. An n-tuple (A1, . . . , An) is denoted An , and the
n-fold Cartesian product of the set A is denoted An .
The convex hull of a set A is denoted by conv(A), and its
cardinality by |A|. The set of real numbers is denoted R and

its d-fold Cartesian product R
d . The nonnegative reals are

denoted R+, and the positive reals R++. For the respective
d-fold Cartesian products we write R

d+ and R
d++.

To indicate that two random variables A and C are con-
ditionally independent given a third random variable B we
write

A�−−B�−−C.

The abbreviation IID stands for independently and identically
distributed and w.p. 1 stands for with probability 1. Further,
E[·] denotes the expectation operator.

We use I{·} to denote the indicator function: I{statement} is
equal to one if the statement is true and is equal to zero if it is
false. Throughout the paper log(·) denotes base-2 logarithm,
and log+(ξ) = max{log ξ, 0}.

II. DISCRETE MEMORYLESS SOURCES

AND GENERAL DISTORTIONS

A. Problem Statement

Our setting is illustrated in Figure 1 and is specified by
a tuple (X ,Y, X̂ , PXY , dd, de, Dd, De

)
,

where X ,Y, X̂ are finite sets; PXY is a probability distribution
on X × Y; dd(·, ·) and de(·, ·) are nonnegative functions

dd : X × X̂ → R
+ (1)

de : X̂ × X̂ → R
+; (2)

and Dd and De are nonnegative real numbers.
The sets X , Y , and X̂ are the source, side information,

and reconstruction alphabets. A source sequence Xn ∈ X n is
observed at the encoder (but not at the decoder) and a side-
information sequence Y n ∈ Yn at the decoder (but not at the
encoder). The sequence of pairs {(Xi ,Yi )}n

i=1 is assumed to
be drawn IID according to the joint law PXY .

The encoder describes the source sequence Xn to the
decoder by an index

M = f (n)(Xn) (3)

where
f (n) : X n → M (4)

is the encoding function and

M � {1, . . . ,M} (5)

denotes the message set for some positive integer M. Based on
the index M and its side information Y n , the decoder forms
a reconstruction sequence

X̂n
d = φ(n)(M,Y n) (6)

where
φ(n) : M × Yn → X̂ n (7)

is the decoder’s reconstruction function. The encoder’s
estimate of the decoder’s reconstruction sequence is

X̂n
e = ψ(n)(Xn) (8)
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for some
ψ(n) : X n → X̂ n . (9)

The goal is that the decoder’s reconstruction X̂n
d be within

distortion Dd of the source sequence Xn and that the encoder’s
estimate X̂n

e be within distortion De from the decoder’s
reconstruction X̂n

d . The distortions are measured by the
bounded, nonnegative, single-letter distortion measures dd(·, ·)
and de(·, ·).

We say that a nonnegative triple (R, Dd, De) is achievable if
for every ε > 0 and sufficiently large n there exists a message
set M of size

|M| ≤ 2n(R+ε) (10)

and a triple of functions ( f (n), φ(n), ψ(n)) as above such that
the decoder-side reconstruction constraint

1

n

n∑

i=1

E
[
dd(Xi , X̂d,i )

] ≤ Dd + ε (11)

and the encoder-side reconstruction constraint

1

n

n∑

i=1

E
[
de(X̂d,i , X̂e,i )

] ≤ De + ε (12)

are both met.
Our problem is not very interesting if the distortion con-

straints cannot be met even when the source sequence is
revealed losslessly to the reconstructor. Consequently, we shall
make the following assumption throughout:

Assumption 1: The distortion measures dd and de are such
that for each x ∈ X there exist x̂d, x̂e ∈ X̂ satisfying
dd(x, x̂d) = 0 and de(x̂d, x̂e) = 0.
As we shall see, this assumption ensures that, irrespective of
Dd, De ≥ 0, the triple (R, Dd, De) is achievable whenever
R ≥ H (X |Y ).

Given Dd, De ≥ 0, let R(Dd, De) denote the set of rates
R ≥ 0 for which the tuple (R, Dd, De) is achievable:

R(Dd, De) � {R ≥ 0 : (R, Dd, De) is achievable}. (13)

Notice that by the assumption above, the set R(Dd, De)
contains all rates R exceeding H (X |Y ) and is thus nonempty.
We can now define the rate-distortions function as

R(Dd, De) � min
R∈R(Dd,De)

R, (14)

where the minimum exists because the set R(Dd, De) is
nonempty, closed, and bounded from below by 0. We wish
to find R(Dd, De).

B. Related Setups

Wyner and Ziv’s classic lossy source-coding problem with
side information [1] is similar to our problem except that
Wyner and Ziv do not impose the encoder-side reconstruction
constraint (12). Informally, our problem thus reduces to the
Wyner-Ziv problem if we set De to infinity. Wyner and Ziv’s
result can be summarized as follows:

Theorem 1 (Wyner and Ziv [1]): The rate-distortion func-
tion RWZ(Dd) in the Wyner-Ziv setup is

RWZ(Dd) = min
Z ,φ

(
I (X; Z)− I (Y ; Z)

)
(15)

where (X,Y ) ∼ PXY , and where the minimization is over all
functions φ : Y ×Z → X̂ and discrete random variable Z for
which: Z takes values in an auxiliary alphabet Z of size at
most |X | + 1;

Z�−−X�−−Y (16)

forms a Markov chain; and

E
[
dd
(
X, φ(Y, Z)

)] ≤ Dd. (17)

Since imposing the encoder-side reconstruction con-
straint (12) cannot enlarge the set of achievable rates,

R(Dd, De) ≥ RWZ(Dd). (18)

Equality holds whenever the encoder-side reconstruction con-
straint (12) does not pinch. For example, when X̂ = X ;
Dd = De; and

de(x̂, x) = dd(x, x̂), x, x̂ ∈ X . (19)

Indeed, in this case the encoder can set X̂e,i to be Xi , which
results in (12) being identical to (11) and thus superfluous.

Steinberg’s setup in [2] is obtained from ours by replacing
the encoder-side distortion constraint (12) by the more strin-
gent perfect-reconstruction constraint

Pr
[

X̂n
e 
= X̂n

d

]
≤ ε. (20)

Theorem 2 (Steinberg [2]): The rate-distortion function
Rcr(Dd) in Steinberg’s setup is

Rcr(Dd) = min
X̂

(
I (X; X̂)− I (Y ; X̂)

)
, (21)

where the minimization is over all X̂ taking value in X̂ and
satisfying

X̂�−−X�−−Y (22)

and
E
[
dd(X, X̂)

]
≤ Dd. (23)

Remark 3: Constraint (20) is equivalent to the block-
distortion constraint

E
[
I{X̂n

e 
= X̂n
d }
]

≤ ε. (24)

Thus, when in our setup de(·, ·) is the Hamming distortion
and De = 0, then Steinberg’s setup differs from ours only in
that (20) is a block-distortion constraint whereas (12) is an
average-per-symbol distortion constraint.

C. Results

To describe the rate-distortions function for the setup of
Section II-A, we introduce the function R̃(Dd, De). The
expression for R̃(Dd, De) is similar to the expression for
RWZ(Dd) in (15) except that in the expression for R̃(Dd, De)
we have the additional constraint; see (28) ahead.

Given the joint law PXY of the source and side information,
and given the distortion measures dd, de, this function is
defined as

R̃(Dd, De) = min
Z ,φ,ψ

(
I (X; Z)− I (Y ; Z)

)
(25)
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where the minimization is over all discrete random variables Z
taking value in some finite auxiliary alphabet Z and forming
the Markov chain

Z�−−X�−−Y (26)

and over the functions φ : Y × Z → X̂ and ψ : X × Z → X̂
satisfying

E
[
dd
(
X, φ(Y, Z)

)] ≤ Dd (27)

E
[
de
(
φ(Y, Z), ψ(X, Z)

)] ≤ De. (28)

Note that, thanks to Assumption 1, the feasible set in (25)
is not empty: we can choose Z as X and φ, ψ as the functions
whose existence is guaranteed by the assumption. This choice
demonstrates that

R̃(Dd, De) ≤ H (X |Y ). (29)

Using the convex cover method [9] it can be shown that:
Remark 4: Allowing for sets Z of cardinality greater than

|X | + 3 does not decrease the value of the optimization
problem.

A consequence of this remark is that the minimum in (25) is
achieved: indeed, we may choose Z as the set {1, . . . , |X |+3}
with result that there are only a finite number of functions
φ, ψ , and the problem is reduced to minimizing a continuous
function over a compact set.

Like the Wyner-Ziv rate-distortion function RWZ(·)
[10], [11], also the function R̃(Dd, De) can be written in terms
of Shannon strategies, but we will have no use for that.

The key properties of R̃(Dd, De) are summarized in the
following proposition:

Proposition 5 (Key Properties of the Function R̃(Dd , De)):
The function R̃(Dd, De) : R

2+ → R+ is bounded from above
by H (X |Y ) and is nondecreasing in the distortions
(

D′
d ≥ Dd and D′

e ≥ De

)
⇒
(

R̃(D′
d, D′

e) ≤ R̃(Dd, De)
)
.

Moreover, it is convex and continuous over R
2+.

Proof: See Appendix B.
Our main result can be now stated as:

Theorem 6: The rate-distortions function for the setup in
Section II-A is equal to R̃(Dd, De)

R(Dd, De) = R̃(Dd, De). (30)

Proof: The coding scheme that establishes achievability is
a variation on the coding scheme of Wyner and Ziv [1] and
is thus only sketched. Its analysis is omitted.

Fix Z , φ,ψ satisfying (26) and (28), and fix also a block-
length n and some (small) ε > 0. Let C be a random
blocklength-n codebook with 2n(I (X;Z)−I (Y ;Z)+2ε)� bins,
each containing approximately 2n(I (Y ;Z)−ε) codewords with
the total number of codewords thus being 2n(I (X;Z)+ε)�.
Generate the codewords independently with the components
of each codeword being drawn IID PZ . Number the bins 1
through 2n(I (X;Z)−I (Y ;Z)+2ε)�.

Upon observing the source sequence Xn , the encoder
seeks a codeword Z∗n in C that is jointly typical with Xn .
If successful, it sends the number of the bin containing
Z∗n as the message M . It also produces the reconstruction

sequence X̂n
e by applying the function ψ componentwise to

Z∗n and Xn . The decoder seeks a codeword Ẑ n in Bin M
that is jointly typical with its side-information Y n and applies
the reconstruction function φ componentwise to Ẑ n and Y n to
produce X̂n

d .
The converse is proved in Subsection II-D.
Though not identical, Steinberg’s setup is very similar to

our setup when de(·, ·) is the Hamming distortion and De is
zero (Remark 3). It is therefore not surprising2 that, as the
following corollary shows, the two setups lead to identical
rates:

Corollary 7: Let dd(·, ·) be arbitrary, and let de(·, ·) be the
Hamming distortion measure

de(x̂d, x̂e) = I{x̂d 
= x̂e}, x̂d, x̂e ∈ X̂ . (31)

Then
R(Dd, De)

∣
∣
∣
De=0

= Rcr(Dd). (32)

Proof: See Appendix A.
Remark 8: Our results can be extended to a scenario

where the encoder observes not only the source sequence
{Xi } but also some sequence {Wi } which is correlated with
the decoder’s side-information sequence {Yi }. This additional
sequence {Wi } makes it easier for the encoder to estimate the
decoder’s reconstruction sequence and thus allows the decoder
to rely more heavily on its side information {Yi }. To see how
this seemingly more general scenario reduces to our scenario
assume that {(Xi ,Wi ,Yi )}n

i=1 are IID random triples of law
PX W Y and that Wi takes value in the finite set W . Consider
now a new IID source {X̃i } taking value in the set X̃ = X×W
according to the law PX W with X̃i = (Xi ,Wi ). The encoder
now observes the source sequence {X̃i } only and no additional
sequences. The decoder side information is still {Yi }, and the
joint law of X̃i ,Yi is PX W Y . Finally define the new decoder
distortion measure d̃d : X̃ × X̂ → R

+ as

d̃d
(
(Xi ,Wi ), X̂i

) = dd(Xi , X̂i ),

i.e., the distortion measure d̃d does not depend on the
Wi -component. Solving the original scenario for this new
source and new decoder distortion measure is equivalent to
solving the seemingly more general problem we described.

These observations apply also to the plain Wyner-Ziv
problem without encoder-side reconstruction constraint, see,
e.g., [14].

D. Proof of the Converse to Theorem 6

To establish the converse, we show that if a triple
(R, Dd, De) is achievable, then for every ε > 0

R + ε ≥ R̃(Dd + ε, De + ε). (33)

Since R̃(Dd, De) is continuous (Proposition 5), and since ε can
be arbitrarily small, this implies that R ≥ R̃(Dd, De) whenever
(R, Dd, De) is achievable, and consequently that R(Dd, De) ≥
R̃(Dd, De).

The first part of our proof identifying the auxiliary random
variable Zi (44) and the function φi (46) is similar to the proof

2See [9, Section 3.6.4], [12], and [13] for related discussions.
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of the Wyner-Ziv result [9]. For a given blocklength-n code
f (n), φ(n), ψ(n) satisfying (10)–(12), we have

n(R + ε)
(a)≥ H (M) (34)
(b)≥ I (Xn; M|Y n) (35)

(c)=
n∑

i=1

I (Xi ; M|Y n, Xi−1) (36)

=
n∑

i=1

H (Xi |Y n, Xi−1)−H (Xi |M,Y n, Xi−1) (37)

(d)=
n∑

i=1

H (Xi |Yi )− H (Xi |M,Y n, Xi−1) (38)

(e)≥
n∑

i=1

H (Xi |Yi )− H (Xi |M,Y n) (39)

(f)=
n∑

i=1

H (Xi |Yi )− H (Xi |Zi ,Yi ) (40)

=
n∑

i=1

I (Xi ; Zi |Yi ) (41)

(g)=
n∑

i=1

H (Zi |Yi )− H (Zi |Xi ) (42)

=
n∑

i=1

I (Xi ; Zi )− I (Yi ; Zi), (43)

where (a) follows by (10); (b) follows because conditioning
cannot increase entropy and because H (M|Y n, Xn) ≥ 0;
(c) follows from the chain rule for mutual information;
(d) follows because the pair Xi ,Yi is independent of the tuple
(Xi−1

1 ,Y i−1
1 ,Y n

i+1); (e) follows from the fact that conditioning
cannot increase entropy; (f) follows by defining

Zi � (M,Y i−1,Y n
i+1); (44)

and (g) follows because with the definition above

Zi�−−Xi�−−Yi . (45)

Denote by φ(n)i the function that maps (M,Y n) to the i -th
component of the n-tuple φ(n)(M,Y n), and denote by ψ(n)i the
function that maps Xn to the i -th component of the n-tuple
ψ(n)(Xn). Since there is a one-to-one correspondence between
the pairs (Yi , Zi ) and (M,Y n), we can define a function φi

that maps (Yi , Zi ) to φ(n)i (M,Y n)

φi (Yi , Zi ) � φ
(n)
i (M,Y n). (46)

We now define

Dd,i � E
[
dd
(
Xi , φ

(n)
i (M,Y n)

)]
, (47)

where E[·] is with respect to PXn Y n . By definitions (46)
and (47),

E
[
dd
(
Xi , φi (Yi , Zi )

)] = Dd,i , (48)

where E[·] is with respect to PXi Yi PZi |Xi .
We next turn to the encoder-side distortion. We will show

that there exists a deterministic function ψi : X × Z → X̂

that achieves a distortion no larger than De,i , where De,i is
the distortion achieved by ψ(n)i (Xn), namely,

De,i � E
[
de
(
φ
(n)
i (M,Y n), ψ

(n)
i (Xn)

)]
. (49)

This is the key step in our converse proof. It is similar to steps
applied in [15].

To this end, we express De,i as

De,i = EXn,Yi ,Zi

[
de
(
φi (Yi , Zi ), ψ

(n)
i (Xn)

)]
(50)

= EXn,Zi EYi |Xn,Zi

[
de
(
φi (Yi , Zi ), ψ

(n)
i (Xn)

)]
(51)

= EXn,Zi EYi |Xi ,X\i ,Zi

[
de
(
φi (Yi , Zi ), ψ

(n)
i (Xi , X\i )

)]
, (52)

where X\i � (Xi−1, Xn
i+1). For every (xi , zi ) ∈ X × Z , we

define x∗\i (xi , zi ) (or for short x∗\i ) as3:

x∗\i (xi , zi ) � arg min
x\i∈X n−1

EYi |Xi =xi ,X\i=x\i ,Zi=zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , x\i )

)]
(53)

or in any other way that guarantees

EX\i |Xi=xi ,Zi=zi

EYi |Xi=xi ,X\i ,Zi=zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , X\i )

)]

≥ EYi |Xi =xi ,X\i=x∗\i ,Zi=zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , x∗\i )

)]
. (54)

We can now define the function ψi as

ψi : X × Z → X̂ (55a)

(xi , zi ) �→ ψ
(n)
i

(
xi , x∗\i (xi , zi )

)
. (55b)

For every (xi , x\i , zi ) ∈ X n × Z , we have

EYi |Xi=xi ,X\i=x\i ,Zi =zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , x\i )

)]

(a)≥ EYi |Xi=xi ,X\i=x∗\i ,Zi=zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , x∗\i )

)]
(56)

(b)= EYi |Xi=xi ,Zi=zi

[
de
(
φi (Yi , zi ), ψ

(n)
i (xi , x∗\i )

)]
(57)

(c)= EYi |Xi=xi ,Zi=zi

[
de
(
φi (Yi , zi ), ψi (xi , zi )

)]
, (58)

where (a) follows from the definition of x∗\i ; (b) follows
because

X\i�−−(Xi , Zi )�−−Yi ; (59)

and (c) follows from the definition of ψi (55).
It now follows from (52) and (58) that

EXi ,Yi ,Zi

[
de
(
φi (Yi , Zi ), ψi (Xi , Zi )

)] ≤ De,i . (60)

Continuing from (43) we thus obtain

n(R + ε) ≥
n∑

i=1

I (Xi ; Zi)− I (Yi ; Zi ) (61)

3If arg min is not unique, x\i (xi , zi ) is defined as the first in lexicographical
order.
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(a)≥
n∑

i=1

R̃(Dd,i , De,i ) (62)

(b)= n
1

n

n∑

i=1

R̃(Dd,i , De,i ) (63)

(c)≥ n R̃

(
1

n

n∑

i=1

Dd,i ,
1

n

n∑

i=1

De,i

)
(64)

(d)≥ n R̃(Dd + ε, De + ε) (65)

where (a) follows from the definition of R̃(Dd, De) and
from (45), (48), and (60); (b) follows by multiplying by 1;
(c) follows from the convexity of R̃(Dd, De) (Proposi-
tion 5); and (d) follows from the monotonicity of R̃(Dd, De)
(Proposition 5) and the fact that 1

n

∑n
i=1 Dd,i ≤ Dd + ε

and 1
n

∑n
i=1 De,i ≤ De + ε. This establishes (33) and thus

concludes the proof of the converse.

III. GAUSSIAN SOURCE AND QUADRATIC DISTORTIONS

A. Setup

We next consider the case where the source, side informa-
tion, and reconstruction alphabets X ,Y, X̂ are the reals R; the
distortion functions dd and de are quadratic

dd(x, x̂d) = (x − x̂d)
2, (66)

de(x̂d, x̂e) = (x̂d − x̂e)
2; (67)

and the source and side-information pair (X,Y ) is a centered
bivariate Gaussian, where X is of positive variance σ 2

X

σX > 0 (68)

and where Y = ξX + U for some centered variance-σ 2
U

Gaussian U that is independent of X for some nonzero
constant ξ .4 The rate-distortions function depends on ξ only
through the ratio σ 2

U/ξ
2, because the receiver can premulti-

ply its side information by ξ−1 without affecting the rate-
distortions function. In the following we thus assume that
ξ = 1, i.e.,

Y = X + U. (69)

We denote the rate-distortions function for this setup by
RG(Dd, De).

When σU is zero the problem is not interesting, because
in this case the source sequence is determined by the side
information, and RG(Dd, De) is thus zero for all nonnegative
values of Dd and De. We shall henceforth thus assume

σU > 0. (70)

In this case, no finite rate can allow Dd to be zero (even if
we ignore the encoder-side reconstruction constraint). Thus,
we shall also assume

Dd > 0. (71)

4The problem is not interesting when ξ is zero, because in this case the
side information is independent of the source and is thus irrelevant.

B. Related Work

As we have seen in Section II-B, the Wyner-Ziv setup is
obtained from ours if the encoder-side reconstruction con-
straint (12) is omitted, and Steinberg’s common reconstruction
setup is obtained if (12) is replaced by (20).

For a Gaussian source and quadratic distortion measures,
Steinberg’s common reconstruction rate-distortion function
is [2]

RG
cr(Dd) = 1

2
log+ σ

2
X (σ

2
U + Dd)

(σ 2
X + σ 2

U )Dd
, (72)

and the Wyner-Ziv rate-distortion function is [1]

RG
WZ(Dd) = 1

2
log+ σ 2

Xσ
2
U

(σ 2
X + σ 2

U )Dd
. (73)

Note that (73) is also the rate-distortion function when the
side information is revealed not only to the decoder but also
to the encoder.

C. Result

Theorem 9: For a Gaussian source and quadratic distortion
measures, the rate-distortions function RG(Dd, De) can be
expressed as follows:

If
√

Deσ
2
U ≥ min

{
Dd,

σ 2
Xσ

2
U

σ 2
X +σ 2

U

}
, then

RG(Dd, De) = 1

2
log+ σ 2

Xσ
2
U

(σ 2
X + σ 2

U )Dd
. (74)

If
√

Deσ
2
U < min

{
Dd,

σ 2
Xσ

2
U

σ 2
X +σ 2

U

}
, then

RG(Dd, De) = 1

2
log+

⎛

⎝ σ 2
X

σ 2
X + σ 2

U

σ 2
U + Dd − 2

√
σ 2

U De

Dd − De

⎞

⎠.

(75)
Proof: The direct part is proved in Section III-D and the

converse in Section III-E.
Remark 10: If De = 0, then our rate-distortions function

RG(Dd, 0) coincides with Steinberg’s common-reconstruction
rate-distortion function RG

cr(Dd) of (72):

RG(Dd, De)
∣
∣∣

De=0
= RG

cr(Dd). (76)

If Dd and De are such that

√
Deσ

2
U ≥ min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

}

(77)

or

σ 2
X + σ 2

U

σ 2
X

≥
σ 2

U + Dd − 2
√
σ 2

U De

Dd − De
(78)

then RG(Dd, De) coincides with the Wyner-Ziv rate-distortion
function RG

WZ(Dd) in (73). Thus, if (77) or (78) holds, then
relaxing Constraint (12) and/or revealing the side information
also to the encoder does not decrease the rate-distortions
function.
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The reasons for this are as follows. Under condition (77)
it is possible to find some X̂n

e that satisfies the encoder-
side reconstruction constraint (12) when X̂n

d is chosen as the
optimum reconstruction for the Wyner-Ziv problem. (For more
details see the direct part described in the next section.) Under
condition (78), by Theorem 9, RG(Dd, De) = 0. Since the
required rate for the relaxed Wyner-Ziv problem is nonnegative
and no larger than RG(Dd, De) = 0, we conclude that in this
case also RG

WZ(Dd) = 0.

D. The Direct Part of Theorem 9

In the two cases that we shall describe in (79) and (82)
ahead, no encoding is necessary because the encoder and
the decoder can produce sufficiently good reconstructions X̂n

e
and X̂n

d based solely on their observed sequences Xn and Y n .
In these cases RG(Dd, De) is thus zero.

1) If
√

Deσ
2
U ≥ min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

}

(79a)

and

Dd ≥ σ 2
Xσ

2
U

σ 2
X + σ 2

U

, (79b)

then the encoder and decoder can produce the sequences

X̂n
e = σ 2

X

σ 2
X + σ 2

U

Xn (80)

X̂n
d = σ 2

X

σ 2
X + σ 2

U

Y n (81)

which satisfy the distortion constraints.
2) If

√
Deσ

2
U < min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

}

(82a)

and

Dd ≥ σ 2
X

(

1 −
√

De

σ 2
U

)2

+ De, (82b)

then the encoder and decoder can produce the sequences

X̂n
e =

√
De

σ 2
U

Xn (83)

X̂n
d =

√
De

σ 2
U

Y n (84)

which satisfy the distortion constraints.

The achievability of Theorem 9 in the remaining cases will
be established using the following proposition with a judicious
choice of the parameters.

Proposition 11: For the setup in Section III-A of a
Gaussian source and quadratic distortion measures, the tuple
(R, Dd, De) is achievable whenever

R ≥ 1

2
log

σ 2
Xσ

2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

(85)

for some parameters σ 2
W , a > 0 and b ≥ 0 simultaneously

satisfying

(1 − a − b)2σ 2
X + a2σ 2

W + b2σ 2
U ≤ Dd (86a)

and
b2σ 2

U ≤ De. (86b)

Thus,

RG(Dd, De) ≤ min
a, b, σ 2

W

1

2
log

σ 2
Xσ

2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

, (87)

where the minimization is over all σ 2
W , a > 0 and b ≥ 0

satisfying (86).
Proof: See Appendix C.

We can now prove the achievability part of Theorem 9 for
the remaining cases.

3) If
√

Deσ
2
U ≥ min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

}

(88a)

and

Dd <
σ 2

Xσ
2
U

σ 2
X + σ 2

U

, (88b)

then the choice

σ 2
W = Dd

1 − σ 2
X +σ 2

U
σ 2

Xσ
2
U

Dd

(89a)

(which is positive by (88b)) and

a = Dd

σ 2
W

= 1 − σ 2
X + σ 2

U

σ 2
Xσ

2
U

Dd, (89b)

b = σ 2
X

σ 2
X + σ 2

U

(1 − a) = Dd

σ 2
U

. (89c)

satisfies (86) because

(1 − a − b)2σ 2
X + a2σ 2

W + b2σ 2
U

=
(
σ 2

X + σ 2
U

σ 2
X

b − b

)2

σ 2
X + D2

d

σ 2
W

+ D2
d

σ 2
U

(90)

= D2
d

σ 2
X

+ Dd

(

1 − σ 2
X + σ 2

U

σ 2
Xσ

2
U

Dd

)

+ D2
d

σ 2
U

(91)

= Dd (92)

and

b2σ 2
U = D2

d

σ 2
U

≤ De. (93)

Moreover, for this choice,

1

2
log

σ 2
Xσ

2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

= 1

2
log

σ 2
Xσ

2
U

(σ 2
X + σ 2

U )Dd
. (94)
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Thus, by (92)–(94) and by Proposition 11, we conclude
that when Dd and De satisfy (88),

RG(Dd, De) ≤ 1

2
log

σ 2
Xσ

2
U

(σ 2
X + σ 2

U )Dd
. (95)

4) If
√

Deσ
2
U < min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

}

(96a)

and

Dd < σ
2
X

(

1 −
√

De

σ 2
U

)2

+ De, (96b)

then we consider the choice

b =
√

De

σ 2
U

, (97a)

a = σ 2
X

σ 2
X + σ 2

W

(1 − b), (97b)

σ 2
W = σ 2

X (Dd − b2σ 2
U )

σ 2
X (1 − b)2 + b2σ 2

U − Dd

= σ 2
X (Dd − De)

σ 2
X

(
1 −

√
De
σ 2

U

)2

+ De − Dd

. (97c)

To see that the RHS of (97c) is positive note that (96b)
implies that the denominator is positive, and (96a)
implies that the numerator is positive because
(√

Deσ
2
U < min

{

Dd,
σ 2

Xσ
2
U

σ 2
X + σ 2

U

})

�⇒(
De < min

{
σ 2

U , Dd
}
)
. (98)

(Since σ 2
X/(σ

2
X + σ 2

U ) is smaller than one, the LHS of
(98) implies that De < σ 2

U . This, and the fact that the
LHS of (98) also implies that Deσ

2
U < D2

d demonstrates
that the LHS of (98) also implies that De < Dd.)
This choice satisfies (86) because

(1 − a − b)2σ 2
X + a2σ 2

W + b2σ 2
U

=
(
σ 2

W (1 − b)

σ 2
X + σ 2

W

)2

σ 2
X +

(
σ 2

X (1 − b)

σ 2
X + σ 2

W

)2

σ 2
W + De

(99)

= σ 2
X (1 − b)2

σ 2
X
σ 2

W
+ 1

+ De (100)

= σ 2
X (1 − b)2(Dd − b2σ 2

U )

σ 2
X (1 − b)2

+ De (101)

= Dd. (102)

and
b2σ 2

U = De. (103)

Moreover, for this choice,

1

2
log

σ 2
Xσ

2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

= 1

2
log

σ 2
X

(
σ 2

U + Dd − 2
√
σ 2

U De
)

(σ 2
X + σ 2

U )(Dd − De)
. (104)

Thus, by (102)–(104) and by Proposition 11, we con-
clude that when (96) holds,

RG(Dd, De) ≤ 1

2
log

σ 2
X

(
σ 2

U + Dd − 2
√
σ 2

U De
)

(σ 2
X + σ 2

U )(Dd − De)
.

(105)

Remark 12: The expressions in Proposition 11 and their
relation to (25) become more transparent when we define

Z = a(X + W ) (106a)

X̂d = bY + Z (106b)

X̂e = bX + Z (106c)

for a > 0, b ≥ 0, and W a centered Gaussian of positive
variance σ 2

W independent of the pair (X,Y ). With these
definitions

I (X; Z |Y ) = 1

2
log

σ 2
Xσ

2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

(107a)

E
[
(X − X̂d)

2
]

= (1 − a − b)2σ 2
X + a2σ 2

W + b2σ 2
U (107b)

E
[
(X̂d − X̂e)

2
]

= b2σ 2
U . (107c)

Since Z�−−X�−−Y for all choices of the parameters a > 0,
b ≥ 0, σ 2

W > 0, we can also rewrite (87) as:

RG(Dd, De) ≤ min
Z ,X̂d,X̂e

I (X; Z |Y ) (108)

where the minimum is over all Z , X̂d, X̂e that are of the form
in (106) and satisfy the distortion constraints

E
[(

X − X̂d
)2] ≤ Dd, (109)

E
[(

X̂d − X̂e
)2] ≤ De. (110)

E. The Converse for Theorem 9

If √
Deσ

2
U ≥ min

{
Dd,

σ 2
Xσ

2
U

σ 2
X + σ 2

U

}
,

then the converse follows by relaxing the constraint (12); see
Remark 10. We thus focus on the case where

√
Deσ

2
U < min

{
Dd,

σ 2
Xσ

2
U

σ 2
X + σ 2

U

}
. (111)

We define the function R̃cnt : R++ × R+ → R+ like R̃(·, ·)
except that its first argument (Dd) is strictly positive; the
minimum is replaced by an infimum; and the size of the
auxiliary alphabet Z can be unbounded. Thus,

R̃cnt(Dd, De) � inf
Z ,φ,ψ

I (X; Z |Y ) (112)
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where the infimum is over all choices5 of the random vari-
able Z and functions φ,ψ satisfying

E
[
(X − X̂d)

2
]

≤ Dd, (113a)

E
[
(X̂d − X̂e)

2
]

≤ De, (113b)

Z�−−X�−−Y, (113c)

where

X̂d � φ(Y, Z), (113d)

X̂e � ψ(X, Z). (113e)

In analogy to Proposition 5 we have:
Lemma 13: Over R++ × R+ the function R̃cnt(Dd, De) is

finite, monotonic in each of its arguments, and convex.
Proof: The function is bounded by the rate-distortion

function of the Gaussian source without side information. The
proof of monotonicity is identical to the proof of monotonicity
in Proposition 5. The proof of convexity is also very similar:
only a minor change is needed to account for the fact that,
prima facie, the infimum need not be achieved.

The following lemma provides an explicit expression for
R̃cnt(Dd, De) when (111) holds.

Lemma 14: If Dd > 0 and De ≥ 0 satisfy (111), then

R̃cnt(Dd, De)= 1

2
log+

⎛

⎝ σ 2
X

σ 2
X +σ 2

U

σ 2
U +Dd−2

√
σ 2

U De

Dd − De

⎞

⎠.

(114)
Proof of Lemma 14: We first prove

R̃cnt(Dd, De) ≤ 1

2
log+

⎛

⎝ σ 2
X

σ 2
X + σ 2

U

σ 2
U + Dd − 2

√
σ 2

U De

Dd − De

⎞

⎠.

(115)
To this end, we present a choice for Z , X̂d, X̂e that satisfies
the constraints (113) and is such that the objective function
I (X; Z |Y ) in (112) evaluates to the RHS of (115). Our choice
depends on whether

Dd ≥ σ 2
X

(

1 −
√

De

σ 2
U

)2

+ De (116)

or

Dd < σ 2
X

(

1 −
√

De

σ 2
U

)2

+ De. (117)

In the first case (116) the RHS of (115) evaluates to 0, whereas
in the second case (117) it is positive.

When Dd and De satisfy (116), a suitable choice is—as in
(83) and (84) in the proof of the direct part—

Z = ∅, X̂n
e =

√
De

σ 2
U

Xn , X̂n
d =

√
De

σ 2
U

Y n . (118)

5To be more precise we should specify the set where Z may take value,
and we must restrict the functions φ and ψ to be measurable. In the
converse Z will correspond to the tuple (M, Y i−1 ,Y n

i+1), and we can
therefore restrict Z here to be the space where such tuples take value.

When Dd and De satisfy (117), a suitable choice is—as
in (97) and (106) in the direct part—

Z = a(X + W ), X̂e = bX + Z , X̂d = bY + Z , (119)

where W is a centered Gaussian of variance σ 2
W =

σ 2
X (Dd−De)

σ 2
X (1−

√
De/σ

2
U )

2+De−Dd

and independent of the pair (X,Y ) and

where b =
√

De/σ
2
U and a = σ 2

X
σ 2

X +σ 2
W
(1 − b). That this choice

has the desired properties follows by (102)–(104) and (107).
Having established (115), we now complete the proof of the

lemma by proving the reverse inequality

R̃cnt(Dd, De)≥ 1

2
log+

⎛

⎝ σ 2
X

σ 2
X +σ 2

U

σ 2
U + Dd −2

√
σ 2

U De

Dd − De

⎞

⎠.

(120)
Since rates are nonnegative, it suffices to prove

R̃cnt(Dd, De)≥ 1

2
log

⎛

⎝ σ 2
X

σ 2
X +σ 2

U

σ 2
U + Dd−2

√
σ 2

U De

Dd − De

⎞

⎠

(121)
where log+ has been replaced by log.

Since the joint law of (X,Y ) is fixed and is a bivariate
Gaussian law

I (X; Z |Y ) = h(X |Y )− h(X |Y, Z)

= 1

2
log

(

2πe
σ 2

Xσ
2
U

σ 2
X + σ 2

U

)

− h(X |Y, Z). (122)

Consequently, (121) is equivalent to

� ≤ 1

2
log

⎛

⎝2πeσ 2
U

Dd − De

σ 2
U + Dd − 2

√
σ 2

U De

⎞

⎠, (123)

where � is defined as

� � sup
Z ,φ,ψ

h(X |Y, Z) (124)

under the same constraints (113) that define R̃cnt(Dd, De)
in (112).

To prove (123) we first note that, since X̂d is a deterministic
function of (Y, Z),

h(X |Y, Z) = h(X − X̂d|Y, Z , X̂d) (125)

= h(X − X̂d|X − X̂d + U, Z , X̂d) (126)

≤ h(X − X̂d|X − X̂d + U) (127)

where in the second line we recalled that Y = X + U (69),
and where the last line follows because conditioning cannot
increase differential entropy.

The Markov condition Z�−−X�−−Y (113c) and the fact
that Y = X + U (69) imply that

Z�−−X�−−U. (128)

This, combined with the assumption that U is independent
of X , implies that U is independent of (X, Z). And since X̂e
is a function of (X, Z),

U and (X̂e, X, Z) are independent. (129)
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This independence implies that U is independent of (X − X̂e).
This latter independence and the fact that X − X̂d can be
expressed as −(X̂d − X̂e − (X − X̂e)

)
implies that

Cov(X − X̂d,U) = − Cov(X̂d − X̂e,U). (130)

From (130), (113b), the fact that the variance of a random
variable cannot exceed its second moment, and the fact that
the magnitude of a correlation coefficient cannot exceed 1,
it follows that

| Cov(X − X̂d,U)|2 ≤ De σ
2
U . (131)

From (127) and (131) we thus obtain

� ≤ 	 (132)

where 	 is defined as

	 � sup
X̂d

h(X − X̂d|X − X̂d + U) (133)

subject to the relaxed constraints

Var(X − X̂d) ≤ Dd, (134a)
∣∣Cov(X − X̂d,U)

∣∣2 ≤ De σ
2
U . (134b)

We now proceed to study 	. Define

A � X − X̂d (135)

so
	 = sup

A
h(A|A + U) (136)

subject to

Var(A) ≤ Dd, (137a)
∣
∣Cov(A,U)

∣
∣2 ≤ De σ

2
U . (137b)

By the conditional max-entropy theorem [16], the supre-
mum in (136) is achieved when (A,U) are jointly Gaussian,
as we henceforth assume. As we next argue, the lemma’s
hypothesis that (111) holds implies that the choice of A as
−U is not in the feasible set. Indeed, with this choice
| Cov(A,U)|2 is equal to σ 4

U , which violates (137b)
because (111) and (98) imply

De < min{σ 2
U , Dd}. (138)

We thus assume in the following that A is jointly Gaussian
with U and that A 
= −U . Consequently,

h(A|A + U)

= 1

2
log

(

2πe

(

σ 2
U − (σ 2

U + κAU )
2

σ 2
A + σ 2

U + 2κAU

))

(139)

= 1

2
log

(

2πe
σ 2

Aσ
2
U − κ2

AU

σ 2
A + σ 2

U + 2κAU

)

(140)

where σ 2
A � Var(A) and κAU � Cov(A,U).

We can thus rewrite the optimization problem in (133) as

	 = sup
κAU ,σ

2
A

1

2
log

(

2πe
σ 2

Aσ
2
U − κ2

AU

σ 2
A + σ 2

U + 2κAU

)

(141)

subject to

0 ≤ σ 2
A ≤ Dd, (142)

0 ≤ |κAU |2 ≤ Deσ
2
U , (143)

0 ≤ |κAU |2 ≤ σ 2
Aσ

2
U . (144)

(We have to add the last constraint because the magnitude of
a correlation coefficient cannot exceed one.) For fixed κAU ,
the objective function in (141) is monotonically increasing in
σ 2

A (see also (139)), and so is the RHS of Constraint (144).
Therefore, it is optimal to choose in (141)

σ 2
A = Dd. (145)

Substituting this choice in (141) and (144) yields

	 = sup
κAU

1

2
log

(

2πe
Ddσ

2
U − κ2

AU

Dd + σ 2
U + 2κAU

)

(146)

subject to (143) and

0 ≤ |κAU |2 ≤ Dd σ
2
U . (147)

Notice that, whenever (111) holds, the RHS of (143) is upper-
bounded by the square of min{Dd, σ

2
U }. Consequently,

(
(111) and (143)

)
⇒
(
|κAU | < min{Dd, σ

2
U }
)
. (148)

Since the RHS of (148) implies (147),
(

(111) and (143)
)

⇒ (147), (149)

and Constraint (147) is redundant. We therefore ignore Con-
straint (147) and study the maximization in (146) subject to
(143) only.

To this end, we compute the derivative of the objective
function in (146) with respect to κAU :

d

dκAU

(
1

2
log

(

2πe
Ddσ

2
U − κ2

AU

Dd + σ 2
U + 2κAU

))

= −(Dd + κAU )(σ
2
U + κAU )

(Dd + σ 2
U + 2κAU )(Ddσ

2
U − κ2

AU )
. (150)

By (148), the derivative in (150) is negative for all feasible
κAU . Hence, the objective function in (146) is decreasing on
the (symmetric) interval of interest (143), and it is optimal to
choose

κAU = −
√

Deσ
2
U . (151)

The optimality of this choice allows us to evaluate 	 via (146)
and hence to upper-bound � via (132). This yields the desired
bound (123), which establishes the lemma.

Proof of Converse When (111) Holds: Using Lemma 13
and Lemma 14 we can follow the steps of the proof in
Section II-D of the converse part of Theorem 6. The remaining
technicality is continuity. Continuity in the interior, i.e., on
R++ × R++ follows from convexity. It thus only remains to
establish continuity when Dd > 0, (111) holds, and De is zero.
This can be done by inspecting (114).
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IV. MORE AND MORE-GENERAL CONSTRAINTS

So far we have only studied settings with two distortion
measures, one of which—the decoder-side distortion measure
dd(x, x̂d)—depends on the source symbol and the decoder’s
reconstruction, and the other—the encoder-side distortion mea-
sure de(x̂d, x̂e)—depends on the decoder’s and the encoder’s
reconstruction symbols. In this section we extend our set-
ting to allow for more than two distortion measures and to
allow for distortions that depend on all three symbols: the
source symbol x , the decoder’s reconstruction symbol x̂d, and
the encoder’s reconstruction symbol x̂e. We shall also allow
the reconstruction alphabets to differ. But all alphabets are
assumed finite.

A. Problem Statement

The new setup differs from the setup in Section II in two
ways.

• The encoder-side reconstruction X̂n
e and the decoder-

side reconstruction X̂n
d take value in the finite alphabets

X̂ n
e and X̂ n

d which can be different.
• There are K (possibly larger than 2) distortion constraints

specified by the K distortion measures

dk : X × Xd × Xe → R+, k ∈ {1, . . . , K } (152)

and the corresponding K maximal-allowed distor-
tions D1, . . . , DK (all of which are assumed to be
nonnegative).

We say that the tuple (R, D1, . . . , DK ) is achievable if for
every ε > 0 and sufficiently large n there exist a message set
M of size |M| ≤ 2n(R+ε) and functions

f (n) : X n → M (153a)

φ(n) : M × Yn → X̂ n
d (153b)

ψ(n) : X n → X̂ n
e (153c)

such that the message M = f (n)(Xn) and the reconstruction
sequences X̂n

d = φ(n)(M,Y n) and X̂n
e = ψ(n)(Xn) satisfy:

1

n

n∑

i=1

E
[
dk(Xi , X̂d,i , X̂e,i )

]
≤ Dk + ε, k ∈ {1, . . . , K }.

(154)

In analogy to Assumption 1, we shall assume:
Assumption 2: To each x ∈ X corresponds some x̂d ∈ X̂d

and some x̂e ∈ X̂e satisfying

dk(x, x̂d, x̂e) = 0, k ∈ {1, . . . , K }. (155)

We seek the smallest rate R for which the tuple
(R, D1, . . . , DK ) is achievable. This is defined as follows.
Given a maximal-allowed-distortion tuple (D1, . . . , DK ), let

RExt(D1, . . . , DK )

� {R ∈ R+ : (R, D1, . . . , DK ) is achievable}. (156)

Assumption 2 implies that the set RExt(D1, . . . , DK ) contains
all rates exceeding H (X |Y ) and is thus nonempty. The rate-
distortions function RExt can now be defined as

RExt(D1, . . . , DK ) � min
R∈RExt(D1,...,DK )

R, (157)

where the minimum exists because the region
RExt(D1, . . . , DK ) ⊂ R+ is nonempty, closed, and bounded
from below by 0.

B. Result

To describe the rate-distortions function for the extended
setup of Section IV-A, we next introduce the function
R̃Ext(D1, . . . , DK ).

Given the joint law PXY of the source and side information,
and given the distortion measures d1, . . . , dK , this function is
defined as

R̃Ext(D1, . . . , DK ) = min
U,Z ,φ,ψ

(
I (X; Z)− I (Y ; Z)

)
(158)

where the minimization is over all discrete auxiliary random
variables Z and U satisfying

(U, Z)�−−X�−−Y (159)

and over all functions φ : Y×Z→X̂d and ψ : X×Z×U →X̂e
that simultaneously satisfy the K distortion constraints

E
[
dk
(
X, φ(Y, Z), ψ(X, Z ,U)

)] ≤ Dk , k ∈ {1, . . . , K }.
(160)

The following proposition provides cardinality bounds on
the support sets of the auxiliary random variables.

Proposition 15 (Cardinality Bounds): The minimum defin-
ing R̃Ext(D1, . . . , DK ) is not increased if we restrict the
cardinality of the support set Z of Z to

|Z| ≤ |X ||U | + K + 1 (161)

and the cardinality of the support set U of U to

|U | ≤ K . (162)

Proof: The cardinality bound on Z can be justified using
the convex cover method [9]. The cardinality bound on U is
proved in Appendix D.

Remark 16 (Improved Cardinality Bound): The cardinality
bound on U can be strengthened: |U | need not exceed the
number of distortion constraints in (154) that depend on X̂e,i .
The latter number equals 1 in the original setup of Section II
thus allowing us to recover Theorem 6.

Proposition 17 (Key Properties of the Function R̃Ext): The
function R̃Ext : R

K+ → R+ is bounded from above by
H (X |Y ); it is nondecreasing in the distortions
(

D′
1 ≥ D1, . . . , D′

K ≥ DK

)

�⇒
(

R̃Ext(D
′
1, . . . , D′

K ) ≤ R̃Ext(D1, . . . , DK )
)
;

and it is convex and continuous.
Proof: The proof is similar to the proof of Proposition 5

in Appendix B and is omitted.
Theorem 18: The rate-distortions function for the setup in

Section IV-A is equal to R̃Ext(D1, . . . , DK ):

RExt(D1, . . . , DK ) = R̃Ext(D1, . . . , DK ). (163)

Compared to the rate-distortions function of our original prob-
lem R̃(Dd, De) in (25), the definition of the rate-distortions
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function R̃Ext(D1, . . . , DK ) in (158) involves an extra aux-
iliary random variable U . This auxiliary U shows up as an
additional argument in the encoder’s reconstruction function
ψ and is subject to the Markov chain (159).6 Intuitively, the
auxiliary U is needed because there might not be a determin-
istic encoder-side reconstruction function that matches all the
K distortion constraints simultaneously, but instead there are
several (in fact K ) different reconstruction functions that meet
the K distortion constraints only on average.

Our results extend also to vector-valued distortion measures
as considered in [18].

Proof of Theorem 18: The achievability, i.e., that

RExt(D1, . . . , DK ) ≤ R̃Ext(D1, . . . , DK ), (164)

can be proved using a scheme that is similar to the one
that was sketched in the proof of Theorem 6. The only
difference is that, to produce the reconstruction sequence X̂n

e ,
the encoder applies the function ψ component-wise to the
tuple (Xn, Z∗n,Un), where, conditional on (Xn, Z∗n), the
components of the sequence Un are generated independently
according to the conditional law PU |Z ,X . The analysis of this
scheme is omitted.

We next prove the converse, i.e., that

RExt(D1, . . . , DK ) ≥ R̃Ext(D1, . . . , DK ). (165)

Fix some positive ε, a blocklength n, and a rate R. Let M
be a message set of size |M| ≤ 2n(R+ε), and let f (n), φ(n),
and ψ(n) be encoding and reconstruction functions as in (153)
that satisfy the K distortion constraints in (154). For every
i ∈ {1, . . . , n}, define Zi in (44)

Zi � (M,Y i−1,Y n
i+1) (166)

and define Ui as X\i , i.e.,

Ui � (Xi−1
1 , Xn

i+1). (167)

Notice that for every i ∈ {1, . . . , n}
(Ui , Zi )�−−Xi�−−Yi . (168)

Also, following the steps in (34)–(43), we can conclude that

n(R + ε) ≥
n∑

i=1

I (Xi ; Zi )− I (Yi ; Zi). (169)

We further define—as in Section II-D—φ
(n)
i to be the

function that maps (M,Y n) to the i -th symbol of φ(n)(M,Y n)

and ψ(n)i to be the function that maps Xn to the i -th symbol
of ψ(n)(Xn). Then, the symbol φ(n)i (M,Y n) can be written as

φi (Yi , Zi ) � φ
(n)
i (M,Y n), (170)

and ψ(n)i (Xn) can be written as

ψi (Xi , Zi ,Ui ) � ψ
(n)
i (Xn), (171)

6The function R̃Ext(D1, . . . , DK ) could also be defined without the
auxiliary U , if instead ψ was allowed to be a randomized function of
X and Z .

for some functions φi and ψi with arguments in the respective
domains. We finally define for each k ∈ {1, . . . , K } and i ∈
{1, . . . , n}

Dk,i � E
[
dk(Xi , φ

(n)
i (M,Y n), ψ

(n)
i (Xn))

]
, (172)

where E[·] is with respect to PXn Y n . Notice that

n∑

i=1

Dk,i ≤ Dk + ε, k ∈ {1, . . . , K } (173)

because the chosen encoding and reconstruction functions
f (n), φ(n), and ψ(n) satisfy (154). Moreover, by definitions
(170)–(172),

E
[
dk
(
Xi , φi (Yi , Zi ), ψi (Xi , Zi ,Ui )

)] = Dk,i , (174)

where E[·] is with respect to PXi Yi PUi Zi |Xi .
Combining (169) and (174) with the definition of R̃Ext, we

obtain

n(R + ε) ≥
n∑

i=1

I (Xi ; Zi )− I (Yi ; Zi) (175)

≥
n∑

i=1

R̃Ext(D1,i , . . . , DK ,i ) (176)

≥ n R̃Ext

(
1

n

n∑

i=1

D1,i , . . . ,
1

n

n∑

i=1

DK ,i

)
(177)

≥ n R̃Ext
(
D1 + ε, . . . , DK + ε), (178)

where the last two inequalities follow by the convexity and
the monotonicity of R̃Ext and by (173). By the continuity of
R̃Ext and because ε > 0 and the blocklength n are arbitrary,
the converse (165) follows immediately from (178).

APPENDIX A
PROOF OF COROLLARY 7

When de(·, ·) is the Hamming distortion and De = 0, our
average-per-symbol distortion constraint (12) is less stringent
than the block-distortion constraint (24) in Steinberg’s setup
(Remark 3). Consequently,

Rcr(Dd) ≥ R(Dd, 0). (179)

It remains to prove the reverse inequality. Let Z , φ, and ψ be
minimizers of R(Dd, 0), so

R(Dd, 0) = I (X; Z)− I (Y ; Z) (180a)

E
[
dd
(
X, φ(Y, Z)

)] ≤ Dd (180b)

φ(Y, Z) = ψ(X, Z) w.p. 1 (180c)

Z�−−X�−−Y. (180d)

To prove the reverse inequality we shall upper-bound Rcr(Dd)
by showing that

X̂ � φ(Y, Z) (181)

is feasible in the minimization (21) that defines it.
From the definition of X̂ (181) and from (180c), it follows

that X̂ is computable (w.p. 1) from (X, Z). This combines
with (180d) to establish that

(X̂ , Z)�−−X�−−Y (182)
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and, a fortiori, that
X̂�−−X�−−Y. (183a)

And by (180b) and (181),

E
[
dd
(
X, X̂

)] ≤ Dd. (183b)

It follows from (183) that X̂ is feasible in the minimization
(21) defining Rcr(Dd) and thus

Rcr(Dd) ≤ I (X; X̂)− I (Y ; X̂) (184)

= I (X; X̂ |Y ) (185)

≤ I (X; Z |Y ) (186)

= I (X; Y )− I (X; Z) (187)

= R(Dd, 0) (188)

where (185) follows from (183a); where (186) follows, by the
(conditional) data processing inequality, from

X̂�−−(Y, Z)�−−X (189)

(which holds by (181)); where (187) follows from (180d);
and (188) follows from (180a). Inequalities (179) and (188)
establish the corollary.

APPENDIX B
PROOF OF PROPOSITION 5

That R̃(Dd, De) is bounded by H (X |Y ) is just a restatement
of (29). Monotonicity holds because the feasible set in the
minimization defining R̃(Dd, De) is enlarged (or is unaltered)
when Dd and/or De are increased.

As to the convexity, let Z (1), φ(1), ψ(1) and Z (2), φ(2), ψ(2)

be the random variables and functions that achieve the minima
in the definitions of R̃

(
D(1)

d , D(1)
e

)
and R̃

(
D(2)

d , D(2)
e

)
. Let

Q ∼ Bernoulli(λ) be independent of (X,Y, Z (1), Z (2)). Define

Z �
(
Q, Z (Q)

)
(190)

and the functions

φ(Y, Z) � φ(Q)
(
Y, Z (Q)

)
(191)

ψ(X, Z) � ψ(Q)
(
X, Z (Q)

)
. (192)

Then

Z�−−X�−−Y ; (193)

E[dd(X, φ(Y, Z))] (194)

= λE[dd(X, φ
(1)(Y, Z (1)))]

+(1 − λ)E[dd(X, φ
(2)(Y, Z (2)))] (195)

≤ λD(1)
d + (1 − λ)D(2)

d ; (196)

and

E[de(φ(Y, Z), ψ(X, Z))] (197)

= λE[de(φ
(1)(Y, Z (1)), ψ(1)(X, Z (1)))]

+(1 − λ)E[de(φ
(2)(Y, Z (2)), ψ(2)(X, Z (2)))] (198)

≤ λD(1)
e + (1 − λ)D(2)

e ; (199)

so Z , φ,ψ are feasible for the distortions
(
λD(1)

d + (1 − λ)D(2)
d , λD(1)

e + (1 − λ)D(2)
e

)
.

Consequently,

R̃
(
λD(1)

d + (1 − λ)D(2)
d , λD(1)

e + (1 − λ)D(2)
e

)

≤ I (X; Z)− I (Y ; Z)

= H (X)− H (X |Z)− H (Y )+ H (Y |Z)
= H (X)− H (X |Z (Q), Q)− H (Y )+ H (Y |Z (Q), Q)

= H (X)− λH (X |Z (1))− (1 − λ)H (X |Z (2))
− H (Y )+ λH (Y |Z (1))+ (1 − λ)H (Y |Z (2))

= λ
(
I (X; Z (1))− I (Y ; Z (1))

)

+ (1 − λ)
(
I (X; Z (2))− I (Y ; Z (2))

)
.

= λ R̃
(
D(1)

d , D(1)
e

)+ (1 − λ) R̃
(
D(2)

d , D(2)
e

)
. (200)

To conclude the proof it remains to prove that R̃(Dd, De)
is continuous on R

2+. (Continuity on R
2++ is a consequence

of the convexity, but we also claim continuity in the closed
set R

2+.) Since R
2+ is locally simplicial (as can be ver-

ified by the definition in [17, Sec. 10, p. 84] or using
[17, Th. 20.5, p. 184]), the convexity of R̃(Dd, De) on R

2+
implies its upper-semicontinuity relative to R

2+. It thus remains
to prove lower-semicontinuity relative to R

2+. That is, we need
to show that

(
D(κ)

d , D(κ)
e

)→ (
Dd, De

)
as κ → ∞

implies that there is a subsequence {κν} such that

R̃(Dd , De) ≤ lim
ν→∞ R̃(D(κν )

d , D(κν )
e ).

Let φ(κ), ψ(κ), P(κ)Z |X achieve R̃(D(κ)
d , D(κ)

e ) with Z =
{1, . . . , |X | + 3}. Since there are only a finite number of
functions from Y × Z to X̂ and only a finite number of
functions from X × Z to X̂ , we can choose a subsequence
{κν} along which: the mappings φ(κν) do not depend on ν
and can be thus denoted φ; the mappings ψ(κν) do not depend
on ν and can be thus denotedψ; and the conditional laws P(κν )Z |X
converge to some conditional law that we denote P(0)Z |X . By the

continuity of mutual information, R̃(D(κν )
d , D(κν )

e ) converges to
I (X; Z) − I (Y ; Z) evaluated with respect to P(0)Z |X PXY , and

R̃(Dd , De) cannot exceed this value because P(0)Z |X , ψ , and φ
are in the feasible set defining it.

APPENDIX C
PROOF OF PROPOSITION 11

We present and analyze a scheme that achieves the
rate-distortions tuples in Proposition 11. Before describing
the scheme, we introduce some notation and lemmas on
n-dimensional spheres.

A. On n-Dimensional Spheres

An n-sphere of radius r > 0 centered at ξ ∈ R
n is the set

of all vectors x ∈ R
n satisfying

‖x − ξ‖ = r.

When the center of the sphere ξ is the origin 0, we call it a
centered sphere, and when the radius of the sphere is 1, we
call it a unit sphere.
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We denote the angle between two nonzero vectors u, v ∈ R
n

by �(u, v). Its cosine is

cos �(u, v) � 〈u, v〉
‖u‖‖v‖ . (201)

Given a nonzero vector μ on an n-sphere S, the spherical cap
of half-angle θ centered at μ is the set of all vectors x on
S satisfying

�(μ, x) ≤ θ.

The surface area of such a spherical cap does not depend on
the vector μ but only on the dimension n, the radius of the
sphere r , and the angle θ . If the radius r = 1, we denote this
surface area by Cn(θ).

We say that a random n-vector is uniformly distributed over
an n-sphere, if it is drawn according to a uniform probability
measure over the surface of this sphere.

The proofs of the following four lemmas are based on
results in [19] and omitted.

Lemma 19: Let � be uniformly distributed over the cen-
tered unit n-sphere, and let μ be a deterministic unit-length
vector in R

n . Then,

Pr[〈�,μ〉 ≥ τ ] = Cn(arccos(τ ))

Cn(π)
, 0 ≤ τ ≤ 1. (202)

Lemma 20: For 0 ≤ τ < 1:

lim
n→∞

1

n
log

(
Cn(arccos(τ ))

Cn(π)

)
= 1

2
log(1 − τ 2). (203)

Lemma 21: Let f : R → (0, 1] be such that the limit

−η1 � lim
n→∞

1

n
log f (n) (204)

exists and η1 > 0. Then,

lim
n→∞

(
1 − f (n)

)2nη2 =
{

1 if η1 > η2

0 if η1 < η2.
(205)

Lemma 22: For θ ∈ (0, π/2)
lim

n→∞
Cn(θ)

Cn(π)
= 0, (206)

whereas for θ ∈ (π/2, π)
lim

n→∞
Cn(θ)

Cn(π)
= 1. (207)

B. Scheme

Our scheme has parameters

a, δ, σ 2
W > 0 and b ≥ 0 (208)

that must satisfy Conditions (86a) and (86b), which we repeat
for convenience here:

(1 − a − b)2σ 2
X + a2σ 2

W + b2σ 2
U ≤ Dd (209)

b2σ 2
U ≤ De. (210)

To describe and analyze the scheme we use vector nota-
tion. Let X denote the n-dimensional column-vector that
results when the source symbols are stacked on top of each
other

X �
(
X1 X2 . . . Xn

)T
. (211)

Likewise define the side-information vector Y and the recon-
struction vectors X̂d, and X̂e.

1) Codebook Generation: Let

σ 2
Z � a2(σ 2

W + σ 2
X ), (212)

R′ � 1

2
log

(
σ 2

X + σ 2
W

σ 2
W

)

, (213)

R � 1

2
log

(
σ 2

Xσ
2
U + σ 2

Xσ
2
W + σ 2

Wσ
2
U

(σ 2
X + σ 2

U )σ
2
W

)

. (214)

Draw �2nR′ � independent random n-vectors
{Z(1),Z(2), . . . ,Z(�2nR′ �)} uniformly over the centered

n-sphere of radius r =
√

nσ 2
Z . Assign these vectors to

2n(R+δ)� bins: the first �2(R
′−R−δ)� are assigned to bin 1,

the following �2(R
′−R−δ)� vectors are assigned to bin 2, etc.

More specifically, if B(m) denotes the set of vectors assigned
to bin m ∈ {1, . . . , 2n(R+δ)�}, then

B(m) = {Z(m−1)�2(R′−R−δ)�+1, . . . ,Zm�2(R′−R−δ)�
}

for m = 1, . . . , 2n(R+δ)� − 1 and

B(2n(R+δ)�) �
{
Z(2n(R+δ)�−1)+1, . . . ,Z�2nR′ �

}
.

The codebook C � {Z(1),Z(2), . . . ,Z(�2nR′ �)}.
2) Encoder: Given the source sequence X = x, the encoder

looks for the codeword z∗ ∈ C that is closest to having the
“correct” angle with x:

z∗ = arg min
z∈C

∣
∣
∣cos �(x, z)−

√
1 − 2−2R′

∣
∣
∣. (215)

The encoder then sends M = m∗, where m∗ denotes the index
of the bin containing z∗. It also produces the reconstruction
sequence x̂e = z∗ + bx.

3) Decoder: Given M = m∗ and the side-information
vector Y = y, the decoder chooses

ẑ = arg min
z∈B(m∗)

∣
∣
∣cos �(y, z)−

√
1 − 2−2(R′−R)

∣
∣
∣, (216)

and produces the reconstruction sequence x̂d = ẑ + by.
With probability 1 the argmins in (215) and (216) are

unique.

C. Analysis

We fix ε > 0 sufficiently small such that

(1 − 4ε)
√

1 − 2−2(R′−R) >
√

1 − 2−2(R′−R−δ/2), (217)

and define the following four events:
1) Esrc : “The source and side information are atypical”,

i.e.,
∣
∣∣
1

n
‖X‖2 − σ 2

X

∣
∣∣ > εσ 2

X or (218a)
∣
∣
∣
1

n
‖Y‖2 − σ 2

Y

∣
∣
∣ > εσ 2

Y or (218b)

| cos �(X,Y)− ρXY | > ερXY (218c)

where ρXY denotes the correlation coefficient between
X and Y :

ρXY =
√

σ 2
X

σ 2
X + σ 2

U

. (219)
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2) Eenc : “No codeword has a good angle with the source
sequence”, i.e.,
∣∣
∣ cos �(X,Z∗)−

√
1 − 2−2R′

∣∣
∣ > ε

√
1 − 2−2R′

. (220)

3) Edec1 : “The chosen codeword Z∗ does not have the
correct angle with the side-information sequence”, i.e.,

∣∣
∣ cos �(Y,Z∗)−

√
1 − 2−2(R′−R)

∣∣
∣ > 4ε

√
1 − 2−2(R′−R).

(221)

4) Edec2 : “The decoder does not find the correct code-
word”, i.e.,

Ẑ 
= Z∗. (222)

Also, we define the event

E � Esrc ∪ Eenc ∪ Edec1 ∪ Edec2.

Lemma 23:
lim

n→∞ Pr[E] = 0. (223)

Proof: We note

Pr[E] ≤ Pr[Esrc] + Pr[Eenc|Ec
src] + Pr[Edec1|Ec

src ∩ Ec
enc]

+Pr[Edec2|Ec
src ∩ Ec

enc]. (224)

In the following we show that each term on the RHS of (224)
tends to zero as the blocklength n tends to infinity. The first
limit

lim
n→∞ Pr[Esrc] = 0 (225)

follows directly from the weak law of large numbers. The
second limit

lim
n→∞ Pr[Eenc|Ec

src] = 0 (226)

can be shown following the same steps as in the proof of
Limit (134) in [20]. The third limit

lim
n→∞ Pr[Edec1|Ec

src ∩ Ec
enc] = 0 (227)

is proved as follows. We have

cos �(Y,Z∗) = cos �(X,Y) cos�(X,Z∗)+ 〈Y⊥,Z∗⊥〉
‖Y‖‖Z∗‖

(228)

where Y⊥ and Z∗⊥ denote the components of Y and Z that
are orthogonal to X:

Y⊥ � Y − 〈X,Y〉
‖X‖2 X (229)

= Y − cos �(X,Y)‖Y‖ X
‖X‖ , (230)

and

Z∗⊥ � Z∗ − 〈X,Z∗〉
‖X‖2 X (231)

= Z∗ − cos �(X,Z∗)‖Z∗‖ X
‖X‖ . (232)

Let tX Z∗ satisfy

tX Z∗ ∈
[
(1 − ε)

√
2−2R′

, (1 + ε)
√

2−2R′
]

(233)

and let x and y be vectors in R
n satisfying

∣
∣∣
1

n
‖x‖2 − σ 2

X

∣
∣∣ ≤ εσ 2

X (234a)

∣
∣
∣
1

n
‖y‖2 − σ 2

Y

∣
∣
∣ ≤ εσ 2

Yσ
2
Y (234b)

| cos �(x, y)− ρXY | ≤ ερXY . (234c)

Then, conditional on events

Ec
src, Ec

enc, X = x, Y = y, cos �(X,Z∗) = tX Z∗, (235)

by (233) and (234c), we have

cos �(X,Y) cos �(X,Z∗) ≤ (1 + ε)ρXY (1 + ε)
√

2−2R′

(a)≤
√

1 − 2−(R′−R)(1 + 3ε) (236a)

and

cos �(X,Y) cos �(X,Z∗) ≥ (1 − ε)ρXY (1 − ε)
√

2−2R′

(a)≥
√

1 − 2−(R′−R)(1 − 3ε),

(236b)

where Inequalities (a) follow because

ρXY ·
√

1 − 2−2R′ =
√

1 − 2−(R′−R) (237)

and because ε ∈ (0, 1). Moreover, conditional on the events
in (235), the vector Z∗⊥ is uniformly distributed over a
centered (n − 1)-dimensional sphere of radius σ 2

Z (1 − t2
X Z∗),

and thus Limit (238) on top of the next page follows by
Lemmas 19 and 22.

We can combine Limit (238) and Inequalities (236) to obtain
the limit (239) on top of the next page. If in (239) we take
the expectation with respect to X,Y, and cos �(X,Z∗) (but
keep the conditioning on events Ec

src and Ec
enc), we obtain the

desired third limit (227).
We finally prove the fourth limit

lim
n→∞ Pr[Edec2|Ec

src ∩ Ec
enc] = 0. (240)

To this end, we define event E2 as

cos �(Y,Z′) <
√

1 − 2−2(R′−R−δ/2), ∀Z′ ∈ (B(M)\Z∗).
(241)

Recalling the decoding rule in (216) and the definition of
event Edec1 in (221), we see that when Ec

dec1 and E2 occur
simultaneously, then by condition (217) the decoder finds the
correct codeword Ẑ = Z∗. Therefore,

Pr
[Edec2|Ec

src, Ec
enc

] ≤ 1 − Pr
[Ec

dec1 ∩ E2|Ec
src, Ec

enc

]
, (242)

and thus (227) and the limit

lim
n→∞ Pr

[Ec
2 |Ec

src, Ec
enc

] = 0 (243)

establish (240).
We now prove (243). For each m ∈ {

1, . . . , 2n(R+δ)�},
we index the vectors in the m-th bin from 1 to |B(m)|
and we shall refer to the k-th vector in this m-th bin by
Zm,k . Let K ∗ be the index of Z∗, i.e., ZM,K ∗ = Z∗. By
the symmetry of the code construction and the encoding
rule, the probability Pr

[Ec|Ec
src, Ec

enc,M = m, K ∗ = k
]

does
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lim
n→∞ Pr

[∣∣
∣〈y⊥,Z∗⊥〉

∣∣
∣ ≤ ε

√
1 − 2−2(R′−R)‖y‖

√
σ 2

Z

∣∣
∣X = x,Y = y, cos �(X,Z∗) = tX Z∗

]
= 1 (238)

lim
n→∞ Pr

[∣∣
∣ cos �(Y,Z∗)−

√
1−2−2(R′−R)

∣
∣
∣ ≤ 4ε

√
1−2−2(R′−R)

∣
∣
∣Ec

src, Ec
enc,X = x,Y = y, cos �(X,Z∗) = tX Z∗

]
= 1 (239)

Pr

⎡

⎣
|B(1)|⋃

k=2

(
cos �(Y,Z1,k) ≥

√
1 − 2−2(R′−R−δ/2)

) ∣
∣X = x,M = 1, K ∗ = 1, Ec

src, Ec
enc

⎤

⎦

= 1 −
|B(1)|∏

k=2

(
1 − Pr

[
cos �(Y,Z1,k) ≥

√
1 − 2−2(R′−R−δ/2) ∣∣X = x,M = 1, K ∗ = 1, Ec

src, Ec
enc

])
(244)

< 1 −
(

1 − 2 Cn(arccos(
√

1 − 2−2(R′−R−δ/2)))
Cn(π)

)|B(1)|−1

(245)

≤ 1 −
(

1 − 2 Cn(arccos(
√

1 − 2−2(R′−R−δ/2)))
Cn(π)

)2n(R′−R−δ)

(246)

not depend on the values m and k. We therefore, assume in
the following that M = 1 and K ∗ = 1. If we additionally
condition on X = x and on cos �(X,Z∗) = tX Z∗ > 0, the
vectors Z1,2, . . . ,Z1,|B(1)| (i.e., the vectors in bin 1 that are
not Z∗) are independent and uniformly distributed over the

centered n-sphere of radius
√

nσ 2
Z without the spherical cap of

half-angle arccos(tX Z∗) centered at x. Thus, 2
Cn(π)

is an upper
bound on the conditional density of the normalized vectors

1√
nσ 2

Z

Z1,2, . . . ,
1√
nσ 2

Z

Z1,|B(1)| on the centered unit n-sphere.

Applying Lemma 19, we therefore obtain Inequality (245)
shown on top of this page. We note that for any γ ∈ [0, 1]

0 ≤
(

1 − 2 Cn(arccos(γ ))

Cn(π)

)
≤ 1 (247)

and hence the mapping t �→
(

1 − 2 Cn(arccos(γ ))
Cn(π)

)t
is decreas-

ing in t > 0. Therefore, since

|B(1)| − 1 < 2n(R′−R−δ) (248)

we further obtain (246). If now we take the expectation with
respect to X, M , and K ∗ (but keep the conditioning on Ec

src
and Ec

enc), (246) results in

Pr
[E2| Ec

src, Ec
enc

]

< 1 −

⎛

⎜⎜
⎝1 −

2 Cn

(
arccos

√
1 − 2−2(R′−R− δ

2 )

)

Cn(π)

⎞

⎟⎟
⎠

2n(R′−R−δ)

.

(249)

The desired limit (243) follows by (249) and by Lemma 21.
In fact, applying Lemma 21 to

η2 = R′ − R − δ (250)

and to the function

f : n → 2 Cn(arccos(
√

1 − 2−2(R′−R−δ/2)))
Cn(π)

, (251)

we obtain that the right-hand side of (249) tends to 1 as
n tends to infinity because

η1 � − lim
n→∞

1

n
log

(
2 Cn(arccos(

√
1 − 2−2(R′−R−δ/2)))
Cn(π)

)

= R′ − R − δ/2 (252)

> η2. (253)

Here, the equality holds by Lemma 20 and because the factor 2
in the logarithm does not change the limit, and the inequality
holds by (250) and because δ > 0.

This concludes the proof of limit (243) and thus of the
fourth limit (240). Combining finally (224) with (225)–(227)
and (240) establishes the proof of the lemma.

We can now bound the expected distortions of our scheme.
We have

E
[
d(n)d (X, X̂d)

]
= Pr

[Ec]E
[
d(n)d (X, X̂d)

∣∣Ec
]

+ Pr[E] E
[
d(n)d (X, X̂d)

∣
∣E
]
, (254)

and

E
[
d(n)e (X̂d, X̂e)

]
= Pr[Ec]E

[
d(n)e (X̂d, X̂e)

∣
∣Ec
]

+Pr[E]E
[
d(n)e (X̂d, X̂e)

∣
∣E
]
. (255)

The decoder-side distortion satisfies

d(n)d (x, x̂d) = 1

n
‖x − z∗ − by‖2 (256)

≤ 3

n
‖x‖2 + 3

n
‖z∗‖2 + 3

n
b2‖y‖2, (257)

where the inequality holds by the Cauchy-Schwarz Inequal-
ity and because an arithmetic mean of two nonnega-
tive numbers cannot be smaller than it’s geometric mean.
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Therefore,

Pr[E] E
[
d(n)d (X, X̂d)

∣
∣E
]

≤ 3

n
Pr[E] E

[
‖X‖2 + ‖Z∗‖2 + b2‖Y‖2

∣
∣E
]

(258)

= 3

n
E
[
‖X‖2 + ‖Z∗‖2 + b2‖Y‖2

]

− 3

n
Pr
[Ec]E

[
‖X‖2 + ‖Z∗‖2 + b2‖Y‖2

∣∣Ec
]

(259)

≤ 3
(
σ 2

X + σ 2
Z + b2(σ 2

X + σ 2
U )
)

−3
(
σ 2

X (1 − ε)+ σ 2
Z + b2(σ 2

X + σ 2
U )(1 − ε)

)
Pr
[Ec]

(260)

≤ 3
(
σ 2

X + σ 2
Z + b2(σ 2

X + σ 2
U )
)(

1 − (1 − ε) Pr
[Ec] ). (261)

In the event Ec, we can derive a bound on the decoder-side
distortion d(n)d (x, x̂d) that is tighter than (257):

d(n)d (x, x̂d)

= 1

n
‖x − z∗ − by‖2 (262)

= 1

n
‖x‖2 + 1

n
‖z∗‖2 + b2

n
‖y‖2

− 2

n
〈x, z∗〉 − 2b

n
〈x, y〉 + 2b

n
〈z∗, y〉 (263)

≤ (1 + ε)σ 2
X + σ 2

Z + (1 + ε)b2(σ 2
X + σ 2

U )

−2(1 − ε)2aσ 2
X − 2(1 − ε)3bσ 2

X

+2(1 + ε)(1 + 4ε)abσ 2
X (264)

≤ (1 + a2 + b2 − 2a − 2b + 2ab)σ 2
X + a2σ 2

W + b2σ 2
U

+ε(σ 2
X + b2(σ 2

X + σ 2
U )+ 4aσ 2

X + 6bσ 2
X + 10abσ 2

X)

+8ε2abσ 2
X + 2ε3bσ 2

X (265)

≤ Dd

+ε(σ 2
X + b2(σ 2

X + σ 2
U )+ 4aσ 2

X + 8bσ 2
X + 18abσ 2

X)

(266)

where the first inequality follows from the definition of the
event Ec, the second by throwing away some negative ε-terms,
and the third from Condition (209) and because ε < 1. Since
Pr[Ec] ≤ 1, we thus have:

Pr[Ec]E
[
d(n)e (X̂d, X̂e)

∣
∣Ec
]

≤ Dd + ε(σ 2
X + b2(σ 2

X + σ 2
U )+ 4aσ 2

X + 8bσ 2
X + 18abσ 2

X).

(267)

Combining (254), (261), and (267), we obtain

E
[
d(n)d (X, X̂d)

]
(268)

≤ Dd + 3
(
σ 2

X + σ 2
Z + b2σ 2

Y

)(
1 − (1 + ε) Pr

[Ec] )

+ε(σ 2
X + b2(σ 2

X + σ 2
U )+ 4aσ 2

X + 8bσ 2
X + 18abσ 2

X).

(269)

Similarly, we have for the encoder-side distortion:

d(n)e (x, x̂d) = 1

n
‖by − bx‖2 (270)

≤ 2

n
b2‖y‖2 + 2

n
b2‖x‖2, (271)

and thus,

Pr[E] E
[
d(n)e (Xd, X̂e)

∣∣E
]

≤ 2

n
E
[
b2‖Y‖2 + b2‖X‖2

]

− 2

n
Pr
[Ec]E

[
b2‖Y‖2 + b2‖X‖2

∣
∣
∣Ec
]

(272)

≤ 2
(

b2(σ 2
X + σ 2

U )+ b2σ 2
X

)(
1 − (1 − ε) Pr

[Ec] ). (273)

Moreover, in the event Ec we can derive a bound on the
encoder-side distortion d(n)e (x̂d, x̂e) that is tighter than (271):

d(n)e (x̂d, x̂e) = 1

n
‖by − bx‖2 (274)

= 1

n
b2
(
‖x‖2 + ‖y‖2 − 2〈x, y〉

)
(275)

≤ (1 + ε)b2σ 2
X + (1 + ε)b2(σ 2

X + σ 2
U )

−2b2(1 − ε)3σ 2
X (276)

≤ b2σ 2
U + εb2(8σ 2

X + σ 2
U )+ ε3b2σ 2

X (277)

≤ De + εb2(9σ 2
X + σ 2

U ), (278)

where the last inequality follows by Assumption (210) and
because ε < 1. Since Pr[Ec] ≤ 1, we thus have

Pr[Ec]E
[
d(n)e (X̂d, X̂e)

∣
∣Ec
]

≤ De + εb2(9σ 2
X + σ 2

U ). (279)

Combining finally (255), (273), and (279), we obtain

E
[
d(n)e (Xd, X̂e)

]

≤ De + 2
(

b2σ 2
Y + b2σ 2

X

)(
1 − (1 − ε) Pr

[Ec])

+εb2(9σ 2
X + σ 2

U ). (280)

Recall that the rate of our scheme is smaller than R +δ and
that ε, δ > 0 can be chosen arbitrarily close to 0. Therefore,
from (269), (280), and Lemma 23 we conclude that when
a, σ 2

W > 0 and b ≥ 0 satisfy (209) and (210), then our scheme
can achieve the triple
(

R = 1

2
log

(
σ 2

Xσ
2
U + σ 2

Xσ
2
W + σ 2

Uσ
2
W

(σ 2
X + σ 2

U )σ
2
W

)

, Dd, De

)

. (281)

This establishes Proposition 11.

APPENDIX D
THE CARDINALITY BOUND ON U

To prove the cardinality bound (162) on U , we shall need
the following variation on Carathéodory’s theorem.

Lemma 24: Any point on the boundary of the convex
hull of a compact set in R

d can be expressed as a convex
combination of d or fewer points in the set.

Proof: Let S be a compact subset of R
d , and let x be a

boundary point of its convex hull conv(S). Since x is in the
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convex hull of S, it follows from Carathéodory’s theorem that
there exist d + 1 or fewer points

x1, . . . , xν ∈ S, ν ≤ d + 1 (282)

and positive coefficients summing to 1

λ1, . . . , λν > 0,
ν∑

i=1

λi = 1 (283)

such that

x =
ν∑

i=1

λi xi . (284)

We shall show that, in fact, of these ν points, we can find d
or fewer points whose convex combination is x.

Since x is on the boundary of conv(S), there exists
a hyperplane H that supports conv(S) at x. Thus,

H = {ξ ∈ R
d : cTξ = cTx

}
(285a)

for some vector c ∈ R
d and

cTx = max
x̃∈conv(S)

cTx (285b)

so
cTx ≥ cTxi , i = 1, . . . , ν. (286)

We shall next show that the points x1, . . . , xν are in H. To
that end we note that by (284)

0 = cT

(
x −

ν∑

i=1

λi xi

)

=
ν∑

i=1

λi cTx −
ν∑

i=1

λi cTxi

=
ν∑

i=1

λi

(
cTx − cTxi

)

where the second equality holds because the λ’s sum to
1 (283). Since the λ’s are all positive, it follows from (286)
that all the terms on the RHS are nonnegative. Since they sum
to zero, they must all be zero. And since the λ’s are positive,
we conclude that

cTxi = cTx, i ∈ {1, . . . , ν} (287)

and the vectors xi are all in H. The vector x can thus be written
as a convex combination of the ν vectors in x1, . . . , xν in H.
Since H is (d−1)-dimensional, it follows from Carathéodory’s
theorem that x is in fact a convex combination of d or fewer
of the vectors x1, . . . , xν .

The cardinality bound on U can now be proved as follows.
Proof of the Cardinality Bound on U in Proposition 15: Let
the discrete random variables U and Z over the alphabets
U and Z , the function φ : Y × Z → X̂d, and the function
ψ : X ×Z×U → X̂e satisfy (159) and (160). We shall exhibit
a random variable Ũ over the alphabet

Ũ � {1, . . . , K } (288)

and a function ψ̃ : X × Z × Ũ → X̂e satisfying

Ũ�−−(X, Z)�−−Y (289)

and the K distortion constraints

E
[
dk
(
X, φ(Y, Z), ψ̃(X, Z , Ũ )

)] ≤ Dk, k ∈ {1, . . . , K }.
(290)

Since the Markov conditions (159) and (289) imply

(Ũ , Z)�−−X�−−Y, (291)

this will allow us to replace U and ψ with Ũ and ψ̃ and thus
conclude the proof.

To describe Ũ and ψ̃ , we need some definitions. For each
pair (x, z) ∈ X × Z and each k ∈ {1, . . . , K }, define

D(x,z)
k = Pr

[
dk
(
X, φ(Y, Z), ψ(X, Z ,U)

) ∣∣
∣ (X, Z) = (x, z)

]

= E
[
dk
(
x, φ(Y, z), ψ(x, z,U)

)]
, (292)

where the expectation is, by (159), with respect to
PU |X Z (·|x, z) PY |X (·|x). Define also the vector-valued func-
tion

h(x,z) : U → R
K+

u �→
⎛

⎜
⎝

E
[
d1
(
x, φ(Y, z), ψ(x, z, u)

)]

...
E
[
dK
(
x, φ(Y, z), ψ(x, z, u)

)]

⎞

⎟
⎠ (293)

where the expectation is with respect to PY |X (·|x). Let S(x,z)
denote the image of h(x,z):

S(x,z) �
{
s ∈ R

K+ : s = h(x,z)(u) for some u ∈ U}. (294)

By definitions (292)–(294)
⎛

⎜
⎝

D(x,z)
1
...

D(x,z)
K

⎞

⎟
⎠ ∈ conv

(S(x,z)) (295)

and, consequently, there exists a point

s̄(x,z) =
⎛

⎜
⎝

s̄(x,z)1
...

s̄(x,z)K

⎞

⎟
⎠

on the boundary of conv(S(x,z)) with

s̄(x,z)k ≤ D(x,z)
k , k ∈ {1, . . . , K }. (296)

Since S(x,z) is compact (it contains at most |X̂e| points because
h(x,z)(u) depends on u only via ψ(x, z, u)), Lemma 24 implies
that s̄(x,z) can be written as a convex combination of K or
fewer points in S(x,z):

s̄(x,z) =
K∑

j=1

λ j s(x,z)j , (297)

where s(x,z)1 , . . . , s(x,z)K ∈ S(x,z) and the coefficients
λ1, . . . λK ∈ [0, 1] sum to 1. Let u(x,z)1 , . . . , u(x,z)K ∈ U be
preimages of s(x,z)1 , . . . , s(x,z)K so

h(x,z)
(
u(x,z)j

) = s(x,z)j , j ∈ {1, . . . , K }. (298)
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We can now define the function ψ̃ as mapping every pair
(x, z) ∈ X × Z and every j ∈ {1, . . . , K } to

ψ̃(x, z, j) � ψ
(
x, z, u(x,z)j

)
. (299)

And we define the random variable Ũ to be conditionally
independent of Y given (X, Z) with the conditional law

Pr
[
Ũ = j |X = x, Z = z

]
= λ

(x,z)
j , j ∈ {1, . . . , K }.

(300)
The Markov condition (289) thus holds by definition. More-
over, (292), (293), and (296)–(300) combine to prove that
Ũ and ψ̃ also satisfy the K distortion constraints in (290):
denoting the k-th component of the vector s j by s j,k , for
j, k ∈ {1, . . . , K },

E
[
dk
(
x, φ(Y, z), ψ̃(x, z, Ũ)

)]

=
K∑

j=1

λ j E
[
dk
(
x, φ(Y, z), ψ̃(x, z, j)

)]
(301)

=
K∑

j=1

λ j E
[
dk
(
x, φ(Y, z), ψ(x, z, u(x,z)j )

)]
(302)

=
K∑

j=1

λ j s
(x,z)
j,k (303)

= s̄(x,z)k (304)

≤ D(x,z)
k , (305)

where the first equality holds by (300), the second equality
by (299), the third equality by (293) and (298), the fourth
equality by (297), and the inequality at the end by (296).
Finally, from (305) we conclude that

E
[
dk
(
X, φ(Y, Z), ψ̃(X, Z , Ũ )

)]

=
∑

x∈X ,z∈Z
Pr[X = x, Z = z] E

[
dk
(
x, φ(Y, z), ψ̃ (x, z, Ũ)

)]

(306)

≤
∑

x∈X ,z∈Z
Pr[X = x, Z = z] D(x,z)

k (307)

≤ Dk (308)

where the last inequality follows from the definition of D(x,z)
k

in (292) and the fact that the tuple (U, Z , φ,ψ) satisfies the
original distortion constraints in (160).
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