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Abstract— We study an interference network where equally
numbered transmitters and receivers lie on two parallel lines,
with each transmitter opposite its intended receiver. We consider
two short-range interference models: the asymmetric network,
where the signal sent by each transmitter is interfered only by
the signal sent by its left neighbor (if present), and a symmetric
network, where it is interfered by both its left and its right
neighbors. Each transmitter is cognizant of its own message,
the messages of the ¢, transmitters to its left, and the messages
of the ¢, transmitters to its right. Each receiver decodes its
message based on the signals received at its own antenna, at the
ry receive antennas to its left, and at the r, receive antennas to
its right. For such networks, we provide upper and lower bounds
on the multiplexing gain, i.e., on the high signal-to-noise ratio
asymptotic logarithmic growth of the sum-rate capacity. In some
cases, our bounds coincide, e.g., for the asymmetric network.
Our results exhibit an equivalence between the transmitter side-
information parameters ¢y, ¢, and the receiver side-information
parameters ry, r, in the sense that increasing/decreasing ¢, or ¢,
by a positive integer § has the same effect on the multiplexing
gain as increasing/decreasing ry or r, by §. Moreover—even
in asymmetric networks—there is an equivalence between the
left side-information parameters (fy,ry) and the right side-
information parameters (¢, ry).

Index Terms— Clustered decoding, dirty-paper coding, inter-
ference networks, successive interference cancellation, message
cognition, multiplexing gain.

I. INTRODUCTION

WE CONSIDER a cellular mobile communication sys-
tem (either uplink or downlink) where K cells are posi-
tioned on a linear array. We assume short-range interference
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where the signals sent in a given cell interfere only with the
signals sent in the left-adjacent cell and/or the right-adjacent
cell, depending on the position of the mobiles within the cells.
Our goal is to determine the throughput of such a cellular
system at high signal-to-noise ratio (SNR).

The high-SNR throughput of our system (where we assume
constant non-fading channel gains) does not depend on the
number of mobiles in a cell (provided this number is not zero),
because in each cell there is only one base station. Therefore,
we restrict attention to setups with only one mobile per cell.

We focus on two regular setups. The first setup exhibits
asymmetric interference: the communication in a cell is only
interfered by the signals sent in the cell to its left but not by the
signals sent in the cell to its right (e.g., because we model the
uplink and all the mobiles lie close to the right border of their
cells). The second setup exhibits symmetric interference: the
communication in a cell is interfered by the signals sent in
the cells to its left as well as to its right (e.g., because the
mobiles lie in the center of their cells). The symmetric setup
was introduced in [1] and [2].

On a more abstract level, our communication scenario is
described as follows: K transmitters wish to communicate
independent messages to their K corresponding receivers, and
it is assumed that these communications interfere. Moreover,
the K transmitters are assumed to be located on a horizontal
line, and the K receivers are assumed to lie on a paral-
lel line, each receiver opposite its corresponding transmit-
ter. We consider two specific networks. In the asymmetric
network, each receiver observes a linear combination of the
signals transmitted by its corresponding transmitter, the signal
of the transmitter to its left, and additive white Gaussian
noise (AWGN). See Figure 1. In the symmetric network,
each receiver observes a linear combination of the signal
transmitted by its corresponding transmitter, the two signals
of the transmitter to its left and the transmitter to its right,
and AWGN. See Figure 2. The symmetric network is also
known as Wyner’s linear model or the full Wyner model; the
asymmetric network is known as the asymmetric Wyner model
or the soft hand-off model.

In [1] and [2] the receivers were allowed to fully cooperate
in their decoding, and thus the communication scenario was
modeled as a multiple-access channel (MAC). In contrast,
here we assume that each receiver has to decode its message
individually, and therefore our communication scenario is
modeled as an interference network. However, we still allow
for partial cooperation between neighboring receivers where
neighboring receivers can cooperate in the form of clustered
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local decoding. That means that, in addition to its own antenna,
each receiver also has access to the antennas of some of
the receivers to its left and to its right. Similarly, we also
allow for (partial) cooperation between the transmitters in the
form of message cognition. That means that, in addition to
its own message, each transmitter is also cognizant of the
messages of some transmitters to its left and to its right. The
described scenario with message cognition and clustered local
decoding may arise in the uplink as well as in the downlink
of cellular mobile systems because the base stations can
communicate over a backhaul and the mobiles can communi-
cate using bluetooth connections. Thus, in an uplink scenario
the transmitting mobiles can share their messages using the
bluetooth links before communicating to their corresponding
base stations and the receiving base stations can share their
observed signals over the backhaul. In a downlink scenario the
receiving mobiles can use the bluetooth connections to relay
their observed signals to the mobiles in neighboring cells and
the transmitting base stations can use the backhaul to share
their messages.
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Notice that the described model represents a combination
of the cognitive model in [3] and the clustered decoding
model in [4]. Also, clustered local processing is in a way
a compromise between the joint (multi-cell) decoding in [1]
and [2] and the single (single-cell) decoding in [3] and [5].
Clustered decoding has also been considered in [6] for fully-
connected interference networks. The cognitive transmitter
model considered here has been refined in [7], where the
transmitters can exchange parts of their messages prior to
the actual communication over rate-limited pipes, similar
to [8]-[12].

Our focus in this paper is on the asymptotic behavior of the
sum-rate capacity of these networks as captured by two figures
of merit: the multiplexing gain and the asymptotic multiplex-
ing gain per user. The latter is defined as the multiplexing gain
of a network divided by the number of transmitter/receiver
pairs K in the asymptotic regime of large K. For both
networks we provide upper and lower bounds on both figures
of merit.

For the asymmetric network our upper and lower bounds
coincide and thus yield the exact multiplexing gain and
asymptotic multiplexing gain per user. The results exhibit
an equivalence between cooperation at the transmitters and
cooperation at the receivers. Moreover, although the network
is asymmetric, the asymptotic multiplexing gain per user also
exhibits an equivalence between the transmitters’ information
about their right-neighbors’ messages and their information
about their left-neighbors’ messages. Likewise, they also
exhibit, an equivalence between the receivers’ information
about the signals observed at their right-neighbors’ antennas
and their information about the signals observed at their left-
neighbors’ antennas.

For the symmetric network our upper and lower bounds
coincide only in some special cases. In these special cases the
multiplexing gain—and thus also the asymptotic multiplexing
gain per user—again exhibits an equivalence between coopera-
tion at the transmitters and cooperation at the receivers. For the
symmetric network, we mostly assume that the nonzero cross-
gains are all equal. Our techniques extend to general cross-
gains, but the statement of the results becomes cumbersome
and is therefore omitted. Instead, we also consider a random
model where the cross-gains are drawn from a continuous
distributions. Our main results continue to hold (with prob-
ability 1) for this randomized setup.

For large number of users, i.e. K > 1, our multiplexing-
gain results are of the form Sy - K + o(K), where o(K)
denotes a function that grows sublinearly in K. As we shall
see, Soo € [0.5, 1] is strictly monotonic in the side-information
parameters t¢, t-, r¢, 1, and thus if we increase one or several
of the side-information parameters, then also the factor Sy
increases.! The results in [13]-[16] suggest that this strict
monotonicity relies on the weak connectivity of the network,
i.e., the fact that there are relatively few interference links.
Indeed, [13]-[16] show that for fully-connected networks,
i.e., when all the transmitted signals interfere at all received

I The parameter S is called the asymptotic multiplexing-gain per user and
will be introduced formally in the next section.
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signals, and when there is no clustering at the receivers
(r¢ = rr = 0), then for the side-information pattern considered
here, Soo = 1/2 irrespective of #; and t.. This result holds
even in the stronger setup where for each message we can
choose the set of #; 4+ 7 + 1 adjacent transmitters that are
cognizant of this message [16]. In this stronger setup, a given
transmitter may not even know the message intended for its
corresponding receiver. And, indeed, sometimes (for example
for the networks considered here), the multiplexing gain can
be increased by assigning a given Message M that is intended
for Receiver k to a subset of #; + ¢, + 1 transmitters that does
not contain Transmitter k [16]. We will describe this in more
detail after describing our results.

General interference networks with transmitter cooperation
have also been studied in [17]-[20]. In particular, in [17],
the authors completely characterized the set of networks and
transmitter side-informations that have full multiplexing gain
K or multiplexing gain K — 1. In [20], a network is presented
where adding an interference link to the network—while
keeping the same transmitter side-informations—can increase
the multiplexing gain.

The asymmetric network has also been studied by Liu
and Erkip [21], with a focus on finite-SNR results but with-
out transmitter cognition or clustered decoding. For general
K > 3, [21] characterizes the maximum sum-rate that is
achievable using a simple Han-Kobayashi scheme without
time-sharing and where the inputs follow a Gaussian distribu-
tion. For K = 3, they show that this scheme achieves the sum-
capacity in noisy-interference and mixed-interference regimes
and it achieves the entire capacity region in a strong interfer-
ence regime. Zhou and Yu [22] considered a cyclic version of
this model where the K-th transmitted signal also interferes
with the first receive signal, i.e., the interference pattern is
cyclic. In [22], an expression for the Han-Kobayashi region
with arbitrary (also non-Gaussian) inputs was presented. It was
shown that this achievable region is within 2 bits of the
K-user cyclic asymmetric network in the weak-interference
regime. In the strong interference regime, it achieves capacity.
(In their achievability proofs it suffices to consider Gaussian
inputs.) For K = 3 the authors also present an improved
Han-Kobayashi scheme involving time-sharing that achieves
rates within 1.5 bits of capacity. Finally, [22] also characterizes
the generalized degrees of freedom (GDoF) of the symmetric
capacity assuming that all cross-gains in the network are
equal. Interestingly, this result shows that the GDoF of the
K-user cyclic asymmetric Wyner network with equal cross-
gains has the same GDOF as the standard two-user interference
channel [23].

Other related results on Wyner-type networks can be found
in [24]-[34].

The lower bounds in our paper are based on coding strate-
gies that silence some of the transmitters and thereby split the
network into non-interfering subnetworks that can be treated
separately. Depending on the considered setup, a different
scheme is then used for the transmission in the subnetworks.
In some setups, some of the messages are transmitted using an
interference cancellation scheme and the others are transmitted
using Costa’s dirty-paper coding. (Costa’s dirty paper coding
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can also be replaced by a simple linear beamforming scheme
as in [17], see also [35]-[37].) In other setups, the messages
are transmitted using one of the following elementary bricks
of multi-user information theory depending on the available
side-information: an optimal multi-input/multi-output (MIMO)
scheme, an optimal MIMO multi-access scheme, or an optimal
MIMO broadcast scheme. Introducing also Han-Kobayashi
type ideas to our coding strategies might improve the per-
formance of our schemes for finite SNR.

Our upper bounds rely on an extension of Sato’s multi-
access channel (MAC) bound [38] to more general interference
networks with more than two transmitters and receivers and
where the transmitters and the receivers have side-information
(see also [3], [16], [39], and in particular [17, Lemma 1
and Theorem 3]). More specifically, we first partition the
K receivers into groups A and Bj,...,B,;, and we allow
the receivers in Group A to cooperate. We then let a genie
reveal certain linear combinations of the noise sequences to
the receivers in Group .A. Finally, we request that the receivers
in Group A jointly decode all messages My, ..., Mx whereas
all other receivers do not have to decode anything. We choose
the linear combinations that are revealed by the genie so
that, for each i = 1,...,¢, if the receivers in Group A
can successfully decode their own messages and the messages
intended for the receivers in groups B, ..., Bi_1, then they
can also reconstruct the outputs observed at the receivers in
Group B;. In this case they can also decode the messages
intended for the receivers in Group B; at least as well as the
receivers in Group B;. This iterative argument is used to show
that the capacity region of the resulting MAC is included in
the capacity region of the original network. The upper bound
is then concluded by upper bounding the multiplexing gain of
the MAC.

We conclude this section with notation and an outline of the
paper. Throughout the paper, R, N, and Ny denote the sets of
real numbers, natural numbers, and nonnegative integers. Their
m-fold Cartesian products are denoted R, N"*, and Ngl. Also,
log(-) denotes the natural logarithm, and ¢ mod b denotes
the remainder in the Euclidean division of a by b. Random
variables are denoted by upper case letters, their realizations by
lower case letters. Vectors are denoted by bold letters: random
vectors by upper case bold letters and deterministic vectors by
lower case bold letters. Given a sequence of random variables
X1,..., X, we denote by X" the tuple (X1, ..., X,) and by X
the n-dimensional column-vector (X1, ..., X,)". For sets we
use calligraphic symbols, e.g., A. The difference of two sets
A and B is denoted A\ B. We further use the Landau symbols,
and thus o(x) denotes a function that grows sublinearly in x.

The paper is organized as follows. In Section II we describe
the channel model and the results for the asymmetric network
and in Section III the channel model and the results for the
symmetric network. In Section IV we present a Dynamic-
MAC Lemma that we use to prove our converse results for
the multiplexing-gain. In the rest of the paper we prove our
results: in Section V the results for the asymmetric network;
in Section VI the achievability results for the symmetric
network with symmetric side-information; in Section VII
the achievability results for the symmetric network with
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general side-information; and finally in Section VIII the
converse results for the symmetric network with general side-
information parameters.

II. ASYMMETRIC NETWORK
A. Description of the Problem

We consider K transmitter/receiver pairs that are labeled
from {1, ..., K}. The purpose of the communication is that
each transmitter k € {1, ..., K} will convey its message M}
to its intended receiver k. The messages {Mk};{:1 are assumed
to be independent with M} being uniformly distributed over
the set My = {1,..., "R |}, where n denotes the block-
length of transmission and Ry the rate of transmission of
Transmitter k.

We assume that the transmitters and receivers are all
equipped with a single antenna and that the channels are
discrete-time and real-valued. Denoting by xi, the time-t
symbol transmitted by Transmitter k, and by Y;, the time-¢
symbol received by Receiver k,

ke{l,...,K}, (1)

where the K noise sequences {Nj},...,{Nk} are inde-
pendent with each comprising independent and identically
distributed standard Gaussians; and where to simplify notation
we define xo ; to be deterministically O for all times ¢. Thus,
the communication of the k-th transmitter/receiver pair is inter-
fered only by the communication of the transmitter/receiver
pair to its left; see Figure 1.

It is assumed that, in addition to its own message, each
transmitter is also cognizant of the messages transmitted by
the 7, > 0 transmitters to its left and by the 7. > 0 transmitters
to its right. Thus, for every k € {1, ..., K}, Transmitter k is
cognizant of the messages My_;,, ..., M, ..., My, , where
M_y41,...,Mp and Mg1,..., Mgy, are defined to be
deterministically one. Thus, Transmitter k can produce its
sequence of channel inputs X} as

Yt = Xit + apXi—1,0 + Nit,

X{ = (O Mieies o M Micys,), )
for some encoding function
fk(n):Mk_ICX"'XM](X"'XM](J,_[r—)Rn. 3)

The transmitters are assumed to have equal average power
at their disposal. Denoting by P the maximal average power
with which each of the transmitters can communicate, we thus
require that, with probability 1,

1 n
;ZX,%JfP, kell,...,K}. 4)

t=1

Each receiver observes the signals received by its own
antenna, the symbols received by the r, > 0 receivers to
its left, and the symbols received by the r, > 0 receivers to
its right. Receiver k, for k € {1, ..., K}, can thus produce its
guess of Message My based on the 7,41+ 1 output sequences
Yk"_rf, e Yk”Jm, ie., as

M 2 (Y, Y, )
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for some decoding function

q)lgn): RACGetr+1) My, (6)

Y are defined to be

n n
where Y Kir,

—re+1°
deterministically O.

The parameters t¢, ., r¢, rr > 0 are given positive integers.
We call #, and ¢, the transmitter side-information parameters
and r; and r, the receiver side-information parameters. Sim-
ilarly, we call #;, and ry the left side-information parameters
and ¢ and r, the right side-information parameters.

For the described setup we say that a rate-tuple
(Ry, ..., Rk) is achievable if, as the block-length n tends to

infinity, the average probability of error decays to 0, i.e.,

n n
LYy andYKH,...,

lin})Pr [(Ml,...,MK) #* (Ml,...,MK)] =0.
n—

The closure of the set of all rate-tuples (R, ..., Rg) that
are achievable is called the capacity region, which we denote
by CA%™ To make the dependence on the number of
transmitter/receiver pairs K, the side-information parame-
ters t¢, tr, re, 1y, and the power P explicit, we mostly write
CASY”“(K ,te, tr, e, 1 P). The sum-capacity is defined as the
supremum of the sum-rate Zf: 1 R over all achievable tuples
(Ry,...,Rk) and is denoted by Cgsym(K, tey tey v, ey P).
Our main focus in this work is on the high-SNR asymptote of
the sum-capacity which is characterized by the multiplexing
gainzz

— CYY™K, 1,1,y P)
lim :

P00 3 log(P)

A A
S Sym(K,tfatrarfarr):

and for large networks (K > 1) by the asymptotic multiplex-
ing gain per user:

m SAsym(Katfﬁtr5rf,rr)

Asym AT
SOO (t(’atr,rfarr):Kh_)oo K

B. Results

Theorem 1: Irrespective of the nonzero cross-gains {oy}
and for any tp, tr,re, v, > 0, the multiplexing gain of the
asymmetric model is
St by rer) = K — | — e ] W G)

te+t+re+r+2
Proof: See Section V-A for the direct part and Section V-B
for the converse. [ ]

Specializing Theorem 1 to the case rp = r, = 0 where each
receiver has access only to its own receive antenna, recovers
the result in [3].

Remark 1: Expression (7) depends only on the sum of the
left side-information parameters ty + r¢ and on the sum of
the right side-information parameters t, + ry. This shows an
equivalence between cognition of messages at the transmitters
and clustered local decoding at the receivers.

However, the left side-information parameters (r¢,te) do
not play the same role as the right side-information
parameters (ry, t.). In fact, left side-information can be more

»

2The multiplexing gain is also referred to as the “high-SNR slope”,
log”, or “degrees of freedom”.

pre-
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valuable (in terms of increasing the multiplexing gain) than
right side-information.

The difference in the roles of left and right side-information
is only a boundary effect: it vanishes when K tends to infinity
(see Corollary 2 and Remark 2 ahead).

As a corollary to Theorem 1 we can derive the asymprotic
multiplexing gain per user.

Corollary 2: The asymptotic multiplexing gain per user of
the asymmetric network is

teatyoreary) = CEEIERT L g
te+t-+re+r+2

Remark 2: The asymptotic multiplexing gain per-user in (8)
depends on the parameters t¢, t., r¢, and r, only through their
sum. Thus, in the considered setup the asymptotic multiplexing
gain per-user only depends on the total amount of side-
information at the transmitters and receivers and not on how
the side-information is distributed. In particular, cognition of
messages at the transmitters and clustered local decoding at
the receivers are equally valuable, and—despite the asym-
metry of the interference network—also left and right side-
information are equally valuable.

El Gamal, Annapureddy, and Veeravalli [16] showed that
when r, = r, = 0 and when for each message one can freely
choose the set of #7417 + 1 transmitters to which this message
is assigned, then the asymptotic multiplexin§ gain per-user is
equal to 2(215:{?7% and thus larger than Sa” " in (8). They
also showed that in this modified setup, each message Mj
should again be assigned to f; + - + 1 adjacent transmitters,
but these transmitters do not necessarily include Transmitter k.

Sé%osym

III. SYMMETRIC NETWORK
A. Description of the Problem

The symmetric network is defined in the same way as the
asymmetric network in Section II, except that the channel law
(1) is replaced by

Yii =0k Xk—1,0+ Xk 0k r Xir1,0+Ner, kell, ..., K}
)
Like for the asymmetric network, for each k € {1,..., K}

the symbol Xy ; denotes Transmitter k’s channel input at time
t; the symbols Xo; and Xk, are deterministically zero;
the cross-gains {a ¢, ax -} are given non-zero real numbers;
and {Ny,} are i.i.d. standard Gaussians. Let Hyer denote the
K-by-K channel matrix of the entire network: its row-j,
column-i element equals 1if j =i, itequals aj ¢ if j—i =1,
it equals a; , if j —i = —1, and it equals O otherwise.

The message cognition at the transmitters is again described
by the nonnegative integers f, and ¢, and the encoding rules
in (2), and the clustered decoding by the nonnegative integers
re and r, and the decoding rules in (5).

The channel input sequences have to satisfy the power
constraints (4).

Achievable rates, channel capacity, sum-capacity, multi-
plexing gain, and the asymptotic multiplexing gain per user
are defined analogously to Section II. For this symmetric
model and for a given positive integer K > 0, nonnegative
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integers t¢,t-,r¢,r» > 0, and power P > 0 the capac-

ity region is denoted by CSY™(K,t, 1., r¢, r,; P), the sum-

capacity by C;ym(K ,te, by, re, rr; P), the multiplexing gain by

SSY™(K, ¢, tr, e, ), and the asymptotic multiplexing gain
Sym

per user by Sog (te, tr, re, 1r).

B. Results

In the following we only state our results for the special
case of equal cross-gains

ak,(’:ak,r:a, ke{l’-'-,K}’ (10)

that are nonzero

o # 0. (11)

Our proof techniques extend also to non-equal cross gains:
an inspection of the proofs reveals that they depend on
the cross-gains only through the ranks of various princi-
pal submatrices of the network’s channel matrix and the
fact that the cross-gains are nonzero, see the discussions in
Subsections VI-G and VII-E. A formulation of our results
for general cross-gains would thus involve conditions on the
rank of various principal submatrices of the network’s channel
matrix and be very cumbersome. We therefore omit it. Instead,
we notice that when all cross-gains are drawn independently
according to a continuous distribution, then the various prin-
cipal submatrices of the network’s channel matrix are of full
rank and all cross-gains are nonzero with probability 1. This
makes that our main results continue to hold (with probability
1) for this randomized setup, see Remarks 3 and 6 ahead.?

Definition 1: For every positive integer p and real num-
ber a we define Hy,(a) to be the p x p matrix with diagonal
elements all equal to 1, elements above and below the diagonal
equal to o, and all other elements equal to 0.

Notice that under the assumption of all equal cross-gains «,
the network’s channel matrix Hyet satisfies

Hyet = Hk (@).

We first present our results for symmetric side-information
where

(12)

te+re=1t+rp, (13)

followed by our results for general side-information parame-
ters re, te, 1y, tr > 0. We treat the special case with symmetric
side-information separately, because for this case we have
stronger results than for general side-information.

1) Symmetric Side-Information: Throughout this subsection
we assume that the parameters #;, t,, r¢, r satisfy (13).

Theorem 3 (Symmetric Side-Information): Depending on
the value of a and the parameters K,tp,t.,1¢,1r, the
multiplexing gain satisfies the following conditions.

D If K<tr+re+1:
S(K, i, tr, e, 1) = K = 6, (14)
where 01 equals 1, if det (Hg (a)) = 0 and 0O otherwise.

3Such cross-gains are typically called generic [36], [37]. Here, we refrain
from calling them so as to avoid confusion with generic subnets which we
introduce in our achievability proofs.
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2) If K > te+r¢+2 and det (Hyqr41(a)) # 0:

K
K_{ij_l
fe+re+2

IA

Ssym(K7t[9tr9r[7rr)

L . J
K—|——— .15
te+re+2

3)If K > tr+ re+ 2; det (H,H_thl(a)) # 0; and
det (H,H_r[ (a)) # 0, then

IA

Ssym(K7t[7tr9r[7rr):K_L (16)

te+re+ 2J '
(This third case is a special case of the second
case. It is interesting because almost all values of
o lead to this case and because for this case we
can improve the lower bound in (15) to meet the
upper bound.)

4) If K > tr+re+2 and det (Htf+rf+1(a)) =0:

K
K— |-
te+re+1
K
<K-2| ——+—
2(te +re) +3

where 0y equals 1 if (K mod 2(ty +r¢) +3)) > (tp +
re + 1) and 0 otherwise.

Proof: The achievability results are proved in Section VI.
The converse in (14) can be proved by first allowing all the
transmitters to cooperate and all the receivers to cooperate, and
then using the well-known expression for the capacity of the
multi-antenna Gaussian point-to-point channel. The converse
to (15) and (16) follows by specializing Upper bound (23) in
Proposition 7 ahead to tp+r¢ = t,+r,. Similarly, the converse
to (17) follows by specializing (24) ahead to tp +r¢ =t +75.

|

Remark 3: The proofs of the achievability and converse
results in (14) with 6, = 0 and in (16) continue to hold
for arbitrary cross-gains provided they are nonzero and
that various principal submatrices of the network’s chan-
nel matrix Hnet have full rank, see also the discussion in
Subsection VI-G.

When the cross-gains {ay ¢} and {a,,} are drawn at random
according to a continuous distribution both these properties
hold with probability 1, and thus for this random setup with
symmetric side-information parameters and arbitrary value
K > 1 the multiplexing gain is

Ssym(Kﬁtfatrarf,rr)

IA

J — a2, (17)

K
K — liJ . (18)
te+re+2
Remark 4: We observe that when Hyq,,11(a) and

Hi,+r, (a) are full rank, the multiplexing gain only depends
on the sum of the side-information parameters (t¢ + re).
Or equivalently they only depend on the sums (t, + r;) or
(te +t, +re +rp). Thus, in these cases, message cognition at
the transmitters and clustered local decoding at the receivers
are equivalent in terms of increasing the multiplexing gain.

The following corollary is obtained from Theorem 3 by
letting K tend to co.
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Corollary 4: If det (th+rz+1 (a)) # 0, then the asymptotic
multiplexing gain per-user is given by

te+re+1

Sym
S te, by, re, 1p) = .
o ( s “Fo ) r) t[+r[+2

19)

Otherwise, it satisfies

tt+re+;

te+re Sym
<Sog (e, tr,re,rr) < 3
te+re+ 3

te+re+17

Thus, for a few values a. # 0 the asymptotic multiplexing gain
per-user drops.

Remark 5: When det (Ht[+r[+l(a)) # 0, then to obtain the
same asymptotic multiplexing-gain per-user in this symmetric
network as in the asymmetric network before, we need double
the “amount” of side-information t; + t, + re + 1.

El Gamal et al. [16] showed that also here a larger
asymptotic multiplexing gain per-user is achievable when the
messages are assigned to the transmitters in a different way
(even when ry = r, = 0). In particular, if each message can be
freely assigned to #; 4 - + 1 transmitters, then an asymptotic

multiplexing gain per-user of mftﬁﬁz is achievable [16],

which is larger than SSOY”“ in (19).

Example 1: Consider a symmetric network with symmetric
side-information r¢ + ty = r, +t, = 2. Let K be 7. Then,
if o & {—/2/2,/2/2}, by Theorem 3 the multiplexing gain
is 6, and in contrast, if a € {—~/2/2,/2/2} the multiplexing
gain is only 5.

By Corollary 4 the asymptotic multiplexing gain per-user is
3/4, if a ¢ {—~/2/2,~/2/2}, but it is at most 5/7 (which is
smaller than 3/4) if a € {—~/2/2,/2/2}.

Notice however, that even though the multiplexing gain is
discontinuous at certain values of «a, this does not imply that
for fixed powers P also the sum-rate capacity of the network
is discontinuous in a. Also, for given K the set of as where
the multiplexing gain is discontinuous is finite. This is in
contrast to the fully-connected K-user interference channel
where the multiplexing gain is discontinuous at all rational
Cross-gains.

We conclude this section with a result on the high-SNR
power-offset which is defined as

Sym
L:Og (K»té’»thré’»rr)

Sym
A T
= 1m
P—oc0 (

Proposition 5 (Symmetric Side-Information): Assume (13).
Let o™ be such that det (Hrﬁ,ﬁl(a*)) = 0. Also, let K =
q(re + t¢ + 2) — 1 for some positive integer q. Then, there
exists a function co(-), bounded in the neighborhood of a*
such that for all a sufficiently close to o*:

log(P) — CI™(K. tr, ty, re, 1v; P)).

L™K, 10, 10,70, 10) > —vlog|a — a*| + co(a®),

where v is the multiplicity of o™ as a root of the polynomial
det (Hr/'+1[+1 (X))
In other words, when a approaches the critical value a*,
the power offset goes to infinity.
Proof: See Appendix D. |
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2) Results for General Parameters te, ty,ve¢, vy > 0O
Proposition 6: The multiplexing gain of the symmetric net-
work satisfies the following four lower bounds.

1) It is lower bounded by:

SSym K, te,ty,re,rp)>K—2| —— |—60;, (20
(K, te, tryre, 1) > Ltg+tr+rg+rrJ 1, (20)
where
0 ifxy =0
0 =11 ifr; =1
2 if kg >2
for

k1 2 (K mod (ty + 1, +r¢ +17)).

2) Moreover, irrespective of the right side-information

t, and ry:
Ssym(K,tfatrarf,rr)>K_2 L _629 (21)

B te+re+1

where
0 ifxy=0

=11 if g =1

2 ifky>2

for

K 2 (K mod (t; + r¢)).

3) The lower bound (21) in 2) remains valid if on the right-
hand side of (21) we replace the parameters t; and re
by t, and r,.

4) Finally, irrespective of the transmitter side-information
te and ty, if the matrix H;, 4, 41(a) is full rank:

SSY™K, te, by e ) >K—2| ———— | =63, (22
(K, te, tr e, 1p) > \thrz-i-SJ 5, (22)
where
0 ifxkz=0
=11 ifry=1
2 ifrg =2
for

k3 2 (K mod (ry +r, +3)).
Proof: See Section VII. [ |
The lower bound in 2) is useful only when ¢, = r, = 0,
the lower bound in 3) only when #; = r, = 0, and the bound
in 4) only when #, + ¢, < 2.
Proposition 7: The multiplexing gain is upper bounded by
the following three upper bounds.

1) It is upper bounded by:

K
SSYM(K, te, tr, 1, 1) < K—2 {—J—m,
( TerTe) te+iy+retr+4

(23)
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where
0 if kg <min{ty +r¢+ 2,8 + 71 +2}
04 = . .
I ifkg >min{ty +rp+2,t +r +2}
for

ks = (K mod (tr + tr +re + 1, +4)).
2) Moreover, if det (Hy, 14, 41(a)) = 0:

Ssym(K9t€7t}’7r€9r}’)

K
<K-2 {—J—Qs, (24)
te+tr+re+r 43
where
O — 0 ifwxs<t,+r +1
Tl ifxs 441
for

Ks £ (K mod (ir + 1, + re +rr +3)).

3) The upper bound in 2) holds also if everywhere (except
for SSY™(K 1, t,,re, 1)) one exchanges the subscripts
¢ and r.
Proof: See Section VIII. [ |
From Propositions 6 and 7 we obtain the following corol-
lary.
Corollary 8: Irrespective of the parameter o, the asymp-
totic multiplexing gain per user satisfies

e [T tz+tr+rz+rr—2]
re+rr+3 tedtetre+ry

< 8™ (te tro e,y
_ tr+t+re+r+2
Tttt g4

Remark 6: The proofs of the achievability results in
1)-3) in Proposition 6 and the proofs of the converse
result 1) in Proposition 7 continue to hold for arbitrary
cross-gains {ok¢} and {o,r} provided they are nonzero and
that various principal submatrices of the network’s chan-
nel matrix Hynet have full rank, see also the discussion in
Subsection VII-E.

When the cross-gains {ax¢} and {ok,} are drawn at
random according to a continuous distribution both these
properties hold with probability 1, and thus results 1)-3) in
Proposition 6 and result 1) in Proposition 7 also hold with
probability 1. As a consequence, analogous to Corollary 8, the
asymptotic multiplexing gain per-user in this randomized setup
satisfies

te+t+re+r—2
te+1t +re+r,

Sym
Sog (tt’;trart’;rr)

- te+t+re+r+2
Tttt tretr+ 4
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IV. CONVERSE PROOFS

For a given set of receivers S C I, let Rs denote the set
of indices k € IC such that Antenna k is observed by at least
one of the receivers in S.

Our converse proofs all rely on the following lemma.

Lemma 9 (Dynamic-MAC Lemma): Consider a general
interference network with message cognition and clustered
decoding. Let Vy,...,V,, for g € Ny, be a set of genie-
signals and let A, B, Ba, ..., By, q € N, form a partition of
the set of receivers IC, such that the differential entropy

hANSker 41V 05 -5 Vi)

is finite and bounded m PAIf or any gtven encoding and

(25)

decoding functions f1 Yy K" and gol Yy goK) there
exist deterministic functions &y, ...,&; on the respective
domains such that for eachi € {1,...,q}:
Yidkerp, =S ({Yk}keRAi AMiYkea;> Vo, ... Vg), (26)
where

Ai 2 AUBU---UB;_, (27)

then the multiplexing gain of the network is upper bounded as

S < R4l (28)

Proof: To prove our desired upper bound we introduce

a Cognitive MAC, whose capacity region Cyac includes the
capacity region of the original network,

C € Cmac, (29)

and whose multiplexing gain Smac is upper bounded as

Smac < R4l (30)

Combining (29) and (30) establishes the desired lemma.

The Cognitive MAC is obtained from the original network
by revealing the genie-information Vy, ..., V to the receivers
in Group A and by requiring that all the receivers that are in
Group A jointly decode all messages My, ..., Mk, whereas
all other receivers do not have to decode anything. Since the
only remaining receivers in Group A can all cooperate in their
decoding, the Cognitive MAC is indeed a MAC with only one
receiver.

We now prove Inclusion (29) using a dynamic version of
Sato’s MAC-bound idea [38]. Specifically, we show that every
coding scheme for the original network can be modified to a
coding scheme for the Cognitive MAC such that whenever the
original scheme is successful (i.e, all messages are decoded
correctly), then so is the modified scheme. Fix a coding
scheme for the original network. The transmitters of the
Cognitive MAC apply the same encodings as in the original
scheme. The only receiver of the Cognitive MAC, i.e., the
Group A receiver, performs the decoding in ¢ + 1 rounds
0,...,¢9. In round i = 0, it decodes the messages {Mj}rea
in the same way as in the given original scheme. In rounds
i=1,...,q,

4For the lemma to hold, it suffices that the differential entropies grow slower
than any multiple of nlog(P).
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o it attempts to reconstruct the channel outputs {Yk}keRBi
observed by the receivers in Group 5; using the pre-
viously decoded messages {My}ic4,, the observed or
previously reconstructed channel outputs {Y i }rer A and
the genie-information Vo, ..., V; then

o it decodes the messages {Mj}rcp, based on its recon-
structions of the outputs {Yk}keRB,» in the same way
as the receivers in Group B; did in the original
scheme.

By Assumption (26), the round-i reconstruction step is
successful if all previous rounds’ O,...,i — 1 recon-
struction and decoding steps were successful. Thus, the
additional reconstruction steps in the Cognitive MAC decod-
ing do not introduce additional error events compared
to the original decoding procedure, and Inclusion (29)
follows.

We are left with showing that the multiplexing gain of the
Cognitive MAC is upper bounded by |R 4]. Since the Group A
receiver is required to decode all K messages My, ..., Mg,
by Fano’s inequality, reliable communication is possible
only if

K
ank < I({Yihery Vo, ... Vg My, ..., Mk)
k=1
= I({Yk}kERA’ Mla e ,MK|VO’ ceey Vg)
< h({Yihery) —h({Ni}ker 41Vo, ... V). 3D

The multiplexing gain of h({Yk}keRA) is bounded by [R 4].
Moreover, by assumption, h({Nk}keRA|V0, e Vg) is finite
and bounded in P. We therefore obtain from (31)

Zkl

< |Rul, 32

A Tlog(P) Ral (32)

which gives the desired bound (30). [ |
V. PROOF OF THEOREM 1

Define
K—tr—ri—1

y £ { e W (33)
te+t+re+r+2

BEt+t+re+r+2, (34)

£ (K mod p). (35)

A. Achievability Proof of Theorem 1

We derive a lower bound by giving an appropriate coding
scheme. The idea is to silence some of the transmitters, which
decomposes our asymmetric network into several subnets
(subnetworks), and to apply a scheme based on Costa’s dirty-
paper coding® and on successive interference cancellation in
each of the subnets.

5Alternatively, also the simpler partial interference cancellation scheme
in [17], which is based on linear beam-forming, could be used instead of
the dirty-paper coding.
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1) Splitting the Network Into Subnets: We silence transmit-
ters jp, for j € {1,..., LK/f]}; moreover, if & > (tr+re+1)
we also silence Transmitter K. This splits the network into
[K/p] non-interfering subnets. The first | K/f| subnets all
have the same topology; they consist of (t, +t. +r¢+rr + 1)
active transmit antennas and (¢t + t, + rp + rr + 2) receive
antennas. We refer to these subnets as generic subnets. If K
is not a multiple of f, there is an additional last subnet with

K active transmit antennas, ifx <(r+re+1),

x — 1 active transmit antennas, if x > (t; +r¢+ 1),

and with x receive antennas. We refer to such a subnet as a
reduced subnet.

As we shall see, in our scheme each transmitter ignores
its side-information about the messages pertaining to trans-
mitters in other subnets. Likewise, each receiver ignores its
side-information about the outputs of antennas belonging to
receivers in other subnets. Therefore, we can describe our
scheme for each subnet separately.

The scheme employed over a subnet depends on whether
the scheme is generic or reduced and on the parameter
rr > 0. We describe the different schemes in the following
subsections.

2) Scheme Over a Generic Subnet When r, > 0: For
simplicity, we assume that the parameters K, t¢, t, r¢, 1 are
such that the first subnet is generic and describe the scheme
for this first subnet.

In the special case rp =2, 1, =2, 1 = 1, and r, = 1 the
scheme is illustrated in Figure 3. In general, in the first subnet,
we wish to transmit Messages M1, ..., My, {1,441, 4r+1. Define
the sets (some of which may be empty)

G ={l,...,re+1}

G ={r¢+2,...,rc+1t+ 1)

Gy ={re+te+2,...,rc+tr+1 + 1}

Gy ={re+te+t,+2,...,re+tp+ 1t +r + 1},

Messages {My}reg, are transmitted as follows.

o For each k € G| we construct a single-user Gaussian
code Cr of power P, blocklength n, and rate Ry =
%log(l + P).° The code C; is revealed to Transmitter k
and to Receivers k, ..., rp + 1.

o Each Transmitter k € Gy ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from codebook Cj that corresponds to its mes-
sage My and sends this codeword over the channel.

o Decoding is performed using successive interference can-
cellation, starting by decoding Message M based on the
outputs of the first antenna Y7'.

Specifically, each Receiver k € G; decodes as follows.
Let )A(f)’ be an all-zero sequence of length n. Receiver k
initializes j to 1 and while j < k:

%In order to satisfy the block-power constraint imposed on the input
sequences, the power of these Gaussian codebooks should be chosen slightly
smaller than P. Similarly, for the probability of error tending to 0 as n — 0o
the rate Ry should be slightly smaller than 1/2log(1 + P). However, these
are technicalities which we ignore for readability.
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— It computes the difference

n v
Y: —an-il,

J J (36)

and decodes Message M; based on this difference
using an optimal ML-decoder. Let M j denote the
decoded message.’

— It picks the codeword x;’(M ;) from codebook C;

that corresponds to the guess M ; and produces this
codeword as its reconstruction of the input X ;’

X" = x"(M)). (37)

— It increases the index j by 1.

o Notice that each Receiver k € G| has access to the output
signals Y{',..., Y because k < r, + 1, and thus the
described decoding can indeed be applied.

o Foreach k € Gy, if Message My_ was decoded correctly,
i.e., Mk_l = Mj_1, we have

Y — X! = X!+ N (38)

Thus, in this case, Message M is decoded based on the
interference-free outputs X}’ + N}, and, by construction
of the code Cy, the average probability of error

Pr[Mk =M;]—>0 as n— oo. (39)

If t; > 1, Messages {M}}icg, are transmitted as follows.

o For each k € G, we construct a dirty-paper code Cy that
is of power P, blocklength n, and rate Ry = % log(1+ P),
and that is designed for noise variance 1 and interference
variance a,%P (which is the variance of aiXyr—_1). The
code Cy is revealed to Transmitters k, ..., rp +1t,+ 1 and
to Receiver k.

o Each Transmitter k € G computes the interference term
axX;_, and uses the dirty-paper code C; to encode
its message M; and mitigate this interference o X} ;.
It then sends the resulting sequence over the channel.

o Each Receiver k € G, ignores all the side-information
about other receivers’ outputs. It decodes its desired
message My solely based on its own outputs

Y =X} +axXj_ + N} (40)

applying dirty-paper decoding with code Cy.

o Transmitter k € G, can compute axXj]_, because
in our scheme X , depends only on messages
My, 11,..., M1, and these messages are known to
Transmitter k because (k — (rp + 1)) < 1, for all k € G».

o By construction, the sequence X7, which encodes Mes-
sage My, can perfectly mitigate the interference ax X},
and the average probability of error

Pr(My = Mi] - 0 as n — oo. (41)

If t, > 1, Messages {M}}icg, are transmitted as follows.

o For each k € G3, we construct a dirty-paper code Cy of
power a,%Jr] P (the power of a1 Xy), blocklength n, and

TNotice that all receivers k = Js...,rg+1 decode Message M Ji in the same
way, and thus they produce the same estimate M.
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Decoding by
interference cancellation

o
NNy
T

e iy
LMy M3

Signal based on
transmitter’s message only

rate Ry = % log(l—i—ozl,%Jr1 P), and that is designed for noise
variance 1 and interference variance P (the variance of
X; +1)- The code Cr is revealed to Transmitters ry + fp +
2,...,k and to Receiver k.
Each Receiver k € G3 decodes its desired message My
based on the outputs of the antenna to its right
Y = Xigy + o Xg + Niy g, (42)
to which it has access because 7 > 1. The exact decoding
procedure is explained shortly.
Each Transmitter k € G3 computes the “interference”
sequence X; , and applies the dirty-paper code Cy to
encode Message M; and mitigate this “interference”
X? .. Denoting the produced sequence by X”, Trans-

k+1°
mitter k sends

-

X! =
k
Ok+1

(43)
(The scaling by 1/ax+1 in (43) reverses the amplification
by ax+1 the sequence Xj experiences on its path to
Receiver (k + 1), see (42).)

Each Receiver k € Gz applies the dirty-paper decoding
of code Ci to the outputs

(44)
(45)

Vi = a1 X + Xy + N
=X} + X} + Ny

Notice that Transmitter k € G3 can compute the “interfer-
ence” Xj, ; non-causally, because this latter only depends
on messages M1, ..., My, 44,4+,+2 Which are known to
Transmitter k.

Also, by construction of the code Cg, the sequence XZ
is average block-power constrained to a,% 41 P and thus,
by (43), the transmitted sequence X} is average block-
power constrained to P.

M

DPC to cancel
signals from left

i }g Silenced

Signal based on
transmitter’s message only

DPC to cancel
signals from right

Scheme in a generic subnet for parameters tp =2, t, =1, rp =2, and r, = 1.

« By construction, the sequence )~(”, which encodes Mes-

sage My, can perfectly mitigate the “interference” X} |,

and the average probability of error

Pr[Mk =M —>0 as n— oo. (46)

Messages {My}ieg, are transmitted as follows.
o For each k € G4, we construct a single-user Gaussian

codebook Cj of power a,% +1P, blocklength 7, and rate
Ry =1 log(1 4 a,%H P). The codebook Cy is revealed to
Transmitter k and to Receivers k, ..., rp+tp+1t, +r,+ 1.
Each Transmitter k € Gs ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from code Cj that corresponds to its message My
and sends this codeword over the channel.
Decoding is performed using successive interference can-
cellation, starting by decoding Message M, 1,41, 4 +1
based on the outputs of the last antenna Y}, .. . .
Specifically, Receiver k € G4 decodes its desired Message
My as follows. Let X ;’{ o+, 41,43 D€ an all-zero sequence
of length n.
Receiver k initializes j to r¢ + 1, + 1t + 71, + 1, and while
j=k:

— It computes the difference

= X (47)
and decodes Message M; based on this difference
using an optimal ML-decoder.

Let M; denote the resulting guess of Message M.

— It reconstructs the input sequence X;’ by picking
the codeword x;’ (M ;) from codebook C; that cor-
responds to Message M &

x;l (M;).

Xn

"= (48)

— It decreases j by 1.



6352

« Notice that Receiver k € G4 has access to the output
signals Y, ..., le;+tf+t,+r,+2 because k > re+tp+t,+2.
o For each k € Gy, if the previous message My_1 has been

decoded correctly, i.e, Mk_l = Mj._1, we have

Yy, — f(/rcl+1 = a1 X} + Ny (49)

Thus, in this case, Message My is decoded based on the
interference-free outputs ak+1Xz + N,’: 1 and, by con-

struction of the code Ci, the average probability of error

PrMy = My] - 0 as n — oo. (50)

To summarize, in the described scheme we sent messages
My, ..., My, 41,41, +r,+1 With vanishingly small average prob-
ability of error, see (39), (41), (46), and (50), and at rates

1
Rl = = Ryiyt1 = Elog(l +P) (51)

1
Rrptip+2 = - = Ryprtpttytro+1 = > log(1 + a1 P). (52)

Conclusion 1: Irrespective of the nonzero cross-gains {ay}
and for any t¢,t.,re > 0 and r. > 0, our scheme achieves
a multiplexing gain of (r¢ + t¢ + t, + rr + 1) over a generic
subnet. It uses all (re+1t¢+1t-+r,+1) active transmit antennas
of the subnet and all (r¢p + t¢ + t- + rr 4+ 2) receive antennas.

3) Scheme Over a Generic Subnet When r, = 0: We again
assume that the first subnet is generic and focus on this first
subnet. When r, = 0 we transmit Messages My, ..., My, 1,41
and My, 41,43, .., My, 41,41,+2 over the first subnet.

Messages { My }ie(g,ug,) are transmitted in the same way as
in the previous section V-A2. If #, > 0, the set Gz is nonempty.
In this case, Messages {Mj11}keg, are transmitted in a similar
way as Messages {My}rcg, in the previous section V-A2,
except that now each Transmitter k& € G3 sends Message My
(as opposed to Message Mj) and accordingly, each output
sequence Y;' | is used by Receiver k + 1 to decode Message
M1 (as opposed to Receiver k decoding Message My based
on Y;' ;). More specifically:

o For each k € Gz, we construct a dirty-paper code Ci1
that is of power a,%H P (the power of ay4+1Xk), block-
length n, and rate Ryy1 = %log(l + a,%HP), and that is
designed for noise variance 1 and interference variance P
(the variance of Xj41). The code Cp4p is revealed to
Transmitters rp + t, + 2, ...,k and to Receiver k + 1.

o Transmitter k € Gz applies the dirty-paper code Cyy1 to
encode Message My and mitigate the “interference”
X Dezloting the sequence produced by the dirty-paper
code by X7, Transmitter k£ sends

xr =Lz,
Qk+1
o Each Receiver k + 1, for k € Gz, ignores its side-
information about outputs observed at other antennas.
It decodes its desired Message M4 solely based on the
outputs at its own antenna

(53)

Vi = ak1 X + Xy + Ny
= Xi + X + Ny

(54)
(55)

using the dirty-paper decoding of code Ci1.
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o Notice that Transmitter k € G3 can compute the “inter-
ference” sequence X, ; because this latter only depends
on messages M2, ..., My, 44+1,+2 Which are known to
Transmitter k.

« By construction, the sequence )N(”, which encodes Mes-
sage Mj41, can completely mitigate the “interference”
X}, 1> and the average probability of error

Pr[Mk+1 # Mi41]—> 0 as n — oo. (56)

To summarize, in the described scheme we transmit Mes-
sages My, ..., Mr[th{Jr] and Mr[th[Jr}, e Mr[+tf+tr+2 with
vanishingly small average probability of error, see (39), (41),
and (56), and at rates

1
Ry = =Rytpt1 = Elog(l + P) (57)
1
Rypvip43 = - = Rypyptt,42 = > log(1+ag, P). (58)

Conclusion 2: Irrespective of the nonzero cross-gains {ay}
and for any te, tr,r¢ > 0, our scheme for r, = 0 achieves a
multiplexing gain of (r¢ + t¢ + t» + 1) over a generic subnet.
Ift, > 1, it uses all (re+te+t-+r +1) active transmit antennas
and all (re+ty+1t-+2) receive antennas of the subnet. If t, = 0
it uses all (re + t¢ + 1) active transmit antennas; but it only
uses the first (r¢ + tp + 1) receive antennas and ignores the
last antenna of the subnet.

4) Scheme Over a Reduced Subnet: Let

rp £ min[(x — 1), r¢] (59a)
tp £ min[(k —r¢ — 1)y, 1] (59b)
tEmin[(k —re —te —2)4 , 1] (59¢)
rhEmin[(k —re —te —t, —2) 4 1] (59d)

where (x)4 is defined as max{x, 0}. In a reduced subnet we
apply one of the two schemes described for the generic subnet
but now with reduced side-information parameters r, 7, t,, ;.
If v/ > 0, we apply the scheme in Subsection V-A2 otherwise
we apply the scheme in Subsection V-A3. Notice that, by
definition, r;, < r¢, t; < t¢, t, < t/, and r} < r,, and thus
the transmitters and receivers have enough side-information
to apply the described schemes with these parameters.

When « < (t, + r¢ + 1), then the reduced subnet consists
of an equal number x of active transmit and receive antennas
because the last transmit antenna has not been silenced. In
this case, also #, = r, = 0 and by Conclusion 2, the scheme
in Subsection V-A3 achieves multiplexing gain x over such a
subnet.

When « > (t + r¢ + 1), the subnet consists of
x — 1 active transmit antennas and x receive antennas.
By Conclusions 1 and 2, one of the schemes in
Subsections V-A2 or V-A3 achieves multiplexing gain « — 1
over such a subnet.

To summarize, we achieve a multiplexing gain of

K,
x—1,

over a reduced subnet of size k.

ifx <tr+rr+1

. (60)
ife>tr+rp+1
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5) Performance Analysis Over the Entire Network: Over
each of the first |[K/f] generic subnets we achieve a mul-
tiplexing gain of f — 1 and, if it exists, then over the last
reduced subnet we achieve a multiplexing gain of either x or
x — 1, see (60). Over the entire network we thus achieve a
multiplexing gain of

_ | K- LK/BI, ifw <te+re+1
K—y= K

. (61)
ifx>tr+rp+1.

— LK/l -1,

This proves the desired lower bound.

Remark 7: In the described scheme a subset of y messages
is completely ignored and not sent over the network. Using
time-sharing we can obtain a fair scheme that sends all
messages at almost equal rates and achieves a multiplexing
gain of at least K —y — 1. More specifically, the idea is to
time-share f§ schemes where in the i-th scheme, i € {1, ..., S},
we silence transmitters {i + Jﬁ}]e{l ..... L and if

(K mod B) > (i +1t¢ +re+ 1), then we also silence the
last transmitter K. This splits the network into y or y + 1
subnets: a possibly reduced first subnet, y —2 or y — 1 generic
subnets, and a possibly reduced last subnet. In each of the
subnets, depending on whether it is generic or reduced, one
of the schemes described above is used.

K—i|]»
4

B. Converse to Theorem 1

Apply the Dynamic-MAC Lemma 9 to the following
choices:

o« AZJS_, A(m), where form =0,...,¢g — 1,
Am) £ {mp +re+2,..., (m+ D —ry)
and
A(g) (g +re+2,...,K}.
. Bl = K \ A;
« genie-information
re+te+1 v 1
Vo Ni+ > [[— N (6
— i 1+
v=1 j=1
and, form e {1,..., g}
Vi £ N1+mﬁ
re+te+1 v
+ N1+mﬁ+v
; =1 amﬂ+l+]
ty+ry v
+ 2 A TTEampriei—) | Nigmp—y  (63)
v=1 \j=1
Notice that by our choice of A, the set difference
K\R4={1+ mﬁ}i:o (64)

Since for each m = 0,...,g the genie-information V,
contains an additive noise term N1, which is not present
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in all other genie-informations {V ,,/},/ 4, (64) and the inde-
pendence of the noises imply that the differential entropy
in (25) is finite. Moreover, the differential entropy does not
depend on P because neither does the genie-information.
In the following, we show that also the second assumption (26)
of Lemma 9 is satisfied and that thus we can apply the lemma
for the described choice. This then proves the desired converse
because, by (64), [R4|l=K —g—1=K —y.

By (64), the set {Mj}rea includes all messages

{M;, +24v+mplo<v<t,+1,» Where out of range indices should be
0<m<y-—1
ignored. From {Mj}ic.4 it is thus possible to reconstruct the

input sequences { X, 121m ﬁ}m=0-

(n)
Xrttes24mp = Fryt1p420mp Mre+24mps - - s Mrpyiprt,+24mp)-

Using these reconstructed sequences, the output sequences
observed at the receivers in Group .4, and the genie-
information {Vm}m _o» it is then possible to reconstruct
all channel outputs not observed by the receivers in
Group A, (64):

re+te+1 v

—1
; J]‘:[l Omp+1+j
te+re+1 1
+ X142+ Vo
jl;[l Amp+1+j o
and, form € {1,..., g}
re+te+1 v
Y1+ = — Y1+ +
" ; U Omp+1+j e
= ji
tr+rr v
— Z H (—(lmﬁ+1+j—v) Y1+mﬁ—v
v=1 \j=1
te+re+1 _1
+ — | X2+
]1—[_1 Omp+1+j e "
rr+ty
— H (—amﬁ+1+j7r,7tr) Xr[+tg+2+(m—l)ﬁ
j=0
+Von.

This establishes that Assumption (26) holds, and concludes
the proof.

VI. ACHIEVABILITY PROOF OF THEOREM 3

For each of the four lower bounds 1)-4) in Theorem 3,
i.e., Inequalities (14)—(17), we present a scheme achieving this
lower bound. The four schemes are similar: they all rely on
the idea of switching off some of the transmitter/receiver pairs,
and on using the strategy in Subsection VI-A ahead over the
resulting subnets. (Here, by silencing transmitter/receiver pairs
we intend that we silence the antennas at the transmitters and
ignore the corresponding antennas at the receivers.) This splits
the networks into non-interfering subnets. In each scheme we
silence a different set of transmitter/receiver pairs. As we will
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see we do this in a way that splits the network into subnets
that have at most t, + r, + 1 active transmitter/receiver pairs.

We first describe the strategy used to communicate over
the subnets (Section VI-A). Then, we present the set of
transmitter/receiver pairs that needs to be silenced in each of
the four schemes, so that they achieve the lower bounds in
1)-4) (Sections VI-C-VI-F).

A. Strategy Used in the Subnets

Consider a subnet with x transmitter/receiver pairs, where
x < tr+r¢+1. Notice that this subnet’s channel matrix is given
by H, (o). We first present a coding strategy that achieves full
multiplexing gain of rank(H, (a)) over the subnet when

k=te+re+1. (65)

Then we describe how to modify this strategy to achieve full
multiplexing gain of rank(H, («)) over the subnet when x <
te+re+ 1.
Depending on which of the following three cases applies,
we use a different scheme to communicate over the subnet.
1.) If the transmitters and the receivers have the same amount
of side-information:

re+r, =tr+tr (66)

we use a Multi-Input/Multi-Output (MIMO) point-to-
point scheme.

2.) If the transmitters have more side-information than the
receivers:

re+r, <tp+t 67)

we use a MIMO broadcast scheme.
3.) If the receivers have more side-information than the
transmitters:

re+rr > te+ 1t (68)

we use a MIMO multi-access scheme.

We first describe the MIMO point-to-point scheme for
case 1.). In this case (13) and (66) imply that

tr=r, and t, =ry. (69)

Therefore, since k = r¢ + tp + 1, (65), all k transmitters are
cognizant of Message M, 1 and Receiver (7, + 1) has access
to all x antennas in the subnet. Thus, all the transmitters can
act as a single transmitter that transmits Message M, 4+ to
Receiver (f 4+ 1) which can decode the Message based on all
the antennas in the subnet. Using an optimal MIMO point-
to-point scheme for this transmission achieves a multiplexing
gain of rank(H, (a)) over the subnet.

We next describe the MIMO broadcast scheme for case 2.).
Notice that (13) and (67) imply that

re <t (70)

By (13) and (65), all the transmitters are cognizant of Mes-
sages My, 41, ..., M; 41 and Receivers (r¢ +1),...,(t + 1)
Jjointly have access to all the ¥ antennas in the subnet. Thus,
all the transmitters in the subnet can act as a big com-
mon transmitter that transmits Messages M, 41, ..., My 41
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Ms Ms My
A
Y Y Y3 Yy

Messages known to all
transmitters

Fig. 4. Broadcast scheme employed in a subnet for parameters x = 4, tp = 2,
tr =3, rp=1,and r, =0.

to the independent Receivers (ry + 1),..., (¢, + 1). where
Receiver (rp + 1) decodes based on antennas 1,...,r, + 1
(and ignores the other antennas), Receivers (ry + 2),...,1
decode based only on their own antennas, and Receiver (7,41)
decodes based on antennas # + 1,...,4 +r + 1.8 Using an
optimal MIMO broadcast scheme for this transmission we can
achieve a multiplexing gain of rank(H, (a)) over the subnet.

For parameters tp = 2, t, = 3, rp = 1, and r, = 0 the
scheme is illustrated in Figure 4.

We finally describe the MIMO multi-access scheme for
case 3.). Here, (13) and (68) imply

1 <re. (71)

By (13) and (65), each transmitter knows at least one
of the Messages M; 41,..., My, 1, and Receivers (#, +
1), ..., (re+ 1) all have access to all x receive antennas in the
subnet. In our scheme the first 7 + 1 transmitters 1, ..., 7 +1
act as a big common transmitter that transmits Message M;, 4.
Similarly, the last #, + 1 transmitters rp+ 1, ..., r¢ 41+ 1 act
as a big common transmitter that transmits Message M,, 4.
Transmitters ¢, + 2,...,r, act as single transmitters that
transmit their own messages. Receivers (¢, + 1), ..., (re + 1)
act as a single big common receiver that decodes Messages
M +1,..., M, 1 based on all the antennas in the network.
Applying an optimal MIMO MAC scheme for this transmis-
sion achieves multiplexing gain rank(H, (a)) over the subnet.

For parameters t; = 2, t, = 0, rp = 1, and r, = 3 the
scheme is illustrated in Figure 5.

We conclude that with the above described schemes we can
achieve a multiplexing gain of rank(H,(a)) when x = 1, +
re + 1, irrespective of the specific values of 7, and ry.

We now consider the case where

K <tr+re+1. (72)

8The described assignment of antennas to receivers is only one possible
assignment that leads to the desired multiplexing gain. Other assignments are
possible.
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They have access to all

Each transmitter knows

at least one of those

Fig. 5. Multi-access scheme employed in a subnets for parameters x = 4,
tp=2,t=0,rp=1, and r, =3.

In this case we choose parameters t, < t;, t| < t,, r; < r¢,
and r/ < r, such that

K:té—i—ré—i—l:t;—i—rr’—i—l, (73)
and depending on the choice of ;,1/,r;,r, we apply one
of the three schemes above. This way, we achieve multi-
plexing gain rank(H.(a)) over the subnet also when (72)
holds.

We obtain the following proposition.

Proposition 10: For every subnet with k < t¢r + r¢ + 1
transmitter/receiver pairs one of the three schemes described
above achieves a multiplexing gain of rank(Hy (a)).

This result relies on the cross-gains only through the rank
of the subnet’s channel matrix. Therefore, also in the setup
with general cross-gains {ax ¢} and {ak,}, over any subnet
with k¥ < t; + r¢ + 1 transmitter/receiver pairs the described
schemes achieve a multiplexing gain equal to the rank of the
subnet’s channel matrix.

B. Auxiliary Results

The following auxiliary results will be used in the proofs
ahead.

Lemma 11: Let a real number o and a positive integer p
be given such that det (Hp(a)) = 0. Then, the following
statements hold.

1) The integer p > 2.

2) The determinants det (Hp_l(a)), det (Hp+1(a)), and
det (Hp+2(a)) are all non-zero. Moreover, if p > 2 (and
thus H,_>(a) is defined) also det (Hp,2 (a)) is non-zero.

Proof: See Appendix A. [ |

Corollary 12: For every real number o and positive inte-

ger p, the rank of the matrix H,(a) is either p or p — 1.
Proof: Follows by noting that H, {(a) is a sub-matrix
of Hy(a) and by Lemma 11. [ ]
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C. Achieving the Lower Bound in (14)

Recall that (14) holds under the assumption that K < t, +
r¢e + 1. In this case, we do not silence any transmitter/receiver
pairs but we directly apply one of the threes schemes in the
previous Subsection VI-A. By Proposition 10 this way we can
achieve a multiplexing gain of rank(Hg («)), which trivially
equals K if det (Hg (@)) # 0 and by Corollary 12 equals K —1
otherwise.

D. Achieving the Lower Bound in (15)

Recall that (15) holds under the assumption that K > (fp +
r¢ +2) and det (Hy4r,+1(a)) # 0. We define

kK2 K mod (t; +r+2) (74)
~£{ K J (75)
U [P

and notice that by assumption y > 1.

We switch off the transmitter/receiver pairs {g(t; + r¢ +
2)};:1, i.e., in total y transmitter/receiver pairs. This decom-
poses the network into y subnets with (f; + r¢ + 1) trans-
mitter/receiver pairs and possibly a smaller last network with
K < (t¢f 4+ r¢ + 1) transmitter/receiver pairs. Thus, in each
subnet we can apply one of the schemes described in Sub-
section VI-A. By Proposition 10, this achieves multiplexing
gain rank (H,H,[H(a)) over the first 7 subnets and multi-
plexing gain rank (Hz(a)) over the last smaller network (if
it exists). By assumption det (H;,4,,11(a)) # O and thus
rank (H,HWF] (a)) = (tr+r¢+1); moreover, by Corollary 12,
rank (Hz (a)) is either equal to ¥ or to ¥ — 1. Thus, we achieve

K
] 1
In fact, whenever k = 0 or det (H; (ai) # 0, then we can even

at least the desired multiplexing gain of K —

. . . . K
achieve a multiplexing gain of K — e |

E. Achieving the Lower Bound in (16)

Recall that (16) holds under the assumption that K >
(tp + re + 2); that det (Hzf+rf+1(0!)) # 0; and that
det (H,H_r[(a)) # 0.

We distinguish two cases depending on « as defined in (74):

1) rank (Hz(a)) = «;

2) rank (Hz(a)) < k.

In case 1) we use the same scheme as in the pre-
vious Subsection VI-D. As described above, this scheme
achieves a multiplexing gain of rank (H;,4,+1(a)) over each
of the first Lﬁ
rank (Hz (a)) over the last smaller network. Since we assumed
that det (H,[+,[+1(a)) # 0 and that rank (Hz(a)) = &,
we conclude we achieve the desired multiplexing gain of
K- Lﬁ

We now treat case 2). Notice that in this case ¥k < fy + r¢
because we assumed that det (Hy4r+1(a)) # O and that
det (H,Hr[ (a)) # 0. i

We switch off transmitter/receiver pairs {g(t; +r¢ + 2)};;;
and transmitter/receiver pair 7 (tp + rp + 2) — 1, where y is
defined in (75). This way, the first y — 1 subnets are of size
tr + re + 1, the next subnet is of size (¢t + r¢), and the last

subnets and a multiplexing gain of

J over the entire network.
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is of size k¥ + 1 (where x is defined in (74)). Thus, all the
subnets consist of at most fp + ry + 1 transmitter/receiver
pairs, and we can apply one of the three schemes described in
Subsection VI-A.

Since det (Ht/+r/+1 (a)) # 0, by Proposition 10, we achieve
a multiplexing gain of #; + r¢ + 1 over each of the first y — 1
subnets. Moreover, since we assumed that det (Hy, 4, (2)) # 0,
we further achieve a multiplexing gain of (t; + r¢) over the
7 -th subnet. Finally, since we assumed that det (Hz (o)) = 0,
by Lemma 11, det (H,;H (a)) # 0, and thus we achieve a mul-
tiplexing gain of k¥ 4+ 1 over the last subnet. We conclude that
our scheme achieves full multiplexing gain (i.e., multiplexing
gain equal to the number of transmitter/receiver pairs) in each
subnet and hence a multiplexing gain of K — L

J over
the entire network.

_K
te+re+2

F. Achieving the Lower Bound in (17)

Recall that (17) holds under the assumptions that K > t, +
re + 2 and det (Ht[+r[+1) =0.

We switch off every (fy + rp + 1)-th transmitter/receiver
pair, i.e., in total ﬁ transmitter/receiver pairs, and,
depending on the values of #;, t., r¢, 1, we apply one of the
three schemes in Subsection VI-A over the resulting subnets.
Following similar lines as in the previous proof, it can be
shown that all the resulting subnets have full-rank channel
matrices and thus by Proposition 10 a multiplexing gain of
K— LﬁJ is achieved over the entire network. The details
of the proof are omitted.

G. General Cross-Gains {ay,¢} and {ak,,}

The performance analysis of the schemes presented in the
previous subsections rely on the cross-gains only through the
ranks of various principal submatrices of the network’s channel
matrix Hx and on the fact that the cross-gains are nonzero.
Thus, our proofs and results generalize to non-equal cross-
gains {ag ¢} and {ax,,}.

More specifically, the three MIMO coding strategies dis-
cussed in Subsection VI-A achieve multiplexing gains equal
to the rank of the subnet’s channel matrix if the subnet consists
of no more than #; + rp + 1 active transmitters and receivers,
irrespective of the actual values of the cross-gains and of
whether they are all equal or different. Thus, for general cross-
gains {ag,¢} and {o .}, if we silence pairs of consecutive
transmitters, ignore the corresponding receivers’ antennas, and
apply the appropriate MIMO strategies over the resulting
subnets, then we achieve a multiplexing gain over the entire
network that is equal to the sum of the ranks of the subnets’
channel matrices.

The best choice of the pairs of transmitters to silence
depends on the values of the cross-gains. In the case of
equal cross-gains o, Lemma 11 and Corollary 12 helped us
determining the best choices. Finding the optimal choices
for general cross-gains seems very involved. Lemma 11 and
Corollary 12 however generalize, and can provide some help.
Lemma 11, for example, generalizes to arbitrary nonzero
cross-gains in the following way. For each positive integer
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p =< K, let Hye,p denote the p-th principal submatrix of
Hnet. Then, Lemma 11 remains valid if the matrices H, ()
are replaced by Hne,q forg € {p —2,p—1,p,p + 1, p}.
This can be verified by inspecting the proof. (The main change
concerns (135), where a? needs to be replaced by the product
ok, - ak—1,r, for some k € K, which by assumption is again
nonzero. All other steps remain unchanged.)

In a randomized setup where the cross-gains are chosen
independently according to a continuous distribution all cross-
gains are nonzero with probability 1 and all the principal
submatrices of the network’s channel matrix Hye are full rank
with probability 1. This implies in particular that the coding
schemes in Subsections VI-C (for K <t +r¢ + 1) or VI-E
(for K > ty 4+ r¢ + 2) achieve the optimal multiplexing gain
K —

ﬁ with probability 1.

VII. PROOF OF PROPOSITION 6

We first prove the lower bound in 2), followed by the lower
bounds in 3), 1), and 4).

A. Proof of Lower Bound 2), i.e., (21)

If &4 = 0, then (21) follows from lower bound (22).
Moreover, if t, +r; < 1, then there is nothing to prove, as the
multiplexing gain cannot be negative.

Thus, in the following we assume that t, + r, > 2 and
tr > 1, and present a scheme that achieves the lower bound
in (21) under this assumption. Our scheme is similar to the
scheme for the asymmetric network described in Section V-A
when this latter is specialized to 7, = r, = 0. (In particular our
scheme here disregards the right side-information available to
the transmitters and the receivers.)

The idea is again to silence some of the transmitters, which
decomposes our asymmetric network into several subnets, and
to apply a scheme based on Costa’s dirty-paper coding and
successive interference cancellation to communicate over the
subnets. However, here, due to the two-sided interference,
pairs of consecutive transmitters are silenced and the dirty-
paper coding and the successive interference cancellation
strategies are used to “cancel” two interference signals.

Define

B2 (tr+re+1) (76)

|7
e B2

and recall that in Proposition 6 we defined x» £ K mod S,
and

7

2, ifxy>2
a1, ifrn=1 (78)
0, ifr=0.

1) Splitting the Network Into Subnets: We silence transmit-
ters {mfr + 1)/>~) and transmitters {mf2}’>_,. Moreover, if
6> = 1 we also silence transmitter (y2f2 + 1) and if 6, = 2
then also transmitters (y2f>+1) and K. Notice that in total we
silence 2y, + 6, transmitters. Silencing the chosen subset of
transmitters splits the network into y, non-interfering subnets
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if o = 0 and into y» 4+ 1 non-interfering subnets if 6, > 1.
In both cases, the first y, subnets all have the same topology
and consist of f, — 2 active transmit antennas and of f»
receive antennas. In fact, the m-th subnet, form € {1, ..., y2},
consists of transmit antennas ((m — 1)f2 +2), ..., (mpa — 1)
and receive antennas ((m — 1)+ 1), ..., mf>. We call these
subnets generic. If 6, > 1, then there is an additional last
smaller subnet which consists of max{x; —2, 0} active transmit
antennas and x; receive antennas. More precisely, it consists of
transmit antennas (K —x2+2), ..., (K—1) (i.e., of no transmit
antennas if x < 2) and of receive antennas (K —xz+1), ..., K.

The scheme employed over a subnet depends on whether the
scheme is generic or reduced and on the parameter r; > 0.
We describe the schemes in the following subsections.

2) Scheme Over a Generic Subnet When rp > 1: We assume
that the first subnet is generic and describe the scheme for this
first subnet.

We transmit Messages Mo, ...
Define the sets

, My, 1, over the subnet.

2,...,rp+ 1}
re4+2,...,rp + te}.

(79)
(80)

> 1>

Fir=A{
Fr =A{
Messages {M }xeF, are transmitted as follows.

o For each k € 7| we construct a single-user Gaussian
codebook Cy of power a?P, blocklength n, and rate Ry =
% log(1 + a2 P). The code Cy is revealed to Transmitter k
and to Receivers 2, ..., k.

o Each Transmitter k € F; ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from codebook Cj that corresponds to its mes-
sage M. Denoting the resulting sequence by X7, the
transmitter sends the scaled version

1.
Xp=—X}
k a k

(81)
over the channel.

o Receiver k € Fj, uses successive interference cancella-
tion to decode its desired Message M. Let X{j and X7 be
two all-zero sequences of length n. Receiver k initializes
j to 2, and while j < k:

— It decodes Message M based on the difference

n o o7
Y! | —aX" ,— X",

J J J (82)

using an optimal ML-decoder. Let M j denote the
resulting guess.
— It picks the codeword from codebook C; that corre-
sponds to the guess M ; and scales it by é to form
the guess )A(;Z
— It increases the index j by 1.
o Notice that Receiver k € F] has access to the output
signals Y{', ..., Y}' because k <r¢+ 1.
o For each k € Fi, if the previous two messages were
decoded correctly, ]l;lk,z = Mj}_» and A;[k,l = M1,

Y, —aXl ,—X{ =X +N} . (83)

6357

Thus, in this case, Message M is decoded based on the
interference-free outputs a X}’ + N;_,, and, by construc-
tion of the code Cy, the average probability of error

Pr[M; = My] — 0 as n — o0o. (84)

If tp > 2, Messages {M e, are transmitted as follows:

o For each k € F,, construct a dirty-paper code C; of
power a?P and rate R = %log(l + a?P) for noise
variance 1 and interference variance (a2 P + P) (which is
the variance of a Xy—» + X;—1). The code Cy is revealed
to Transmitters k, ..., r¢ + tr and to Receiver k.

o Each Transmitter k € JF, computes the “interference
term” a X} _, + X;_, and applies the dirty-paper code C
to encode its message My and mitigate the “interference”
aX}_, + Xj_,. Denoting the resulting sequence by xn,
the transmitter sends the scaled version

1.
Xj=-Xj. (85)

o Each Receiver k € F> considers only the outputs at the
antenna of its left neighbor, ¥;' . It uses code Cy to apply
dirty-paper decoding based on the outputs

Y | =aX}_,+ X | +aX;+ N}
= X} +aX}_,+ X} +N}.
—_—

(86)
(87)
“interference”

o Notice that Transmitter k € JF> can compute the
sequences X} , and X} |, because in our scheme
they only depend on Messages M,,,..., My_> and
M,,, ..., My_1, respectively.

o By construction, the sequence )N(”, which encodes
Message My, can completely mitigate the “interference”
aXj;_,+ X}_,, and the average probability of error

Pr[]l;[ksz]—>O as n — oo. (88)
To summarize, with the described scheme, we sent

Messages Mo, ..., M,,4; with vanishingly small probability
of error, see (84) and (88), and at rates
Ry=---=Ry4y = %log(l + a’P). (89)

3) Scheme Over a Generic Subnet When r¢ = 0: In this case
the set F1 is empty whereas by the assumption #, + r¢ > 2,
tr > 2 and the set F, is non-empty. We transmit Messages
{Mi—1}kerF, over the subnet.

Specifically, each Transmitter k € F, employs the dirty-
paper scheme as described in th previous subsection VII-A.2,
except that now, instead of sending its own message M, it
sends its left-neighbor’s message My _1 (to which it has access
because f; > 1). Accordingly, the outputs Yk”_ 1» for k € F>,
are now used by Receiver k — 1 to decode its desired message
M.

Here, for each k € 3, the probability of error of Message
Mj.—1 equals the probability of error of Message Mj in the

previous subsection VII-A.2. Thus, by (88), for all k € F>:
Pr[My—1 = My_1] — 0

as n — oQ. 90)
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We conclude that with the described scheme, the messages
My, ...,M;, 1 are communicated with vanishingly small
probability of error and at rates

1 2
Ri=---=Ry_1 = 3 log(1 + a“P). on

Conclusion 3: Our schemes for generic subnets described
here and in the previous subsection VII-A.2 achieve a mul-
tiplexing gain of r¢ + t¢ — 1 over a generic subnet when
re > 1 and when ry = 0, respectively. Both schemes use all
the (t¢ + r¢ — 1) active transmit antennas of the subnet; but
they use only the first (t;+r¢— 1) receive antennas and ignore
the last two receive antennas of the subnet.

4) Scheme Over a Reduced Subnet: Over the reduced
subnet we use one of the two schemes for generic subnets
of Subsections VII-A2 and VII-A3, but with reduced side-
information parameters

(92a)
(92b)

in[(x2 — 1), r¢]
in [(Kz —re—1),, tg] .

B B

By Conclusion 3, this achieves a multiplexing gain of
max{xy; — 2, 0} over a reduced subnet.

5) Analysis of the Performance Over the Entire Network:
Over the first | K /B> ]| generic subnets we achieve a multiplex-
ing gain of f» — 2 and, if it exists, then over the last reduced
subnet we achieve a multiplexing gain of max{xy — 2, 0}.
Thus, over the entire network we achieve a multiplexing gain
of

K —2|K/p| -2,
K —2|K/p2| — K2

if ko >2

93
if ko < 2. ©3)

K—2V2—92=[

This establishes the desired lower bound.

B. Proof of Lower Bound 3)

By symmetry, this lower bound follows directly from (21).
In particular, if ¢, > 1 and ¢ + r, > 2, a scheme that
is symmetric to the scheme described in the previous sub-
section VII-A achieves the desired multiplexing gain in 3).
We briefly sketch this scheme because we will use it to
prove the lower bound in 1), (20), in Subsection VII-C
ahead.

Define
BsE (tr+rr+ 1), (94)
K
VARWAN
2= % | 95)
g Lﬂéj
kb = K mod f5, (96)
and
2, ifxy>2
6, =11, ifwx,=1 97)
0, ifx)=0.
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1) Splitting the Network Into Subnets: We silence transmit-
ters {mfy + 1}3;2:_1 and transmitters {mﬂé}zlzzl. Moreover, if
05 = 1 then we also silence transmitter (y,/5 + 1) and if
05 = 2 then also transmitters (y;f5 + 1) and K. This splits
the network into y; generic subnets with 8} —2 active transmit
antennas and £ receive antennas, and if 6} € {1, 2} then there
is an additional last reduced subnet with max{x), —2, 0} active
transmit antennas and x) receive antennas.

The scheme that we employ in the subnets depends on
whether the subnet is generic or reduced and on the parameter
> 0.

2) Scheme Over a Generic Subnet When r, > 1: Define the
sets F3 and Fy as:

{2»~-~»tr}
{t, +1,...,t, +r}.

> 1>

I3
Fa
Assume that the first subnet is generic. Then, over this first
subnet we transmit messages Mp, ..

Messages {M}icF, are transmitted in a similar way as
Messages {Mj}reg, in the scheme in Subsection V-A, and
Message {Mj}rcF, are transmitted in a similar way as Mes-
sages {My}reg, in that scheme. The only difference is that
here, each dirty-paper code Cy, for k € F3, has to be designed
for an interference variance (> P + P) so that it can mitigate
the “interference” X}/ g taX % 25 likewise, during the succes-
sive interference cancellation steps, each Receiver k € F4 has
to cancel the two “interference” terms X} | and a X} ,.

For brevity, we omit the details of the scheme and of
the analysis. It can be shown that the scheme achieves a
multiplexing gain of ¢, + . — 1 over the generic subnet.

3) Scheme Over a Generic Subnet When r, = 0: In
this case, the set F4 is empty whereas, by the assumption
tr + r, > 2, the set F3 is nonempty. We transmit messages
Ms, ..., M; 4, 41 over the subnet.

Messages {Mj1}rer, are transmitted in the same way as
messages {My+1}keg, in Subsection V-A. For brevity, we omit
details and analysis. It can be shown that such a scheme
achieves a multiplexing gain of #, + r, — 1 over the generic
subnet.

Conclusion 4: Our schemes in the previous
subsection VII-B2 and here achieve a multiplexing gain
of rr +t, — 1 over a generic subnet when r. > 1 and when
rr = 0, respectively. Both schemes use all (t, + r, — 1) active
transmit antennas of the subnet; but they use only the last
(tr +rr — 1) receive antennas and ignore the first two receive
antennas of the subnet.

4) Scheme Over a Reduced Subnet: Over a reduced subnet
we employ the schemes for a generic subnet described above,
but with reduced side-information parameters

B Mtr—l—rw

£/ £ min [(;é -2),, z,] (982)

/

ry 2 min [ (k) = 1 = 2) 17 ] (98b)

By Conclusion 4, such a scheme achieves a multiplexing gain
of max{x) — 2,0} over the reduced subnet.
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C. Proof of Lower Bound 1), i.e., (20)

Iftp+ry =0 or t, +r, = 0, then the proof follows directly
from the lower bounds in 2) or 3). If tp + ¢t +r¢ + 1 < 2,
there is nothing to prove.

Thus in the following we assume that t;, + ¢, +r¢ + 7, > 3
and (t7 + r¢), (t&y + rr) > 1. Define

Br = (e +1ty +re+r7p)

L&)

99)

’ = (100)

and recall that in Proposition 6 we defined x; £ K mod f;
and

2, if kg >2
01211, ifx =1 (101)
0, ifx =0.

1) Splitting the Network Into Subnets: We silence transmit-
ters {mp1 + 1}};,1:_01 and transmitters {mf}’!_ . Moreover, if
61 = 1, then we also silence transmitter (y1f; + 1), and if
07 = 2, then also transmitters (y141 + 1) and K. Thus, in
total we silence 2y + 6 transmitters. This splits the network
into y1 or y1 + 1 non-interfering subnets: the first y; generic
subnets consist of (f; — 2) transmit antennas and /| receive
antennas, and if there is an additional last subnet then it is
smaller and consists of max{x; — 2, 0} transmit antennas and
of x; receive antennas.

The scheme employed in each subnet depends on whether
the subnet is generic or reduced.

2) Scheme Over a Generic Subnet: We assume that the first
subnet is generic and describe the scheme for this first subnet.
To this end, define the groups

.7:1/2é{2,...,rg+tg}
Fap EA{re+te+1),..., e+ 10+t +r, — 1)}

Our scheme is a combination of the two schemes for generic
subnets described in Sections VII-A and VII-B. Over the left
part of the subnet that consists of transmit antennas k € F,2
and receive antennas 1, ..., (rp +t — 1) we use the scheme
in Section VII-A. Over the right part of the subnet that
consists of transmit antennas k € F3,4 and receive antennas
(re +te+2),...,(0r¢ +t¢r + t, + r;) we use the scheme
in Section VII-B where the set F3 needs to be replaced by
{(re+te4+1), ..., (re+te 4+t — 1)} and the set Fy by {(r¢ +
te+t), ..., (re+te+t-+r,—1)} . Thus, the combined scheme
utilizes all the transmit antennas in the subnet but only receive
antennas 1, ...,rp+tr—1and re+t,+2, ..., re+te+t,+r.+2,
i.e., it ignores the two receive antennas (r¢+t,) and (re+1,41),
see also Conclusions 3 and 4.

Since the transmit antennas k € Fj,z in the “left-hand”
scheme do not influence the signals observed at receive
antennas (rp + t; + 2),...,(r¢ + t¢ + t + rr) employed
in the “left-hand” scheme, and the signals sent at transmit
antennas k € F3/4 in the “right-hand” scheme do not influence
the signals observed at receive antennas 1, ..., (r¢ + 1t — 1)
employed in the “left-hand” scheme, the performance of the
two schemes can be analyzed separately. By Conclusions 3
and 4 we achieve a multiplexing gain of ry 4+ f; — 1 over the
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left part of the subnet and a multiplexing gain of . +r, —1 over
the right part of the subnet. Thus, we achieve a multiplexing
gain r¢ + t¢ + t + r» — 2 over the entire subnet.

3) Scheme Over a Reduced Subnet: We employ the same
scheme as over a generic subnet but with reduced side-
information parameters. Details and analysis are omitted for
brevity. Such a scheme can achieve a multiplexing gain of
max{x; — 2, 0} over a reduced subnet.

4) Analysis of Performance Over the Entire Network: Over
the first [ K/f1| generic subnets we achieve a multiplexing
gain of 1 —2 and, if it exists, then over the last reduced subnet
we achieve a multiplexing gain of max{x; — 2, 0}. Thus, over
the entire network we achieve a multiplexing gain of

K —2|K/p1] -2,
K —=2|K/p1] —x1

if kg >2

K—2y1—60= [ (102)

if K1 < 2.

This establishes the desired lower bound.

D. Proof of Lower Bound 4), i.e., (22)

In our scheme the transmitters ignore their side-information.
Define

B3 = (re+rr+3)
5
V3 = B |

and recall that in Proposition 6 we defined x3 = K mod 3
and

(103)
(104)

2, ifwxz>2
BEL, ifxky=1 (103)
0, if k3 =0.

1) Splitting the Network Into Subnets: We silence transmit-
ters {mp3 + 1};’;;01 and transmitters {mﬂ3}frf:1. Moreover, if
63 = 1, we also silence transmitter f3y3 + 1, and if 65 = 2,
we also silence transmitters f3y3 + 1 and K. Notice that in
total we have silenced 2y3 + 63 transmitters.

This splits the network into y3 or y3 4+ 1 non-interfering
subnets: the first y3 subnets consist of 3 — 2 active transmit
antennas and f3 receive antennas (we call these subnets
generic), and if an additional last subnet exists it is smaller and
consists of max{x3z — 2, 0} transmit and x3 receive antennas.

The scheme employed over the subnets depends on whether
the subnet is generic or reduced.

2) Scheme Over a Generic Subnet: We assume that the first
subnet is generic and describe our scheme for this first subnet.
Define

(1>

Hy {2,...,re+1}
Hy £ {re+2}
Hs S {re +3,...,rc+r+2}.

We only sketch the scheme.
o Messages Mo, ...
subnet.
o For each k € (H; UH> UH3), Transmitter k encodes its
Message M; using a Gaussian point-to-point code.

, My, 4,42 are transmitted over the
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o For each k € Hj, Receiver k decodes its message using
successive interference cancellation from the /eft, starting
with the first antenna in the subnet. These messages can
be decoded with arbitrary small probability of error (for
sufficiently large blocklengths), whenever

I
Ry < > log (1 +a2P), Vk e Hi.  (106)

o Similarly, for each k € "H3, Receiver k decodes its
message using successive interference cancellation but
now from the right and starting with the last antenna
in the subnet. These messages can be decoded with
arbitrary small probability of error (for sufficiently large
blocklengths), whenever

I
Ri < > log (1 +a2P), Vk e Hs.  (107)

o Receiver rp+2, which has access to antennas 2, .. ., (re+
- +2), decodes its desired Message M,, 4> by decoding
all the transmitted messages Ma, ..., My, 4, 4+2 using
an optimal MIMO decoder [41]. In this step, we have
arbitrary small probability of error, whenever

re+rr+2

1
Z Ri <3 log (det (I + PH] ., {Hrir41))s (108)
i=2
where here for ease of notation we wrote H,, 4+ instead
of H,, 4, +1(a). Notice that since the channel matrix

H;,4r,+1(a) is non-singular and does not depend on the
power P, by [41]:

_ Llog (det (l n PH;MHH,H,,H))
lim T
5 log(P)

=re+r-+ 1.

P—o0

(109)

Combining (106)-(109), we conclude that the described
scheme can achieve a multiplexing gain of ry 4+ r + 1 over
the entire subnet.

3) Scheme Over a Reduced Subnet: We employ the same
scheme as over a generic subnet but with reduced side-
information parameters. Such a scheme can achieve a multi-
plexing gain of max{x3z — 2, 0} over a reduced subnet. Details
and analysis omitted.

4) Analysis of Performance Over the Entire Network: Over
the first | K /B3| generic subnets we achieve a multiplexing
gain of f/3—2 and, if it exists, then over the last reduced subnet
we achieve a multiplexing gain of max{x3 — 2, 0}. Thus, over
the entire network we achieve a multiplexing gain of

K —-2|K/p3] -2,
K —2|K/B3] —x3

This establishes the desired lower bound.

if k3 >2

110
if k3 < 2. (1o

K—2y3—<93:{

E. General Cross-Gains {ay,c} and {ay,,}

Our proofs and results presented in the previous subsections
generalize to non-equal cross-gains {ax ¢} and {0k }.

For example, the three coding schemes in
Subsections VII-A-VII-C are solely based on silencing
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a subset of the transmitters (which splits the network into
subnets), on dirty-paper coding interference sequences that
are known at the transmitter, and on successive interference
cancellation at the receivers. All these techniques do not rely
on the fact that the values of the cross-gains are all equal and
apply in the same way also to setups with general cross-gains
{ak,¢} and {ak,,}. Thus, the results under items 1)-3) remain
valid also for general cross-gains {ax,¢} and {0k }.

We present now in detail how to adapt the description of the
scheme and the analysis in Subsection VII-A to the setup with
general cross-gains {ax ¢} and {ax ,}. In (81), (85), (89), and
(91) a needs to be replaced by ax—1,; in (82) a needs to be
replaced by a;_1,¢; in (83) and (87) it needs to be replaced
by ak—1,¢; and in (86) the first a needs to be replaced by
ak—1,¢ and the second by ax—1,,. Also, the codebooks Ci, for
k € F1 or k € F,, should be of power a,%fl’rP and rate
R, = 1 log(1 + a,%_l,rP), and the codebooks Cy, for k € F»,
should be designed for the interference ax—1,0X;_, + Xj_;
which is of power a,%_MP + P. Finally, Receivers k € F
produce their estimates }A(;.’, Jj < k, by picking the codeword

in C; that corresponds to their estimate M ; and scaling it
by aj_1,,. This way, if AA/[k,Z = Mj_» and Mk,1 = Mj_q,
Receiver k can decode its desired message M based on the
interference-free output ax—1,, X; + N;'_;.

The scheme in Subsection VII-D is based on silencing a
subset of the transmitters (which splits the network into sub-
nets), on successive interference cancellation, and on MIMO
decoding. The multiplexing gain achieved by the scheme relies
on the cross-gains only through the rank of the subnets’
channel matrices which shows up in the performance analysis
of the MIMO decoding, (108) and (109). To achieve the
multiplexing gain in (110) all the subnets’ channel matrices
need to have full rank #; + r, + 1. Thus, the multiplexing-
gain in (110) is achievable also in a setup with general cross-
gains {ok ¢} and {ay .} if all the subnets have full-rank channel
matrices. This is in particular the case (with probability 1)
in a randomized setup where all the cross-gains are drawn
according to continuous distribution, where all the subnets
have full-rank channel matrices.

PROOF OF PROPOSITION 7
A. Proof of Upper Bound 1), i.e., (23)
Define

Ba = 1+t e+ + 4,

[al
V4 = B |’

and recall that xx £ K — y4f4 and that 64 equals 1 if x4 >
min{ty +r¢ + 1, ¢ + r + 1}, and it equals O otherwise.

The proof is based on the Dynamic-MAC Lemma 9.
To describe the choice of parameters for which we wish to
apply this lemma, we need the following definitions. Define
for every positive integer p > 2 and every non-zero number
a the matrix M,(a) as the p x p matrix with diagonal
elements a, first upper off-diagonal elements 1, second upper
off-diagonal elements a, and all other elements 0. That means,
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the row-j, column-j. entry of the matrix M, (a) equals o if
Jr = je or jr = je— 2, itequals 1 if j. = j. — 1, and it
equals O otherwise. Let Mgw (o) denote the inverse matrix of
M,, (). This inverse always exists because det (M), (a) = a?,
which by our assumption o # 0 is nonzero. As we will see
shprtly, our main interest lies in the inverses Mit‘;ir[ 4+1(@) and

g‘in 4+1(@). To simplify nqtation, we therefore denote the
row-j, column- j. entry of M‘t‘[}ir[ +1(@) by aj, ;. and the row-
Jr column- j. entry of M;?Yl—r, 4+1(0) by by, j,.

We treat the cases 64 = 0 and 04 = 1 separately. If 64 = 1,
then we apply Lemma 9 to the following choices:

o 8 =12y4

o A=) A(m), where for m € {0, ..., p4 — 2}:

A'(m) & {((mPs+r¢+2), ...,
mpPa+re+1t+1t +3)}, (111)

and

A@pa—=1D 2 {((pa—DPa+re+2), ..., (yaPs —rr +3)}

U{(yafa+re+2),...,K}); (112)
. Bl = ’C\A,
o fori evenand 0 <i < g:
tr+ry+1
Vi= Z abl’jN%ﬁrj
j=1
tet+re+1
+ Z (al,j + aaz,j)N%ﬂ4+1+j
j=1
_Ng/34+1’ (113)
and fori oddand 1 <i <g—1:
tr+ry+1
V, = Z (b1,j + abz’j)N%m—j
j=1
tet+re+1
+ > aarjiNistp ey = Nistg. (14
j=1
Thus, if 04 =1,
-1
K\RA = {mBa+1,(m+ D))"  UlyaBs+ 1} (115)

If 64 = 0, we apply Lemma 9 to the choices

e qg=1;

e g=12y4 —}1; . '

o« A = U, A(m), where {A'(m)}*_ " are defined in
(111) and where

A@a—D)E{((a—D)faAre+2), ..., (K—r—1)};  (116)
o B = ]C\_A,
o (V277D are given by (113) and (114) and
tr+rr+1
Voot = . (bij+abyj)Ng—j—Ng. (117)

j=1
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Thus, if 4 = 0,

K\RA = {mpa+1, 0m + DBYIZ U{(a = Ds + 1, K},

m=0
(118)

One readily verifies that both for 4 = 0 and 64 = 1 the
differential entropy h({Nk}keRAWo, R Vq) is finite and
does not depend on the power constraint P, since neither
does the genie-information. In Appendix B we show that also
Assumption (26) in the Dynamic MAC Lemma is satisfied,
and hence the lemma applies. It gives the desired upper bound,
because by (115) and (118),

IRl =274 + 4. (119)

B. Proof of Upper Bound 3), i.e., (24)

The proof is again based on the Dynamic-MAC Lemma 9.
We first give some definitions.
Define

Bs Etr+t+re+r+3

5]
V5 = Bs

and recall that ks £ K —f5ys and 05 equals 1 if x5 > 1, +r,+2
and 0 otherwise.

For j.,jo € {1,...,t¢ + r¢ + 1}, denote the row-j,
column-j. entry of the matrix H; 4,+1(a) by hj, ;.. Also,
choose a set of real numbers {d>, ..., d; 4,41} so that

(120)
(121)

te+re+1
hijo= D dihjjo Jje€{l,...te+re+1} (122)
jr:2
Such a choice always exists because of the assumption
det(H¢;4r,+1) = 0.
We treat the cases 65 = 1 and 65 = O separately. If 65 = 1,
we apply the Dynamic-MAC Lemma to the choices:

e g =2y5+1;
o & =12ys;
o A=, A”(m), where
A7) & (1, ...t + 1}, (123)
forme{l,...,ys —1}:

A'(m) & {mPs — 10+ 1,...,mPs + 1, + 1}, (124)

and
A'(rs) E{Osps —te+1),.... (K —r, = D} (125)
o fori oddand 1 <i <2y5—1,
(i—1
B;i = > Bs+tr+rr+re+31; (126)

for i even and 2 <i < 2ys:

Bi = [((3—1)ﬁ5+tr+2),...,
(( —1)ﬂ5+tr+rr+r€+2)], (127)

N9}

| ~-
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and

Baysi1 ={(K —rr),..., K} (128)

o forievenand 0 <i <2(ys — 1)°:

tr+rr+1
Vi= Z AN i gyt tr 124
j=2
tr+r+1
T Z b1jeN g gyt 1.
Je=1

_N%ﬁ4+tr+rr+3’

fori odd and 1 <i <2y5 — 1:

(129)

trtrr+1
Vi= Z (aba,j. +b1:jc)N%ﬂ4+tr+rr+lfjc
jc:1
te+re+1
+ Z aa1=l'eN%ﬁ4+t,+r,+3+jc
jc:1

_N§ﬁ4+tr+rr+2’

(130)
and
tr+ry+1
Vays & D (abyj. +b1j)Nk-1-j, — Nx. (131)
jczl

Thus, if 65 = 1,

K\RA = {(mfs + 1, + 1, +2), mPs + by + 10 + 3},
U{K}. (132)

If 5 = 0, we apply the Dynamic-MAC Lemma to the
following choices:

o g =2ys;
e g=2y5—1; 1
o A = )y A'(m), where {A"(m)}"_ are defined

in (123) and (124), and where

A"(ys) 2 {(ysps —te+ 1), ..., K};
o the sets {5} are defined in (126) and (127);
. {Vm}f,f:_o1 is defined in (129) and (130).
Thus, if 65 = 0,
K\RA = {(mBs + tr + 1y +2), (mPs + 1 + 1, + 3}

m=0 "

(133)

One readily verifies that both for 5 = 0 and 85 = 1 the
differential entropy h({Nk}keRAWo, A Vq) is finite and
does not depend on the power constraint P, since neither
does the genie-information. In Appendix B we show that also
Assumption (26) of the Dynamic-MAC Lemma is satisfied,
and hence the lemma applies. It gives the desired upper bound,
because by (132) and (133),

IRl =2ys + 0. (134)

9Recall that a jr.jo denotes the row-jr column-j. entry of the matrix
M;I[‘Y'_r[ 41(@) defined in the previous Subsection A; @d where similarly b, ;.
denotes the row-j- column j. entry of the matrix M;?YFU 441(a) also defined
in Subsection A.
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APPENDIX A
PROOF OF LEMMA 11

By definition, det (H; (o)) = 1. Therefore, the integer p has
to be at least 2 and Statement 1.) in the lemma follows.

Statement 2.) can be proved as follows. We define
Ho(z) £ 1 and note that also Hj(a) = 1, irrespective of a.
We then have for each positive integer g > 2:

det (Hy (@) = det (Hy—1(a)) — a? det (Hy—2()). (135)

Thus, det (H,(a)) = O implies that the two determinants
det (Hy—1(a)) and det(Hp_2(a)) are either both O or
both non-zero, and similarly, that the two determinants

det (H 1 (a)) and det (H P42 (a)) are either both 0
or both non-zero. Applying this argument iteratively,
we see that the determinants det (H p—2 (a)) and

det (Hp—1(a)) can only be 0 if all “previous” determinants
det (Ho(a)), ..., det (H,_3(a)) are zero. Similarly, for the
determinants det (H p+1(a)) and det (H p+2(a)). However,
since det(Ho(a)) = det(Hi(a)) = 1, we conclude
that  det (Hp_z(a)) , det (Hp_l (a)) , det (Hp+1 (a)), and
det (H,42(a)) must be non-zero, which proves Statement 2.)

APPENDIX B
PROOF THAT ASSUMPTION (26) HOLDS IN SECTION VIII-A

By (115) and (118) it suffices to show that if 84 = 0, then
the output sequences {Ymﬁ4+1,Y(m+1)/g4}};;‘:—02, Y (yu—1)at1s
and Y can be reconstructed, and if 64 = 1, then the
output sequences {Ymp,+1, Y?m+1)ﬁ4}3lr;‘;(} and Y,,p,+1 can be
reconstructed.

Notice first that using the given encoding functions
flyoos [ the input sequences {(Xnpattp+re+2s
Xmﬁ4+,[+,[+3}3’;:_01 can be computed from Messages
{My}ren. Moreover, if 64 = 0 then additionally also the
input sequences X (y,—1)4rpt1p44>---» XK—r,—1,—1 can be
computed from {Mj}rca, and if 64 = 1 additionally also the
input sequences X, g, 47+r+2, XK —r.—1,—1 can be computed
from {Mj}rea. The result is then proved by showing that
each of the desired output sequences can be expressed
as a linear combination of the genie-information, these
reconstructed inputs, and the outputs observed by the group-.A
receivers.

We start with Y g,. Notice that by the channel law (9), the
linear systems (136) and (137) on top of the next page hold for
every time-instant ¢ € {1, ..., n}. Recalling that a;, ; denotes
the row-j, column- j. entry of the inverse matrix M;‘;Ym 41(@)
and that bj ; denotes the row-j. column-j. entry of
the inverse matrix Mit?YI—rr 41(@), it is easily checked that (136)
implies:

tr+ry+1
Z b2,jYp—j — (b2t 4,0 + b2y, +1) Xty 43
j=1

- bz,l‘r+rr+laXl‘f+rf+2
tr+ry+1

=Xp-1+ D brNp—j:
j=1

(138)
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Y1, Xpyt 0 Ng,—1.1
Yp, 2. Xpy—1.t 0 Np,—2.t
: =M, 11, +1() : + : + : (136)
Yiptri+4, Xtptro+5. aXitr+3 Niptrp+4,t
Yiotro43.1 Xiptre+a,t O Xitri+2,0 + Xiptre+3. Ntptre+3.1
Yp,42.1 Xpy+1.t 0 Npyvo,t
Yp,43.1 Xpy+2.t 0 Npy43,t
: = Mi4rp+1(a) : + : + : (137)
Ygyttptre+1,e X pattetre.t OX Byttetret2 Npytig+re+1,t

Yﬁ4+tf+rf+2,t Xﬁ4+t(+r(+1,t

Xﬁ4+tf+r[+2,t + aXﬁ4+t(+r(+3,t Nﬁ4+t(+r(+2,t

and

tr+ry+1
E b1,jYp—j — (01,141, 0 + b1ty +1) Xty 443
j=1

- bl,tr+rr+1aXl‘f+rf+2
tr+ry+1

=Xp + > biiNp-j: (139)
j=I
and that (137) implies:
te+re+1
z ar,jY py14j = Al +r,+10X pyttp+re+3
j=1
=@t s+r, + ali4r 10 X pyiptro 12
te+re+1
=Xpn1+ D aiNpigj. (140)
j=1
Since the genie-information has been chosen so that
tr+ry+1
Yp, =o| Xp-1+ Z by jNp,—;
j=I
tr+r+1
+{Xp+ D bijNpj
j=1
tetre+1
‘o | Xp1+ D aijNpgiei|—Vi (14D
j=1

the desired linear combination representing Y g, is obtained by
combining the linear combinations on the left-hand sides of
Equations (138)—(140) with the genie-information V.

We next consider Y g, 1. By (137),

te+re+1
z ai,jY py14j — A2, t,4r,+10X Byt tpr,43
j=1
—(@2,t,4r, + 2,141, 410) X Byt 141,42
te+re+1

=Xp2+ D anNpig).
j=1

(142)

Since the genie-information V', has been chosen so that

trtrr+1
Yor =a|Xp+ D b1 iNp-
j=l1
te+re+1
+ Xprr + D aniNpi,
j=1
te+re+1
‘o [ Xpa+ D arjNpqiy) | — V2 (143)
j=l1
the desired linear combination representing ¥ g, 11 is obtained
by combining the left-hand sides of (139), (140), and (142)
with the genie-information V5.

The desired linear combinations representing the outputs
{Ymm}lyrf;zl % can be obtained from the equations that result
when in (138)—(141) each vector Xy, for k € {1,..., K}, is
replaced by Xy (n—1)p,, €ach vector Y by ¥y (m—1)p4, €ach
vector Ny by Niim—1)p,, and the genie-information V is
replaced by Vo,,—1.

The linear combinations representing the outputs
(Y mps+1 Z;‘:_zlw“ are obtained from the equations that

result when in (139), (140), (142), and (143) the vectors
Xk, Yi, and Ny, for k € {l,..., K}, are replaced by the
vectors Xy (m—1)ps-Y kt(m—1)ps» a0d Nign—1)p, and the
genie-information V' is replaced by V2,. When m = 0 all
the out-of-range indices should be ignored, that means, Xy,
Y, Nj are assumed to be deterministically 0 for all £ < 0.

Finally, if 64 = 0, then the desired linear combination rep-
resenting Y ¢ can be obtained by combining the equations that
result when in Equations (138), (139), and (141) the vectors
X, Yi, and Ny are replaced by the vectors X p,.Y kg,
and Nk_p, and the genie-information V' is replaced by
V2y4—1. Again, all out-of-range indices should be ingored,
i.e., Xg, Yk, Ny are assumed to be deterministically O for
all k > K.

APPENDIX C
PROOF THAT ASSUMPTION (26) HOLDS IN SECTION VIII-B

Notice that for i € {1, ...,2y5} odd,

 — 1
Ri\(Rp, N Roa) = [(’ )

5 A5+t +3y, (144)
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Yiotr, 43,1 Xyt 43,1 Xy 42,1 Nipgr 43,
(R Xty tr,+41 0 Niptr 44,1
: = Hirp11(a) : + : + : (147)
Yﬂ571,t Xﬂ571,t 0 Nﬂ571,l‘
Yps.e Xps.t aXps+1,r Nps
and for i even, linear combination
(i _ 1) tet+re+1
R \(R, "R A;) = [ 5 Bs+tr+rr+ 2]’ (145) Yiir43 = Z diY o iryo4j
j=2
and moreover, if 05 = 1, tr+r+1
+a bl’jc'Ytr+rr+27jc
RBays 1 \(Riyy s NR Ay, ) = (K] (146) JZ_ll
Thus, for i < 2ys — 1 odd we need to show that the =1, 4r41 + abi g 4r,) X0
output sequence Yuﬂert 4 43 Can be reconstructed from —odyyr+1X psr1 — Vo. (151)
2 r r - -

the messages { My }rc 4,, the outputs {Yk}keRAi» and the genie-
information {Vm}fnzo. Similarly, for i even we need to show
that Y(i;]lﬁ5+tr+rr+2 can be reconstructed, and fori = 2ys5+1,
we neecf to show that Y g can be reconstructed.

Using the encoding functions fi,..., f,, for each i that
is odd and satisfies 1 < i < 2ys5 — 1 the inputs X%ﬁs’
X%ﬁsﬂ’ and X%ﬁs can be computed from the messages
{Mi}ken, - Foreachi thatis even and that satisfies 2 < i < 2y5
the inputs X%ﬁs’X%ﬁsﬂ’ Xﬂﬁs, and Xﬂﬁs_,’_l can be
computed from messages {My}re.4,. Finally, if 65 = 1, then
inputs X g —s,—r,—2 and Xx_,—,,—1 can be computed from the
messages {Mk}kEA2y5+l'

We start with i = 1 and outputs Y, 4,,4+3. By the channel
law (9), the linear system (147) on top of this page holds for
every time r € {1, ..., n}.

Recalling the definition of the parameters {d>, . .., di+r,+1}
in Section VII-B and because det (H,[+r[+1(a)) =0, (147)
implies:

te+re+1
Yitrnt3 = Z dj (Yi4r424j — Niyrr424))
j=2
—odytr+1 X ps+1 + aX i 4r,42
+Nt 443 (148)

We next notice that by the channel law (9), for every time
t € {1,...,n}, the linear system in (149) as shown at the
next top of the page holds, where the matrix M; 1, 1(a) is
defined in Section VII-A. Recalling that b}, ;. denotes the row-
Jr column-j. entry of the inverse Mg{vm +1(a), Equation (149)
implies:

trtrr+1
Z b1,j.Y ty4ri+2—jo — (BLtytr+1 + abyg40) X1
jc:1
trtrr+1
=Xin2+ D b1iNysni2-j.- (150)
je=1

Finally, by the definition of the genie-information
Vo, combining (148) with (150) yields the desired

For each i odd and 3 < i < 2y5 — 1 the desired
linear combination representing Y ;—1 s+ 4,43 AN be found
in a similar way. Specifically, using Equations similar to
(147)—(151) one can show that

te+re+1
Yt pott 443 = Z di¥ it gt ir 24
j=2
tr+ry+1
Ta Z bl’ch%ﬁs+tr+r,+1—jc
jczl
—(b1y4r+1 + ab1,1,+r,)X%55+1
— X
abi b, 4r,+1 i=1ps

_aﬂt[+r[+lx%ﬁs+1 - Vi (152)

We next consider the case where i is even and 2 <
i < 2ys5, where we wish to reconstruct Y(%—l)ﬁ5+t,+r,+2' The
construction of the desired linear combination is similar to
Appendix B, that means it is based on equations that are sim-
ilar to equations (138)—(141). Obviously, (136) remains valid
if for each k € {1,..., K} the symbols Xy ;, Yk, and Ni,

are replaced by Xk+(%71)ﬂ57(,[+r[+2)’,, Yk+(§—1)ﬁ5—(tf+rf+2),t’

and Nk+(§71)ﬁ57(zf+rf+2),z’ and therefore similar to (138) and
(139) we obtain:
tr4rr+1
Z; b23¥ (o vpstactra-
j=
—bz,zr+rr+1aX(%,1)ﬁ5+1
—(b2.ty4r, 00 + b2t 1) X L-1)ps+1
tr+ry+1
= Xpire1t D, b2 NG g gy (153)
j=1
and
trtrr+1

D Y g
j=1

“brian10X gy
—(b1,44r 0 + b1,1,+r,+1)X(%,1)ﬁ5+1
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Yiotr,+1,0 Xtytr 42,1 0 Nt 41,1
Yiotry.t Xty tro+1,t 0 Niptrp e
: =M, 1+ +1(a) : + : + : (149)
Yo X3, aXi; No ¢
Yl,t Xz,z Xl,t Nl,t
= i > >
X(%—l)ﬁ5+t,+rr+2 Moreover, for all p > 1 and [ > 0,
: 1
rt+r+ (Ui . vl-‘rp—l) Hp
+ Z bi,jN L) Bs+tp+rr42—j° (154)
= 3= Dfs+irtry = (—avi-1 0 0 —aviyp) (159)

Since also (137) remains valid if for each k € I the symbols

Xkt Yrs, and Ny, are replaced by Xk+(§¥fl)ﬂ57(t{+r{+3),t’

¥k+.(%—1)55—(tg+rg+3),t’ and Ner (i —1)ps—(rtre+3).00 WE obtain
similarly to (140):
te+re+1
Z al,jY(%—1)135+z,+r,+2+j
j=1
— AL+ 410X (g
_(al,tr+r, ‘f‘al,tr+r,+10‘)X(%_1)ﬁ5
= X(éfl)ﬁ5+tr+rr+3
te+re+1
+ Z al’iN(g—l)ﬁs+rr+rr+z+j' (155)
j=1

Now, since the genie-information V;_1 has been chosen so that
Equality (156) on top of the next page holds, the desired linear
combination representing Y (L~ 1)fstip+re+2 €0 be obtained by
combining (153)-(156).

If 65 = 1, then the desired linear combination representing
Yk can be found in a similar manner as in the previous
Appendix B. The details are omitted.

APPENDIX D
PROOF OF PROPOSITION 5

Lemma 13: For an integer p and a real number a, denote
up(a) = det (Hp(a)). Then the following holds.

1) up(a) is a polynomial in o, up(0) = 1, and it satisfies
the following second order recursion:

wp2(@) = upt1(a) — a’up(a), (157)
with the initial conditions ug(a) = ui(a) = 1. We
denote by E, the set of roots of up(a).

2) For o # 0, define
A up(a)
vp(a) o)
Then v,(a) satisfies the second order recursion:
1
Up+2(a) = _gvp+l(a) - Up(a), (158)

with the initial conditions v_1(a) = 0 and vo(a) = 1.

where for simplicity we wrote v; for vi(a).
Proof: Omitted. |
We give a proof of Proposition 5 for the case where ¢ is
odd. The case g even goes along the same lines. We define
" £ (g —1)/2 and

L 2ri+1t
B 2L +4.

The first part of the proof follows the first part of the proof
of the Dynamic-MAC Lemma, see Section IV. We construct
a Cognitive MAC as in Section IV using parameters

. g — 2y n.
« A= U,};/;l A" (m) where

A7) & (rp+2,..., L+t +2},
forl <m<y” —1,
A" m) & {mp" +re+1,...,mp" + L+t +2},
and
A" E "B +re+1,...,K);

o By ={r/+ 1} and B, = K\(A U By);
o the genie-information

L
A
Vo= —avp41Xr41 + ZvijH,
j=0

and where the rest of the genie-informations {Vi}l.zl;” is
similar to the genie-information described in (113) and
(114).

By the choice above,

K\R4 = {1} U {mB” — 1,mp" " (160)

1

Notice that unlike in the proof in Section VII-A, here, part of
the genie-information depends on the transmitted signal X 4.
(But notice that the signal to noise ratio of X4 with respect
to Z,L'=o vjN 11 goes to 0 like (& — a*)” as a goes to a*.)

Our choice of parameters satisfies Assumption (26) in the
Dynamic-MAC Lemma, and thus we can follow the steps
in the proof of (29) to deduce that the capacity region of
the original network is included in the capacity region of
the Cognitive MAC. That Assumption (26) is satisfied for
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tr+r+1
Y(%—l)ﬂs+tr+rr+2 =a X(§—1)135+z,+r,+1 + Z by iN L—1)Bs+tr+rr+2—j
Jj=1
tr+rr+1
X npsttrna2 T > buN L5ttt +2—j
j=1
te+re+1

+a X§—1)55+t,+rr+3+ Z a1=/N(§é—1)ﬁs+zr+r,+1+j — Vi (156)

J=l1

i = 1 follows because from the messages {Mj}rc4 One can
reconstruct X7, and because by

the limit limg_, ¢, H (1)0 I)L) H; exists, is finite, and larger
than 0, and because by definition a* is a root of the polynomial
v% 41 () with multiplicity 2v.

X N
" ~1 0 .1 Taking co(a) = limp—o (f1(P,a) + f2(P,a)) concludes
: = Hp : +a : 4 the proof.
Y, : 0 :
Y+ X X2 Niii REFERENCES
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