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Abstract— We study an interference network where equally
numbered transmitters and receivers lie on two parallel lines,
with each transmitter opposite its intended receiver. We consider
two short-range interference models: the asymmetric network,
where the signal sent by each transmitter is interfered only by
the signal sent by its left neighbor (if present), and a symmetric
network, where it is interfered by both its left and its right
neighbors. Each transmitter is cognizant of its own message,
the messages of the t� transmitters to its left, and the messages
of the tr transmitters to its right. Each receiver decodes its
message based on the signals received at its own antenna, at the
r� receive antennas to its left, and at the rr receive antennas to
its right. For such networks, we provide upper and lower bounds
on the multiplexing gain, i.e., on the high signal-to-noise ratio
asymptotic logarithmic growth of the sum-rate capacity. In some
cases, our bounds coincide, e.g., for the asymmetric network.
Our results exhibit an equivalence between the transmitter side-
information parameters t�, tr and the receiver side-information
parameters r�, rr in the sense that increasing/decreasing t� or tr
by a positive integer δ has the same effect on the multiplexing
gain as increasing/decreasing r� or rr by δ. Moreover—even
in asymmetric networks—there is an equivalence between the
left side-information parameters (t�, r�) and the right side-
information parameters (tr, rr ).

Index Terms— Clustered decoding, dirty-paper coding, inter-
ference networks, successive interference cancellation, message
cognition, multiplexing gain.

I. INTRODUCTION

WE CONSIDER a cellular mobile communication sys-
tem (either uplink or downlink) where K cells are posi-

tioned on a linear array. We assume short-range interference
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where the signals sent in a given cell interfere only with the
signals sent in the left-adjacent cell and/or the right-adjacent
cell, depending on the position of the mobiles within the cells.
Our goal is to determine the throughput of such a cellular
system at high signal-to-noise ratio (SNR).

The high-SNR throughput of our system (where we assume
constant non-fading channel gains) does not depend on the
number of mobiles in a cell (provided this number is not zero),
because in each cell there is only one base station. Therefore,
we restrict attention to setups with only one mobile per cell.

We focus on two regular setups. The first setup exhibits
asymmetric interference: the communication in a cell is only
interfered by the signals sent in the cell to its left but not by the
signals sent in the cell to its right (e.g., because we model the
uplink and all the mobiles lie close to the right border of their
cells). The second setup exhibits symmetric interference: the
communication in a cell is interfered by the signals sent in
the cells to its left as well as to its right (e.g., because the
mobiles lie in the center of their cells). The symmetric setup
was introduced in [1] and [2].

On a more abstract level, our communication scenario is
described as follows: K transmitters wish to communicate
independent messages to their K corresponding receivers, and
it is assumed that these communications interfere. Moreover,
the K transmitters are assumed to be located on a horizontal
line, and the K receivers are assumed to lie on a paral-
lel line, each receiver opposite its corresponding transmit-
ter. We consider two specific networks. In the asymmetric
network, each receiver observes a linear combination of the
signals transmitted by its corresponding transmitter, the signal
of the transmitter to its left, and additive white Gaussian
noise (AWGN). See Figure 1. In the symmetric network,
each receiver observes a linear combination of the signal
transmitted by its corresponding transmitter, the two signals
of the transmitter to its left and the transmitter to its right,
and AWGN. See Figure 2. The symmetric network is also
known as Wyner’s linear model or the full Wyner model; the
asymmetric network is known as the asymmetric Wyner model
or the soft hand-off model.

In [1] and [2] the receivers were allowed to fully cooperate
in their decoding, and thus the communication scenario was
modeled as a multiple-access channel (MAC). In contrast,
here we assume that each receiver has to decode its message
individually, and therefore our communication scenario is
modeled as an interference network. However, we still allow
for partial cooperation between neighboring receivers where
neighboring receivers can cooperate in the form of clustered
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Fig. 1. Asymmetric network.

Fig. 2. Symmetric network.

local decoding. That means that, in addition to its own antenna,
each receiver also has access to the antennas of some of
the receivers to its left and to its right. Similarly, we also
allow for (partial) cooperation between the transmitters in the
form of message cognition. That means that, in addition to
its own message, each transmitter is also cognizant of the
messages of some transmitters to its left and to its right. The
described scenario with message cognition and clustered local
decoding may arise in the uplink as well as in the downlink
of cellular mobile systems because the base stations can
communicate over a backhaul and the mobiles can communi-
cate using bluetooth connections. Thus, in an uplink scenario
the transmitting mobiles can share their messages using the
bluetooth links before communicating to their corresponding
base stations and the receiving base stations can share their
observed signals over the backhaul. In a downlink scenario the
receiving mobiles can use the bluetooth connections to relay
their observed signals to the mobiles in neighboring cells and
the transmitting base stations can use the backhaul to share
their messages.

Notice that the described model represents a combination
of the cognitive model in [3] and the clustered decoding
model in [4]. Also, clustered local processing is in a way
a compromise between the joint (multi-cell) decoding in [1]
and [2] and the single (single-cell) decoding in [3] and [5].
Clustered decoding has also been considered in [6] for fully-
connected interference networks. The cognitive transmitter
model considered here has been refined in [7], where the
transmitters can exchange parts of their messages prior to
the actual communication over rate-limited pipes, similar
to [8]–[12].

Our focus in this paper is on the asymptotic behavior of the
sum-rate capacity of these networks as captured by two figures
of merit: the multiplexing gain and the asymptotic multiplex-
ing gain per user. The latter is defined as the multiplexing gain
of a network divided by the number of transmitter/receiver
pairs K in the asymptotic regime of large K . For both
networks we provide upper and lower bounds on both figures
of merit.

For the asymmetric network our upper and lower bounds
coincide and thus yield the exact multiplexing gain and
asymptotic multiplexing gain per user. The results exhibit
an equivalence between cooperation at the transmitters and
cooperation at the receivers. Moreover, although the network
is asymmetric, the asymptotic multiplexing gain per user also
exhibits an equivalence between the transmitters’ information
about their right-neighbors’ messages and their information
about their left-neighbors’ messages. Likewise, they also
exhibit, an equivalence between the receivers’ information
about the signals observed at their right-neighbors’ antennas
and their information about the signals observed at their left-
neighbors’ antennas.

For the symmetric network our upper and lower bounds
coincide only in some special cases. In these special cases the
multiplexing gain—and thus also the asymptotic multiplexing
gain per user—again exhibits an equivalence between coopera-
tion at the transmitters and cooperation at the receivers. For the
symmetric network, we mostly assume that the nonzero cross-
gains are all equal. Our techniques extend to general cross-
gains, but the statement of the results becomes cumbersome
and is therefore omitted. Instead, we also consider a random
model where the cross-gains are drawn from a continuous
distributions. Our main results continue to hold (with prob-
ability 1) for this randomized setup.

For large number of users, i.e. K � 1, our multiplexing-
gain results are of the form S∞ · K + o(K ), where o(K )
denotes a function that grows sublinearly in K . As we shall
see, S∞ ∈ [0.5, 1] is strictly monotonic in the side-information
parameters t�, tr , r�, rr , and thus if we increase one or several
of the side-information parameters, then also the factor S∞
increases.1 The results in [13]–[16] suggest that this strict
monotonicity relies on the weak connectivity of the network,
i.e., the fact that there are relatively few interference links.
Indeed, [13]–[16] show that for fully-connected networks,
i.e., when all the transmitted signals interfere at all received

1The parameter S∞ is called the asymptotic multiplexing-gain per user and
will be introduced formally in the next section.
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signals, and when there is no clustering at the receivers
(r� = rr = 0), then for the side-information pattern considered
here, S∞ = 1/2 irrespective of t� and tr . This result holds
even in the stronger setup where for each message we can
choose the set of t� + tr + 1 adjacent transmitters that are
cognizant of this message [16]. In this stronger setup, a given
transmitter may not even know the message intended for its
corresponding receiver. And, indeed, sometimes (for example
for the networks considered here), the multiplexing gain can
be increased by assigning a given Message Mk that is intended
for Receiver k to a subset of t� + tr + 1 transmitters that does
not contain Transmitter k [16]. We will describe this in more
detail after describing our results.

General interference networks with transmitter cooperation
have also been studied in [17]–[20]. In particular, in [17],
the authors completely characterized the set of networks and
transmitter side-informations that have full multiplexing gain
K or multiplexing gain K − 1. In [20], a network is presented
where adding an interference link to the network—while
keeping the same transmitter side-informations—can increase
the multiplexing gain.

The asymmetric network has also been studied by Liu
and Erkip [21], with a focus on finite-SNR results but with-
out transmitter cognition or clustered decoding. For general
K ≥ 3, [21] characterizes the maximum sum-rate that is
achievable using a simple Han-Kobayashi scheme without
time-sharing and where the inputs follow a Gaussian distribu-
tion. For K = 3, they show that this scheme achieves the sum-
capacity in noisy-interference and mixed-interference regimes
and it achieves the entire capacity region in a strong interfer-
ence regime. Zhou and Yu [22] considered a cyclic version of
this model where the K -th transmitted signal also interferes
with the first receive signal, i.e., the interference pattern is
cyclic. In [22], an expression for the Han-Kobayashi region
with arbitrary (also non-Gaussian) inputs was presented. It was
shown that this achievable region is within 2 bits of the
K -user cyclic asymmetric network in the weak-interference
regime. In the strong interference regime, it achieves capacity.
(In their achievability proofs it suffices to consider Gaussian
inputs.) For K = 3 the authors also present an improved
Han-Kobayashi scheme involving time-sharing that achieves
rates within 1.5 bits of capacity. Finally, [22] also characterizes
the generalized degrees of freedom (GDoF) of the symmetric
capacity assuming that all cross-gains in the network are
equal. Interestingly, this result shows that the GDoF of the
K -user cyclic asymmetric Wyner network with equal cross-
gains has the same GDoF as the standard two-user interference
channel [23].

Other related results on Wyner-type networks can be found
in [24]–[34].

The lower bounds in our paper are based on coding strate-
gies that silence some of the transmitters and thereby split the
network into non-interfering subnetworks that can be treated
separately. Depending on the considered setup, a different
scheme is then used for the transmission in the subnetworks.
In some setups, some of the messages are transmitted using an
interference cancellation scheme and the others are transmitted
using Costa’s dirty-paper coding. (Costa’s dirty paper coding

can also be replaced by a simple linear beamforming scheme
as in [17], see also [35]–[37].) In other setups, the messages
are transmitted using one of the following elementary bricks
of multi-user information theory depending on the available
side-information: an optimal multi-input/multi-output (MIMO)
scheme, an optimal MIMO multi-access scheme, or an optimal
MIMO broadcast scheme. Introducing also Han-Kobayashi
type ideas to our coding strategies might improve the per-
formance of our schemes for finite SNR.

Our upper bounds rely on an extension of Sato’s multi-
access channel (MAC) bound [38] to more general interference
networks with more than two transmitters and receivers and
where the transmitters and the receivers have side-information
(see also [3], [16], [39], and in particular [17, Lemma 1
and Theorem 3]). More specifically, we first partition the
K receivers into groups A and B1, . . . ,Bq , and we allow
the receivers in Group A to cooperate. We then let a genie
reveal certain linear combinations of the noise sequences to
the receivers in Group A. Finally, we request that the receivers
in Group A jointly decode all messages M1, . . . , MK whereas
all other receivers do not have to decode anything. We choose
the linear combinations that are revealed by the genie so
that, for each i = 1, . . . , q , if the receivers in Group A
can successfully decode their own messages and the messages
intended for the receivers in groups B1, . . . ,Bi−1, then they
can also reconstruct the outputs observed at the receivers in
Group Bi . In this case they can also decode the messages
intended for the receivers in Group Bi at least as well as the
receivers in Group Bi . This iterative argument is used to show
that the capacity region of the resulting MAC is included in
the capacity region of the original network. The upper bound
is then concluded by upper bounding the multiplexing gain of
the MAC.

We conclude this section with notation and an outline of the
paper. Throughout the paper, R, N, and N0 denote the sets of
real numbers, natural numbers, and nonnegative integers. Their
m-fold Cartesian products are denoted R

m , N
m , and N

m
0 . Also,

log(·) denotes the natural logarithm, and a mod b denotes
the remainder in the Euclidean division of a by b. Random
variables are denoted by upper case letters, their realizations by
lower case letters. Vectors are denoted by bold letters: random
vectors by upper case bold letters and deterministic vectors by
lower case bold letters. Given a sequence of random variables
X1, . . . , Xn we denote by Xn the tuple (X1, . . . , Xn) and by X
the n-dimensional column-vector (X1, . . . , Xn)T. For sets we
use calligraphic symbols, e.g., A. The difference of two sets
A and B is denoted A\B. We further use the Landau symbols,
and thus o(x) denotes a function that grows sublinearly in x .

The paper is organized as follows. In Section II we describe
the channel model and the results for the asymmetric network
and in Section III the channel model and the results for the
symmetric network. In Section IV we present a Dynamic-
MAC Lemma that we use to prove our converse results for
the multiplexing-gain. In the rest of the paper we prove our
results: in Section V the results for the asymmetric network;
in Section VI the achievability results for the symmetric
network with symmetric side-information; in Section VII
the achievability results for the symmetric network with
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general side-information; and finally in Section VIII the
converse results for the symmetric network with general side-
information parameters.

II. ASYMMETRIC NETWORK

A. Description of the Problem

We consider K transmitter/receiver pairs that are labeled
from {1, . . . , K }. The purpose of the communication is that
each transmitter k ∈ {1, . . . , K } will convey its message Mk

to its intended receiver k. The messages {Mk}K
j=1 are assumed

to be independent with Mk being uniformly distributed over
the set Mk � {1, . . . , �enRk �}, where n denotes the block-
length of transmission and Rk the rate of transmission of
Transmitter k.

We assume that the transmitters and receivers are all
equipped with a single antenna and that the channels are
discrete-time and real-valued. Denoting by xk,t the time-t
symbol transmitted by Transmitter k, and by Yk,t the time-t
symbol received by Receiver k,

Yk,t = xk,t + αk xk−1,t + Nk,t , k ∈ {1, . . . , K }, (1)

where the K noise sequences {N1,t }, . . . , {NK ,t } are inde-
pendent with each comprising independent and identically
distributed standard Gaussians; and where to simplify notation
we define x0,t to be deterministically 0 for all times t . Thus,
the communication of the k-th transmitter/receiver pair is inter-
fered only by the communication of the transmitter/receiver
pair to its left; see Figure 1.

It is assumed that, in addition to its own message, each
transmitter is also cognizant of the messages transmitted by
the t� ≥ 0 transmitters to its left and by the tr ≥ 0 transmitters
to its right. Thus, for every k ∈ {1, . . . , K }, Transmitter k is
cognizant of the messages Mk−t� , . . . , Mk , . . . , Mk+tr , where
M−t�+1, . . . , M0 and MK+1, . . . , MK+tr are defined to be
deterministically one. Thus, Transmitter k can produce its
sequence of channel inputs Xn

k as

Xn
k = f (n)

k (Mk−t� , . . . , Mk , . . . , Mk+tr ), (2)

for some encoding function

f (n)
k : Mk−t� × · · · × Mk × · · · × Mk+tr → R

n . (3)

The transmitters are assumed to have equal average power
at their disposal. Denoting by P the maximal average power
with which each of the transmitters can communicate, we thus
require that, with probability 1,

1

n

n∑

t=1

X2
k,t ≤ P, k ∈ {1, . . . , K }. (4)

Each receiver observes the signals received by its own
antenna, the symbols received by the r� ≥ 0 receivers to
its left, and the symbols received by the rr ≥ 0 receivers to
its right. Receiver k, for k ∈ {1, . . . , K }, can thus produce its
guess of Message Mk based on the t�+ tr +1 output sequences
Y n

k−r�
, . . . , Y n

k+rr
, i.e., as

M̂k � ϕ
(n)
k (Y n

k−r�
, . . . , Y n

k+rr
), (5)

for some decoding function

ϕ
(n)
k : R

n(r�+rr +1) → Mk, (6)

where Y n−r�+1, . . . , Y n
0 and Y n

K+1, . . . , Y n
K+rr

are defined to be
deterministically 0.

The parameters t�, tr , r�, rr ≥ 0 are given positive integers.
We call t� and tr the transmitter side-information parameters
and r� and rr the receiver side-information parameters. Sim-
ilarly, we call t� and r� the left side-information parameters
and tr and rr the right side-information parameters.

For the described setup we say that a rate-tuple
(R1, . . . , RK ) is achievable if, as the block-length n tends to
infinity, the average probability of error decays to 0, i.e.,

lim
n→0

Pr
[
(M1, . . . , MK ) 
= (M̂1, . . . , M̂K )

]
= 0.

The closure of the set of all rate-tuples (R1, . . . , RK ) that
are achievable is called the capacity region, which we denote
by CAsym. To make the dependence on the number of
transmitter/receiver pairs K , the side-information parame-
ters t�, tr , r�, rr , and the power P explicit, we mostly write
CAsym(K , t�, tr , r�, rr ; P). The sum-capacity is defined as the
supremum of the sum-rate

∑K
k=1 Rk over all achievable tuples

(R1, . . . , RK ) and is denoted by CAsym
� (K , t�, tr , r�, rr ; P).

Our main focus in this work is on the high-SNR asymptote of
the sum-capacity which is characterized by the multiplexing
gain2:

SAsym(K , t�, tr , r�, rr ) � lim
P→∞

CAsym
� (K , t�, tr , r�, rr ; P)

1
2 log(P)

,

and for large networks (K � 1) by the asymptotic multiplex-
ing gain per user:

SAsym
∞ (t�, tr , r�, rr ) � lim

K→∞
SAsym(K , t�, tr , r�, rr )

K
.

B. Results

Theorem 1: Irrespective of the nonzero cross-gains {αk}
and for any t�, tr , r�, rr ≥ 0, the multiplexing gain of the
asymmetric model is

SAsym(K , t�, tr , r�, rr ) = K −
⌈

K − t� − r� − 1

t� + tr + r� + rr + 2

⌉
. (7)

Proof: See Section V-A for the direct part and Section V-B
for the converse.

Specializing Theorem 1 to the case r� = rr = 0 where each
receiver has access only to its own receive antenna, recovers
the result in [3].

Remark 1: Expression (7) depends only on the sum of the
left side-information parameters t� + r� and on the sum of
the right side-information parameters tr + rr . This shows an
equivalence between cognition of messages at the transmitters
and clustered local decoding at the receivers.

However, the left side-information parameters (r�, t�) do
not play the same role as the right side-information
parameters (rr , tr ). In fact, left side-information can be more

2The multiplexing gain is also referred to as the “high-SNR slope”, “pre-
log”, or “degrees of freedom”.
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valuable (in terms of increasing the multiplexing gain) than
right side-information.

The difference in the roles of left and right side-information
is only a boundary effect: it vanishes when K tends to infinity
(see Corollary 2 and Remark 2 ahead).

As a corollary to Theorem 1 we can derive the asymptotic
multiplexing gain per user.

Corollary 2: The asymptotic multiplexing gain per user of
the asymmetric network is

SAsym
∞ (t�, tr , r�, rr ) = t� + tr + r� + rr + 1

t� + tr + r� + rr + 2
. (8)

Remark 2: The asymptotic multiplexing gain per-user in (8)
depends on the parameters t�, tr , r�, and rr only through their
sum. Thus, in the considered setup the asymptotic multiplexing
gain per-user only depends on the total amount of side-
information at the transmitters and receivers and not on how
the side-information is distributed. In particular, cognition of
messages at the transmitters and clustered local decoding at
the receivers are equally valuable, and—despite the asym-
metry of the interference network—also left and right side-
information are equally valuable.

El Gamal, Annapureddy, and Veeravalli [16] showed that
when r� = rr = 0 and when for each message one can freely
choose the set of t� + tr +1 transmitters to which this message
is assigned, then the asymptotic multiplexing gain per-user is
equal to 2(t�+tr +1)

2(t�+tr +1)+1 and thus larger than SAsym
∞ in (8). They

also showed that in this modified setup, each message Mk

should again be assigned to t� + tr + 1 adjacent transmitters,
but these transmitters do not necessarily include Transmitter k.

III. SYMMETRIC NETWORK

A. Description of the Problem

The symmetric network is defined in the same way as the
asymmetric network in Section II, except that the channel law
(1) is replaced by

Yk,t =αk,� Xk−1,t +Xk,t +αk,r Xk+1,t +Nk,t , k ∈{1, . . . , K }.
(9)

Like for the asymmetric network, for each k ∈ {1, . . . , K }
the symbol Xk,t denotes Transmitter k’s channel input at time
t; the symbols X0,t and X K+1,t are deterministically zero;
the cross-gains {αk,�, αk,r } are given non-zero real numbers;
and {Nk,t } are i.i.d. standard Gaussians. Let HNet denote the
K -by-K channel matrix of the entire network: its row- j ,
column-i element equals 1 if j = i , it equals α j,� if j − i = 1,
it equals α j,r if j − i = −1, and it equals 0 otherwise.

The message cognition at the transmitters is again described
by the nonnegative integers t� and tr and the encoding rules
in (2), and the clustered decoding by the nonnegative integers
r� and rr and the decoding rules in (5).

The channel input sequences have to satisfy the power
constraints (4).

Achievable rates, channel capacity, sum-capacity, multi-
plexing gain, and the asymptotic multiplexing gain per user
are defined analogously to Section II. For this symmetric
model and for a given positive integer K > 0, nonnegative

integers t�, tr , r�, rr ≥ 0, and power P > 0 the capac-
ity region is denoted by CSym(K , t�, tr , r�, rr ; P), the sum-
capacity by CSym

� (K , t�, tr , r�, rr ; P), the multiplexing gain by
SSym(K , t�, tr , r�, rr ), and the asymptotic multiplexing gain
per user by SSym

∞ (t�, tr , r�, rr ).

B. Results

In the following we only state our results for the special
case of equal cross-gains

αk,� = αk,r = α, k ∈ {1, . . . , K }, (10)

that are nonzero
α 
= 0. (11)

Our proof techniques extend also to non-equal cross gains:
an inspection of the proofs reveals that they depend on
the cross-gains only through the ranks of various princi-
pal submatrices of the network’s channel matrix and the
fact that the cross-gains are nonzero, see the discussions in
Subsections VI-G and VII-E. A formulation of our results
for general cross-gains would thus involve conditions on the
rank of various principal submatrices of the network’s channel
matrix and be very cumbersome. We therefore omit it. Instead,
we notice that when all cross-gains are drawn independently
according to a continuous distribution, then the various prin-
cipal submatrices of the network’s channel matrix are of full
rank and all cross-gains are nonzero with probability 1. This
makes that our main results continue to hold (with probability
1) for this randomized setup, see Remarks 3 and 6 ahead.3

Definition 1: For every positive integer p and real num-
ber α we define Hp(α) to be the p × p matrix with diagonal
elements all equal to 1, elements above and below the diagonal
equal to α, and all other elements equal to 0.

Notice that under the assumption of all equal cross-gains α,
the network’s channel matrix HNet satisfies

HNet = HK (α). (12)

We first present our results for symmetric side-information
where

t� + r� = tr + rr , (13)

followed by our results for general side-information parame-
ters r�, t�, rr , tr ≥ 0. We treat the special case with symmetric
side-information separately, because for this case we have
stronger results than for general side-information.

1) Symmetric Side-Information: Throughout this subsection
we assume that the parameters t�, tr , r�, rr satisfy (13).

Theorem 3 (Symmetric Side-Information): Depending on
the value of α and the parameters K , t�, tr , r�, rr , the
multiplexing gain satisfies the following conditions.

1) If K ≤ t� + r� + 1:

SSym(K , t�, tr , r�, rr ) = K − δ1, (14)

where δ1 equals 1, if det (HK (α)) = 0 and 0 otherwise.

3Such cross-gains are typically called generic [36], [37]. Here, we refrain
from calling them so as to avoid confusion with generic subnets which we
introduce in our achievability proofs.
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2) If K > t� + r� + 2 and det
(
Ht�+r�+1(α)

) 
= 0:

K −
⌊

K

t� + r� + 2

⌋
− 1 ≤ SSym(K , t�, tr , r�, rr )

≤ K −
⌊

K

t� + r� + 2

⌋
. (15)

3) If K > t� + r� + 2; det
(
Ht�+r�+1(α)

) 
= 0; and
det
(
Ht�+r� (α)

) 
= 0, then

SSym(K , t�, tr , r�, rr ) = K −
⌊

K

t� + r� + 2

⌋
. (16)

(This third case is a special case of the second
case. It is interesting because almost all values of
α lead to this case and because for this case we
can improve the lower bound in (15) to meet the
upper bound.)

4) If K > t� + r� + 2 and det
(
Ht�+r�+1(α)

) = 0:

K −
⌊

K

t� + r� + 1

⌋
≤ SSym(K , t�, tr , r�, rr )

≤ K − 2

⌊
K

2(t� + r�) + 3

⌋
− δ2, (17)

where δ2 equals 1 if (K mod (2(t� + r�) + 3)) > (t� +
r� + 1) and 0 otherwise.

Proof: The achievability results are proved in Section VI.
The converse in (14) can be proved by first allowing all the
transmitters to cooperate and all the receivers to cooperate, and
then using the well-known expression for the capacity of the
multi-antenna Gaussian point-to-point channel. The converse
to (15) and (16) follows by specializing Upper bound (23) in
Proposition 7 ahead to t�+r� = tr +rr . Similarly, the converse
to (17) follows by specializing (24) ahead to t� + r� = tr + rr .

Remark 3: The proofs of the achievability and converse
results in (14) with δ1 = 0 and in (16) continue to hold
for arbitrary cross-gains provided they are nonzero and
that various principal submatrices of the network’s chan-
nel matrix HNet have full rank, see also the discussion in
Subsection VI-G.

When the cross-gains {αk,�} and {αk,r } are drawn at random
according to a continuous distribution both these properties
hold with probability 1, and thus for this random setup with
symmetric side-information parameters and arbitrary value
K ≥ 1 the multiplexing gain is

K −
⌊

K

t� + r� + 2

⌋
. (18)

Remark 4: We observe that when Ht�+r�+1(α) and
Ht�+r� (α) are full rank, the multiplexing gain only depends
on the sum of the side-information parameters (t� + r�).
Or equivalently they only depend on the sums (tr + rr ) or
(t� + tr + r� + rr ). Thus, in these cases, message cognition at
the transmitters and clustered local decoding at the receivers
are equivalent in terms of increasing the multiplexing gain.

The following corollary is obtained from Theorem 3 by
letting K tend to ∞.

Corollary 4: If det
(
Ht�+r�+1(α)

) 
= 0, then the asymptotic
multiplexing gain per-user is given by

SSym∞ (t�, tr , r�, rr ) = t� + r� + 1

t� + r� + 2
. (19)

Otherwise, it satisfies

t� + r�

t� + r� + 1
≤ SSym

∞ (t�, tr , r�, rr ) ≤ t� + r� + 1
2

t� + r� + 3
2

.

Thus, for a few values α 
= 0 the asymptotic multiplexing gain
per-user drops.

Remark 5: When det
(
Ht�+r�+1(α)

) 
= 0, then to obtain the
same asymptotic multiplexing-gain per-user in this symmetric
network as in the asymmetric network before, we need double
the “amount” of side-information t� + tr + r� + rr .

El Gamal et al. [16] showed that also here a larger
asymptotic multiplexing gain per-user is achievable when the
messages are assigned to the transmitters in a different way
(even when r� = rr = 0). In particular, if each message can be
freely assigned to t� + tr + 1 transmitters, then an asymptotic
multiplexing gain per-user of 2(t�+tr +1)

2(t�+tr +1)+2 is achievable [16],

which is larger than SSym∞ in (19).
Example 1: Consider a symmetric network with symmetric

side-information r� + t� = rr + tr = 2. Let K be 7. Then,
if α /∈ {−√

2/2,
√

2/2}, by Theorem 3 the multiplexing gain
is 6, and in contrast, if α ∈ {−√

2/2,
√

2/2} the multiplexing
gain is only 5.

By Corollary 4 the asymptotic multiplexing gain per-user is
3/4, if α /∈ {−√

2/2,
√

2/2}, but it is at most 5/7 (which is
smaller than 3/4) if α ∈ {−√

2/2,
√

2/2}.
Notice however, that even though the multiplexing gain is

discontinuous at certain values of α, this does not imply that
for fixed powers P also the sum-rate capacity of the network
is discontinuous in α. Also, for given K the set of αs where
the multiplexing gain is discontinuous is finite. This is in
contrast to the fully-connected K -user interference channel
where the multiplexing gain is discontinuous at all rational
cross-gains.

We conclude this section with a result on the high-SNR
power-offset which is defined as

LSym
∞ (K , t�, tr , r�, rr )

� lim
P→∞

(SSym

2
log(P) − CSym

� (K , t�, tr , r�, rr ; P)

)
.

Proposition 5 (Symmetric Side-Information): Assume (13).
Let α∗ be such that det

(
Hr�+t�+1(α

∗)
) = 0. Also, let K =

q(r� + t� + 2) − 1 for some positive integer q. Then, there
exists a function c0(·), bounded in the neighborhood of α∗
such that for all α sufficiently close to α∗:

LSym
∞ (K , t�, tr , r�, rr ) ≥ −ν log |α − α∗| + c0(α

∗),

where ν is the multiplicity of α∗ as a root of the polynomial
det
(
Hr�+t�+1(X)

)
.

In other words, when α approaches the critical value α∗,
the power offset goes to infinity.

Proof: See Appendix D.
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2) Results for General Parameters t�, tr , r�, rr ≥ 0:
Proposition 6: The multiplexing gain of the symmetric net-

work satisfies the following four lower bounds.

1) It is lower bounded by:

SSym(K , t�, tr , r�, rr )≥ K−2

⌊
K

t�+tr +r�+rr

⌋
−θ1, (20)

where

θ1 =

⎧
⎪⎨

⎪⎩

0 if κ1 = 0

1 if κ1 = 1

2 if κ1 ≥ 2

for

κ1 � (K mod (t� + tr + r� + rr )).

2) Moreover, irrespective of the right side-information
tr and rr :

SSym(K , t�, tr , r�, rr )≥ K −2

⌊
K

t�+r�+1

⌋
− θ2, (21)

where

θ2 =

⎧
⎪⎨

⎪⎩

0 if κ2 = 0

1 if κ2 = 1

2 if κ2 ≥ 2

for

κ2 � (K mod (t� + r�)).

3) The lower bound (21) in 2) remains valid if on the right-
hand side of (21) we replace the parameters t� and r�

by tr and rr .
4) Finally, irrespective of the transmitter side-information

t� and tr , if the matrix Ht�+r�+1(α) is full rank:

SSym(K , t�, tr , r�, rr ) ≥ K −2

⌊
K

r�+rt +3

⌋
−θ3, (22)

where

θ3 =

⎧
⎪⎨

⎪⎩

0 if κ3 = 0

1 if κ3 = 1

2 if κ3 ≥ 2

for

κ3 � (K mod (r� + rr + 3)).
Proof: See Section VII.

The lower bound in 2) is useful only when tr = rr = 0,
the lower bound in 3) only when t� = r� = 0, and the bound
in 4) only when t� + tr ≤ 2.

Proposition 7: The multiplexing gain is upper bounded by
the following three upper bounds.

1) It is upper bounded by:

SSym(K, t�, tr , r�, rr )≤ K−2

⌊
K

t�+tr +r�+rr +4

⌋
−θ4,

(23)

where

θ4 =
{

0 if κ4 < min{t� + r� + 2, tr + rr + 2}
1 if κ4 ≥ min{t� + r� + 2, tr + rr + 2}

for

κ4 � (K mod (t� + tr + r� + rr + 4)).

2) Moreover, if det
(
Hr�+t�+1(α)

) = 0:

SSym(K , t�, tr , r�, rr )

≤ K−2

⌊
K

t�+ tr +r�+rr +3

⌋
−θ5, (24)

where

θ5 =
{

0 if κ5 < tr + rr + 1

1 if κ5 ≥ tr + rr + 1

for

κ5 � (K mod (t� + tr + r� + rr + 3)).

3) The upper bound in 2) holds also if everywhere (except
for SSym(K , t�, tr , r�, rr )) one exchanges the subscripts
� and r .

Proof: See Section VIII.
From Propositions 6 and 7 we obtain the following corol-

lary.
Corollary 8: Irrespective of the parameter α, the asymp-

totic multiplexing gain per user satisfies

max

{
r� + rr + 1

r� + rr + 3
,

t� + tr + r� + rr − 2

t� + tr + r� + rr

}

≤ SSym
∞ (t�, tr , r�, rr )

≤ t� + tr + r� + rr + 2

t� + tr + r� + rr + 4
.

Remark 6: The proofs of the achievability results in
1)–3) in Proposition 6 and the proofs of the converse
result 1) in Proposition 7 continue to hold for arbitrary
cross-gains {αk,�} and {αk,r } provided they are nonzero and
that various principal submatrices of the network’s chan-
nel matrix HNet have full rank, see also the discussion in
Subsection VII-E.

When the cross-gains {αk,�} and {αk,r } are drawn at
random according to a continuous distribution both these
properties hold with probability 1, and thus results 1)–3) in
Proposition 6 and result 1) in Proposition 7 also hold with
probability 1. As a consequence, analogous to Corollary 8, the
asymptotic multiplexing gain per-user in this randomized setup
satisfies

t� + tr + r� + rr − 2

t� + tr + r� + rr
≤ SSym∞ (t�, tr , r�, rr )

≤ t� + tr + r� + rr + 2

t� + tr + r� + rr + 4
.
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IV. CONVERSE PROOFS

For a given set of receivers S ⊆ K, let RS denote the set
of indices k ∈ K such that Antenna k is observed by at least
one of the receivers in S.

Our converse proofs all rely on the following lemma.
Lemma 9 (Dynamic-MAC Lemma): Consider a general

interference network with message cognition and clustered
decoding. Let V 0, . . . , V g, for g ∈ N0, be a set of genie-
signals and let A,B1,B2, . . . ,Bq , q ∈ N, form a partition of
the set of receivers K, such that the differential entropy

h
({Nk}k∈RA |V 0, . . . , V g

)
(25)

is finite and bounded in P.4 If for any given encoding and
decoding functions f (n)

1 , . . . , f (n)
K and ϕ

(n)
1 , . . . , ϕ

(n)
K there

exist deterministic functions ξ1, . . . , ξq on the respective
domains such that for each i ∈ {1, . . . , q}:
{Y k}k∈RBi

= ξi
({Y k}k∈RAi

, {Mk}k∈Ai , V 0, . . . , V g
)
, (26)

where

Ai � A ∪ B1 ∪ · · · ∪ Bi−1, (27)

then the multiplexing gain of the network is upper bounded as

S ≤ |RA|. (28)
Proof: To prove our desired upper bound we introduce

a Cognitive MAC, whose capacity region CMAC includes the
capacity region of the original network,

C ⊆ CMAC, (29)

and whose multiplexing gain SMAC is upper bounded as

SMAC ≤ |RA|. (30)

Combining (29) and (30) establishes the desired lemma.
The Cognitive MAC is obtained from the original network

by revealing the genie-information V 0, . . . , V g to the receivers
in Group A and by requiring that all the receivers that are in
Group A jointly decode all messages M1, . . . , MK , whereas
all other receivers do not have to decode anything. Since the
only remaining receivers in Group A can all cooperate in their
decoding, the Cognitive MAC is indeed a MAC with only one
receiver.

We now prove Inclusion (29) using a dynamic version of
Sato’s MAC-bound idea [38]. Specifically, we show that every
coding scheme for the original network can be modified to a
coding scheme for the Cognitive MAC such that whenever the
original scheme is successful (i.e, all messages are decoded
correctly), then so is the modified scheme. Fix a coding
scheme for the original network. The transmitters of the
Cognitive MAC apply the same encodings as in the original
scheme. The only receiver of the Cognitive MAC, i.e., the
Group A receiver, performs the decoding in q + 1 rounds
0, . . . , q . In round i = 0, it decodes the messages {Mk}k∈A
in the same way as in the given original scheme. In rounds
i = 1, . . . , q ,

4For the lemma to hold, it suffices that the differential entropies grow slower
than any multiple of n log(P).

• it attempts to reconstruct the channel outputs {Y k}k∈RBi
observed by the receivers in Group Bi using the pre-
viously decoded messages {Mk}k∈Ai, the observed or
previously reconstructed channel outputs {Y k}k∈RAi

, and
the genie-information V 0, . . . , V g; then

• it decodes the messages {Mk}k∈Bi based on its recon-
structions of the outputs {Y k}k∈RBi

in the same way
as the receivers in Group Bi did in the original
scheme.

By Assumption (26), the round-i reconstruction step is
successful if all previous rounds’ 0, . . . , i − 1 recon-
struction and decoding steps were successful. Thus, the
additional reconstruction steps in the Cognitive MAC decod-
ing do not introduce additional error events compared
to the original decoding procedure, and Inclusion (29)
follows.

We are left with showing that the multiplexing gain of the
Cognitive MAC is upper bounded by |RA|. Since the Group A
receiver is required to decode all K messages M1, . . . , MK ,
by Fano’s inequality, reliable communication is possible
only if

n
K∑

k=1

Rk ≤ I
({Y k}k∈RA , V 0, . . . , V g; M1, . . . , MK

)

= I
({Y k}k∈RA; M1, . . . , MK |V 0, . . . , V g

)

≤ h
({Y k}k∈RA

)−h
({Nk}k∈RA |V 0, . . . , V g

)
. (31)

The multiplexing gain of h
({Y k}k∈RA

)
is bounded by |RA|.

Moreover, by assumption, h
({Nk}k∈RA |V 0, . . . , V g

)
is finite

and bounded in P . We therefore obtain from (31)

lim
P→∞

∑K
k=1 Rk

1
2 log(P)

≤ |RA|, (32)

which gives the desired bound (30).

V. PROOF OF THEOREM 1

Define

γ �
⌈

K − t� − r� − 1

t� + tr + r� + rr + 2

⌉
(33)

β � t� + tr + r� + rr + 2, (34)

κ � (K mod β). (35)

A. Achievability Proof of Theorem 1

We derive a lower bound by giving an appropriate coding
scheme. The idea is to silence some of the transmitters, which
decomposes our asymmetric network into several subnets
(subnetworks), and to apply a scheme based on Costa’s dirty-
paper coding5 and on successive interference cancellation in
each of the subnets.

5Alternatively, also the simpler partial interference cancellation scheme
in [17], which is based on linear beam-forming, could be used instead of
the dirty-paper coding.
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1) Splitting the Network Into Subnets: We silence transmit-
ters jβ, for j ∈ {1, . . . , �K/β�}; moreover, if κ > (t�+r� +1)
we also silence Transmitter K . This splits the network into
�K/β� non-interfering subnets. The first �K/β� subnets all
have the same topology; they consist of (t� + tr + r� + rr + 1)
active transmit antennas and (t� + tr + r� + rr + 2) receive
antennas. We refer to these subnets as generic subnets. If K
is not a multiple of β, there is an additional last subnet with
{

κ active transmit antennas, if κ ≤ (t� + r� + 1),

κ − 1 active transmit antennas, if κ > (t� + r� + 1),

and with κ receive antennas. We refer to such a subnet as a
reduced subnet.

As we shall see, in our scheme each transmitter ignores
its side-information about the messages pertaining to trans-
mitters in other subnets. Likewise, each receiver ignores its
side-information about the outputs of antennas belonging to
receivers in other subnets. Therefore, we can describe our
scheme for each subnet separately.

The scheme employed over a subnet depends on whether
the scheme is generic or reduced and on the parameter
rr ≥ 0. We describe the different schemes in the following
subsections.

2) Scheme Over a Generic Subnet When rr > 0: For
simplicity, we assume that the parameters K , t�, tr , r�, rr are
such that the first subnet is generic and describe the scheme
for this first subnet.

In the special case r� = 2, t� = 2, tr = 1, and rr = 1 the
scheme is illustrated in Figure 3. In general, in the first subnet,
we wish to transmit Messages M1, . . . , Mr�+t�+tr +rr +1. Define
the sets (some of which may be empty)

G1 = {1, . . . , r� + 1}
G2 = {r� + 2, . . . , r� + t� + 1}
G3 = {r� + t� + 2, . . . , r� + t� + tr + 1}
G4 = {r� + t� + tr + 2, . . . , r� + t� + tr + rr + 1}.

Messages {Mk}k∈G1 are transmitted as follows.
• For each k ∈ G1 we construct a single-user Gaussian

code Ck of power P , blocklength n, and rate Rk =
1
2 log(1 + P).6 The code Ck is revealed to Transmitter k
and to Receivers k, . . . , r� + 1.

• Each Transmitter k ∈ G1 ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from codebook Ck that corresponds to its mes-
sage Mk and sends this codeword over the channel.

• Decoding is performed using successive interference can-
cellation, starting by decoding Message M1 based on the
outputs of the first antenna Y n

1 .
Specifically, each Receiver k ∈ G1 decodes as follows.
Let X̂n

0 be an all-zero sequence of length n. Receiver k
initializes j to 1 and while j ≤ k:

6In order to satisfy the block-power constraint imposed on the input
sequences, the power of these Gaussian codebooks should be chosen slightly
smaller than P . Similarly, for the probability of error tending to 0 as n → ∞
the rate Rk should be slightly smaller than 1/2 log(1 + P). However, these
are technicalities which we ignore for readability.

– It computes the difference

Y n
j − α j X̂ n

j−1, (36)

and decodes Message M j based on this difference
using an optimal ML-decoder. Let M̂ j denote the
decoded message.7

– It picks the codeword xn
j (M̂ j ) from codebook C j

that corresponds to the guess M̂ j and produces this
codeword as its reconstruction of the input X̂n

j :

X̂n
j = xn

j (M̂ j ). (37)

– It increases the index j by 1.

• Notice that each Receiver k ∈ G1 has access to the output
signals Y n

1 , . . . , Y n
k because k ≤ r� + 1, and thus the

described decoding can indeed be applied.
• For each k ∈ G1, if Message Mk−1 was decoded correctly,

i.e., M̂k−1 = Mk−1, we have

Y n
k − αk X̂n

k−1 = Xn
k + Nn

k . (38)

Thus, in this case, Message Mk is decoded based on the
interference-free outputs Xn

k + Nn
k , and, by construction

of the code Ck , the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (39)

If t� ≥ 1, Messages {Mk}k∈G2 are transmitted as follows.

• For each k ∈ G2, we construct a dirty-paper code Ck that
is of power P , blocklength n, and rate Rk = 1

2 log(1+P),
and that is designed for noise variance 1 and interference
variance α2

k P (which is the variance of αk Xk−1). The
code Ck is revealed to Transmitters k, . . . , r� + t� + 1 and
to Receiver k.

• Each Transmitter k ∈ G2 computes the interference term
αk Xn

k−1 and uses the dirty-paper code Ck to encode
its message Mk and mitigate this interference αk Xn

k−1.
It then sends the resulting sequence over the channel.

• Each Receiver k ∈ G2 ignores all the side-information
about other receivers’ outputs. It decodes its desired
message Mk solely based on its own outputs

Y n
k = Xn

k + αk Xn
k−1 + Nn

k (40)

applying dirty-paper decoding with code Ck .
• Transmitter k ∈ G2 can compute αk Xn

k−1 because
in our scheme Xn

k−1 depends only on messages
Mr�+1, . . . , Mk−1, and these messages are known to
Transmitter k because (k − (r� + 1)) ≤ t� for all k ∈ G2.

• By construction, the sequence Xn
k , which encodes Mes-

sage Mk , can perfectly mitigate the interference αk Xn
k−1,

and the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (41)

If tr ≥ 1, Messages {Mk}k∈G3 are transmitted as follows.

• For each k ∈ G3, we construct a dirty-paper code Ck of
power α2

k+1 P (the power of αk+1 Xk ), blocklength n, and

7Notice that all receivers k = j, . . . , r� +1 decode Message M j in the same
way, and thus they produce the same estimate M̂ j .
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Fig. 3. Scheme in a generic subnet for parameters t� = 2, tr = 1, r� = 2, and rr = 1.

rate Rk = 1
2 log(1+α2

k+1 P), and that is designed for noise
variance 1 and interference variance P (the variance of
Xn

k+1). The code Ck is revealed to Transmitters r� + t� +
2, . . . , k and to Receiver k.

• Each Receiver k ∈ G3 decodes its desired message Mk

based on the outputs of the antenna to its right

Y n
k+1 = Xn

k+1 + αk+1 Xn
k + Nn

k+1, (42)

to which it has access because rr ≥ 1. The exact decoding
procedure is explained shortly.

• Each Transmitter k ∈ G3 computes the “interference”
sequence Xn

k+1 and applies the dirty-paper code Ck to
encode Message Mk and mitigate this “interference”
Xn

k+1. Denoting the produced sequence by X̃n
k , Trans-

mitter k sends

Xn
k = 1

αk+1
X̃n

k . (43)

(The scaling by 1/αk+1 in (43) reverses the amplification
by αk+1 the sequence Xn

k experiences on its path to
Receiver (k + 1), see (42).)

• Each Receiver k ∈ G3 applies the dirty-paper decoding
of code Ck to the outputs

Y n
k+1 = αk+1 Xn

k + Xn
k+1 + Nn

k+1 (44)

= X̃n
k + Xn

k+1 + Nn
k+1. (45)

• Notice that Transmitter k ∈ G3 can compute the “interfer-
ence” Xn

k+1 non-causally, because this latter only depends
on messages Mk+1, . . . , Mr�+t�+tr +2 which are known to
Transmitter k.
Also, by construction of the code Ck , the sequence X̃n

k
is average block-power constrained to α2

k+1 P and thus,
by (43), the transmitted sequence Xn

k is average block-
power constrained to P .

• By construction, the sequence X̃n
k , which encodes Mes-

sage Mk , can perfectly mitigate the “interference” Xn
k+1,

and the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (46)

Messages {Mk}k∈G4 are transmitted as follows.
• For each k ∈ G4, we construct a single-user Gaussian

codebook Ck of power α2
k+1 P , blocklength n, and rate

Rk = 1
2 log(1 + α2

k+1 P). The codebook Ck is revealed to
Transmitter k and to Receivers k, . . . , r� + t� + tr +rr +1.

• Each Transmitter k ∈ G4 ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from code Ck that corresponds to its message Mk

and sends this codeword over the channel.
• Decoding is performed using successive interference can-

cellation, starting by decoding Message Mr�+t�+tr +rr +1
based on the outputs of the last antenna Y n

r�+t�+tr +rr +2.
Specifically, Receiver k ∈ G4 decodes its desired Message
Mk as follows. Let X̂n

r�+t�+tr +rr +3 be an all-zero sequence
of length n.
Receiver k initializes j to r� + t� + tr + rr + 1, and while
j ≥ k:

– It computes the difference

Y n
j+1 − X̂n

j+1, (47)

and decodes Message M j based on this difference
using an optimal ML-decoder.
Let M̂ j denote the resulting guess of Message M j .

– It reconstructs the input sequence Xn
j by picking

the codeword xn
j (M̂ j ) from codebook C j that cor-

responds to Message M̂ j :

X̂n
j = xn

j (M̂ j ). (48)

– It decreases j by 1.
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• Notice that Receiver k ∈ G4 has access to the output
signals Y n

k , . . . , Y n
r�+t�+tr +rr +2 because k ≥ r�+t�+tr +2.

• For each k ∈ G4, if the previous message Mk−1 has been
decoded correctly, i.e, M̂k−1 = Mk−1, we have

Y n
k+1 − X̂n

k+1 = αk+1 Xn
k + Nn

k+1. (49)

Thus, in this case, Message Mk is decoded based on the
interference-free outputs αk+1 Xn

k + Nn
k+1, and, by con-

struction of the code Ck , the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (50)

To summarize, in the described scheme we sent messages
M1, . . . , Mr�+t�+tr +rr +1 with vanishingly small average prob-
ability of error, see (39), (41), (46), and (50), and at rates

R1 = · · · = Rr�+t�+1 = 1

2
log(1 + P) (51)

Rr�+t�+2 = · · · = Rr�+t�+tr +rr +1 = 1

2
log(1 + α2

k+1 P). (52)

Conclusion 1: Irrespective of the nonzero cross-gains {αk}
and for any t�, tr , r� ≥ 0 and rr > 0, our scheme achieves
a multiplexing gain of (r� + t� + tr + rr + 1) over a generic
subnet. It uses all (r�+t�+tr +rr +1) active transmit antennas
of the subnet and all (r� + t� + tr + rr + 2) receive antennas.

3) Scheme Over a Generic Subnet When rr = 0: We again
assume that the first subnet is generic and focus on this first
subnet. When rr = 0 we transmit Messages M1, . . . , Mr�+t�+1
and Mr�+t�+3, . . . , Mr�+t�+tr +2 over the first subnet.

Messages {Mk}k∈(G1∪G2) are transmitted in the same way as
in the previous section V-A2. If tr > 0, the set G3 is nonempty.
In this case, Messages {Mk+1}k∈G3 are transmitted in a similar
way as Messages {Mk}k∈G3 in the previous section V-A2,
except that now each Transmitter k ∈ G3 sends Message Mk+1
(as opposed to Message Mk ) and accordingly, each output
sequence Y n

k+1 is used by Receiver k + 1 to decode Message
Mk+1 (as opposed to Receiver k decoding Message Mk based
on Y n

k+1). More specifically:
• For each k ∈ G3, we construct a dirty-paper code Ck+1

that is of power α2
k+1 P (the power of αk+1 Xk), block-

length n, and rate Rk+1 = 1
2 log(1 + α2

k+1 P), and that is
designed for noise variance 1 and interference variance P
(the variance of Xk+1). The code Ck+1 is revealed to
Transmitters r� + t� + 2, . . . , k and to Receiver k + 1.

• Transmitter k ∈ G3 applies the dirty-paper code Ck+1 to
encode Message Mk+1 and mitigate the “interference”
Xn

k+1. Denoting the sequence produced by the dirty-paper
code by X̃n

k , Transmitter k sends

Xn
k = 1

αk+1
X̃n

k . (53)

• Each Receiver k + 1, for k ∈ G3, ignores its side-
information about outputs observed at other antennas.
It decodes its desired Message Mk+1 solely based on the
outputs at its own antenna

Y n
k+1 = αk+1 Xn

k + Xn
k+1 + Nn

k+1 (54)

= X̃n
k + Xn

k+1 + Nn
k+1 (55)

using the dirty-paper decoding of code Ck+1.

• Notice that Transmitter k ∈ G3 can compute the “inter-
ference” sequence Xn

k+1 because this latter only depends
on messages Mk+2, . . . , Mr�+t�+tr +2 which are known to
Transmitter k.

• By construction, the sequence X̃n
k , which encodes Mes-

sage Mk+1, can completely mitigate the “interference”
Xn

k+1, and the average probability of error

Pr[M̂k+1 
= Mk+1] → 0 as n → ∞. (56)

To summarize, in the described scheme we transmit Mes-
sages M1, . . . , Mr�+t�+1 and Mr�+t�+3, . . . , Mr�+t�+tr +2 with
vanishingly small average probability of error, see (39), (41),
and (56), and at rates

R1 = · · · = Rr�+t�+1 = 1

2
log(1 + P) (57)

Rr�+t�+3 = · · · = Rr�+t�+tr +2 = 1

2
log(1 + α2

k+1 P). (58)

Conclusion 2: Irrespective of the nonzero cross-gains {αk}
and for any t�, tr , r� ≥ 0, our scheme for rr = 0 achieves a
multiplexing gain of (r� + t� + tr + 1) over a generic subnet.
If tr ≥ 1, it uses all (r�+t�+tr+rr+1) active transmit antennas
and all (r�+t�+tr +2) receive antennas of the subnet. If tr = 0
it uses all (r� + t� + 1) active transmit antennas; but it only
uses the first (r� + t� + 1) receive antennas and ignores the
last antenna of the subnet.

4) Scheme Over a Reduced Subnet: Let

r ′
� � min [(κ − 1) , r�] (59a)

t ′� � min
[
(κ − r� − 1)+ , t�

]
(59b)

t ′r � min
[
(κ − r� − t� − 2)+ , tr

]
(59c)

r ′
r � min

[
(κ − r� − t� − tr − 2)+ , rr

]
(59d)

where (x)+ is defined as max{x, 0}. In a reduced subnet we
apply one of the two schemes described for the generic subnet
but now with reduced side-information parameters r ′

�, t ′�, t ′r , r ′
r .

If r ′
r > 0, we apply the scheme in Subsection V-A2 otherwise

we apply the scheme in Subsection V-A3. Notice that, by
definition, r ′

� ≤ r�, t ′� ≤ t�, tr ≤ t ′r , and r ′
r ≤ rr , and thus

the transmitters and receivers have enough side-information
to apply the described schemes with these parameters.

When κ ≤ (t� + r� + 1), then the reduced subnet consists
of an equal number κ of active transmit and receive antennas
because the last transmit antenna has not been silenced. In
this case, also t ′r = r ′

r = 0 and by Conclusion 2, the scheme
in Subsection V-A3 achieves multiplexing gain κ over such a
subnet.

When κ > (t� + r� + 1), the subnet consists of
κ − 1 active transmit antennas and κ receive antennas.
By Conclusions 1 and 2, one of the schemes in
Subsections V-A2 or V-A3 achieves multiplexing gain κ − 1
over such a subnet.

To summarize, we achieve a multiplexing gain of
{

κ, if κ ≤ t� + r� + 1

κ − 1, if κ > t� + r� + 1
(60)

over a reduced subnet of size κ .
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5) Performance Analysis Over the Entire Network: Over
each of the first �K/β� generic subnets we achieve a mul-
tiplexing gain of β − 1 and, if it exists, then over the last
reduced subnet we achieve a multiplexing gain of either κ or
κ − 1, see (60). Over the entire network we thus achieve a
multiplexing gain of

K − γ =
{

K − �K/β�, if κ ≤ t� + r� + 1

K − �K/β� − 1, if κ > t� + r� + 1.
(61)

This proves the desired lower bound.
Remark 7: In the described scheme a subset of γ messages

is completely ignored and not sent over the network. Using
time-sharing we can obtain a fair scheme that sends all
messages at almost equal rates and achieves a multiplexing
gain of at least K − γ − 1. More specifically, the idea is to
time-share β schemes where in the i -th scheme, i ∈ {1, . . . , β},
we silence transmitters {i + jβ}

j∈
{

1,...,
⌊

K−i
β

⌋}, and if

(K mod β) ≥ (i + t� + r� + 1), then we also silence the
last transmitter K . This splits the network into γ or γ + 1
subnets: a possibly reduced first subnet, γ −2 or γ −1 generic
subnets, and a possibly reduced last subnet. In each of the
subnets, depending on whether it is generic or reduced, one
of the schemes described above is used.

B. Converse to Theorem 1

Apply the Dynamic-MAC Lemma 9 to the following
choices:

• q = 1;
• g = γ − 1;
• A �

⋃g
m=0 A(m), where for m = 0, . . . , g − 1,

A(m) � {mβ + r� + 2, . . . , (m + 1)β − rr }
and

A(g) � {gβ + r� + 2, . . . , K }.
• B1 � K \ A;
• genie-information

V 0 � N1 +
r�+t�+1∑

ν=1

⎛

⎝
ν∏

j=1

−1

α1+ j

⎞

⎠ N1+ν, (62)

and, for m ∈ {1, . . . , g}:
V m � N1+mβ

+
r�+t�+1∑

ν=1

⎛

⎝
ν∏

j=1

−1

αmβ+1+ j

⎞

⎠ N1+mβ+ν

+
tr +rr∑

ν=1

⎛

⎝
ν∏

j=1

(−αmβ+1+ j−ν)

⎞

⎠ N1+mβ−ν (63)

Notice that by our choice of A, the set difference

K\RA = {1 + mβ}g
m=0. (64)

Since for each m = 0, . . . , g the genie-information V m

contains an additive noise term N1+mβ , which is not present

in all other genie-informations {V m′ }m′ 
=m , (64) and the inde-
pendence of the noises imply that the differential entropy
in (25) is finite. Moreover, the differential entropy does not
depend on P because neither does the genie-information.
In the following, we show that also the second assumption (26)
of Lemma 9 is satisfied and that thus we can apply the lemma
for the described choice. This then proves the desired converse
because, by (64), |RA| = K − g − 1 = K − γ .

By (64), the set {Mk}k∈A includes all messages
{Mr�+2+ν+mβ}0≤ν≤t�+tr

0≤m≤γ−1
, where out of range indices should be

ignored. From {Mk}k∈A it is thus possible to reconstruct the
input sequences {X t�+r�+2+mβ}g

m=0:

Xr�+t�+2+mβ = f (n)
r�+t�+2+mβ(Mr�+2+mβ, . . . , Mr�+t�+tr +2+mβ).

Using these reconstructed sequences, the output sequences
observed at the receivers in Group A, and the genie-
information {V m}g

m=0, it is then possible to reconstruct
all channel outputs not observed by the receivers in
Group A, (64):

Y 1 = −
r�+t�+1∑

ν=1

⎛

⎝
ν∏

j=1

−1

αmβ+1+ j

⎞

⎠Y 1+ν

+
⎛

⎝
t�+r�+1∏

j=1

−1

αmβ+1+ j

⎞

⎠ Xr�+t�+2 + V 0

and, for m ∈ {1, . . . , g}:

Y 1+mβ = −
r�+t�+1∑

ν=1

⎛

⎝
ν∏

j=1

−1

αmβ+1+ j

⎞

⎠Y 1+mβ+ν

−
tr+rr∑

ν=1

⎛

⎝
ν∏

j=1

(−αmβ+1+ j−ν)

⎞

⎠Y 1+mβ−ν

+
⎛

⎝
t�+r�+1∏

j=1

−1

αmβ+1+ j

⎞

⎠ Xr�+t�+2+mβ

−
⎛

⎝
rr +tr∏

j=0

(−αmβ+1+ j−rr −tr )

⎞

⎠ Xr�+t�+2+(m−1)β

+V m .

This establishes that Assumption (26) holds, and concludes
the proof.

VI. ACHIEVABILITY PROOF OF THEOREM 3

For each of the four lower bounds 1)–4) in Theorem 3,
i.e., Inequalities (14)–(17), we present a scheme achieving this
lower bound. The four schemes are similar: they all rely on
the idea of switching off some of the transmitter/receiver pairs,
and on using the strategy in Subsection VI-A ahead over the
resulting subnets. (Here, by silencing transmitter/receiver pairs
we intend that we silence the antennas at the transmitters and
ignore the corresponding antennas at the receivers.) This splits
the networks into non-interfering subnets. In each scheme we
silence a different set of transmitter/receiver pairs. As we will
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see we do this in a way that splits the network into subnets
that have at most t� + r� + 1 active transmitter/receiver pairs.

We first describe the strategy used to communicate over
the subnets (Section VI-A). Then, we present the set of
transmitter/receiver pairs that needs to be silenced in each of
the four schemes, so that they achieve the lower bounds in
1)–4) (Sections VI-C–VI-F).

A. Strategy Used in the Subnets

Consider a subnet with κ transmitter/receiver pairs, where
κ ≤ t�+r�+1. Notice that this subnet’s channel matrix is given
by Hκ(α). We first present a coding strategy that achieves full
multiplexing gain of rank(Hκ(α)) over the subnet when

κ = t� + r� + 1. (65)

Then we describe how to modify this strategy to achieve full
multiplexing gain of rank(Hκ(α)) over the subnet when κ <
t� + r� + 1.

Depending on which of the following three cases applies,
we use a different scheme to communicate over the subnet.
1.) If the transmitters and the receivers have the same amount

of side-information:

r� + rr = t� + tr (66)

we use a Multi-Input/Multi-Output (MIMO) point-to-
point scheme.

2.) If the transmitters have more side-information than the
receivers:

r� + rr < t� + tr (67)

we use a MIMO broadcast scheme.
3.) If the receivers have more side-information than the

transmitters:

r� + rr > t� + tr (68)

we use a MIMO multi-access scheme.
We first describe the MIMO point-to-point scheme for

case 1.). In this case (13) and (66) imply that

t� = rr and tr = r�. (69)

Therefore, since κ = r� + t� + 1, (65), all κ transmitters are
cognizant of Message Mtr +1 and Receiver (tr + 1) has access
to all κ antennas in the subnet. Thus, all the transmitters can
act as a single transmitter that transmits Message Mtr +1 to
Receiver (tr + 1) which can decode the Message based on all
the antennas in the subnet. Using an optimal MIMO point-
to-point scheme for this transmission achieves a multiplexing
gain of rank(Hκ(α)) over the subnet.

We next describe the MIMO broadcast scheme for case 2.).
Notice that (13) and (67) imply that

r� < tr . (70)

By (13) and (65), all the transmitters are cognizant of Mes-
sages Mr�+1, . . . , Mtr +1 and Receivers (r� + 1), . . . , (tr + 1)
jointly have access to all the κ antennas in the subnet. Thus,
all the transmitters in the subnet can act as a big com-
mon transmitter that transmits Messages Mr�+1, . . . , Mtr +1

Fig. 4. Broadcast scheme employed in a subnet for parameters κ = 4, t� = 2,
tr = 3, r� = 1, and rr = 0.

to the independent Receivers (r� + 1), . . . , (tr + 1). where
Receiver (r� + 1) decodes based on antennas 1, . . . , r� + 1
(and ignores the other antennas), Receivers (r� + 2), . . . , t�
decode based only on their own antennas, and Receiver (tr +1)
decodes based on antennas tr + 1, . . . , tr + rr + 1.8 Using an
optimal MIMO broadcast scheme for this transmission we can
achieve a multiplexing gain of rank(Hκ(α)) over the subnet.

For parameters t� = 2, tr = 3, r� = 1, and rr = 0 the
scheme is illustrated in Figure 4.

We finally describe the MIMO multi-access scheme for
case 3.). Here, (13) and (68) imply

tr < r�. (71)

By (13) and (65), each transmitter knows at least one
of the Messages Mtr +1, . . . , Mr�+ 1, and Receivers (tr +
1), . . . , (r�+ 1) all have access to all κ receive antennas in the
subnet. In our scheme the first tr +1 transmitters 1, . . . , tr +1
act as a big common transmitter that transmits Message Mtr +1.
Similarly, the last t� +1 transmitters r� +1, . . . , r� + t� +1 act
as a big common transmitter that transmits Message Mr�+1.
Transmitters tr + 2, . . . , r� act as single transmitters that
transmit their own messages. Receivers (tr + 1), . . . , (r� + 1)
act as a single big common receiver that decodes Messages
Mtr +1, . . . , Mr�+1 based on all the antennas in the network.
Applying an optimal MIMO MAC scheme for this transmis-
sion achieves multiplexing gain rank(Hκ(α)) over the subnet.

For parameters t� = 2, tr = 0, r� = 1, and rr = 3 the
scheme is illustrated in Figure 5.

We conclude that with the above described schemes we can
achieve a multiplexing gain of rank(Hκ(α)) when κ = t� +
r� + 1, irrespective of the specific values of t� and r�.

We now consider the case where

κ < t� + r� + 1. (72)

8The described assignment of antennas to receivers is only one possible
assignment that leads to the desired multiplexing gain. Other assignments are
possible.
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Fig. 5. Multi-access scheme employed in a subnets for parameters κ = 4,
t� = 2, tr = 0, r� = 1, and rr = 3.

In this case we choose parameters t ′� ≤ t�, t ′r ≤ tr , r ′
� ≤ r�,

and r ′
r ≤ rr such that

κ = t ′� + r ′
� + 1 = t ′r + r ′

r + 1, (73)

and depending on the choice of t ′�, t ′r , r ′
�, r ′

r we apply one
of the three schemes above. This way, we achieve multi-
plexing gain rank(Hκ(α)) over the subnet also when (72)
holds.

We obtain the following proposition.
Proposition 10: For every subnet with κ ≤ t� + r� + 1

transmitter/receiver pairs one of the three schemes described
above achieves a multiplexing gain of rank(Hκ(α)).

This result relies on the cross-gains only through the rank
of the subnet’s channel matrix. Therefore, also in the setup
with general cross-gains {αk,�} and {αk,r }, over any subnet
with κ ≤ t� + r� + 1 transmitter/receiver pairs the described
schemes achieve a multiplexing gain equal to the rank of the
subnet’s channel matrix.

B. Auxiliary Results

The following auxiliary results will be used in the proofs
ahead.

Lemma 11: Let a real number α and a positive integer p
be given such that det

(
Hp(α)

) = 0. Then, the following
statements hold.

1) The integer p ≥ 2.
2) The determinants det

(
Hp−1(α)

)
, det

(
Hp+1(α)

)
, and

det
(
Hp+2(α)

)
are all non-zero. Moreover, if p > 2 (and

thus Hp−2(α) is defined) also det
(
Hp−2(α)

)
is non-zero.

Proof: See Appendix A.
Corollary 12: For every real number α and positive inte-

ger p, the rank of the matrix Hp(α) is either p or p − 1.
Proof: Follows by noting that Hp−1(α) is a sub-matrix

of Hp(α) and by Lemma 11.

C. Achieving the Lower Bound in (14)

Recall that (14) holds under the assumption that K ≤ t� +
r� + 1. In this case, we do not silence any transmitter/receiver
pairs but we directly apply one of the threes schemes in the
previous Subsection VI-A. By Proposition 10 this way we can
achieve a multiplexing gain of rank(HK (α)), which trivially
equals K if det (HK (α)) 
= 0 and by Corollary 12 equals K −1
otherwise.

D. Achieving the Lower Bound in (15)

Recall that (15) holds under the assumption that K > (t� +
r� + 2) and det

(
Ht�+r�+1(α)

) 
= 0. We define

κ̃ � K mod (t� + r� + 2) (74)

γ̃ �
⌊

K

t� + r� + 2

⌋
(75)

and notice that by assumption γ̃ ≥ 1.
We switch off the transmitter/receiver pairs {g(t� + r� +

2)}γ̃g=1, i.e., in total γ̃ transmitter/receiver pairs. This decom-
poses the network into γ̃ subnets with (t� + r� + 1) trans-
mitter/receiver pairs and possibly a smaller last network with
κ̃ ≤ (t� + r� + 1) transmitter/receiver pairs. Thus, in each
subnet we can apply one of the schemes described in Sub-
section VI-A. By Proposition 10, this achieves multiplexing
gain rank

(
Ht�+r�+1(α)

)
over the first γ̃ subnets and multi-

plexing gain rank (Hκ̃ (α)) over the last smaller network (if
it exists). By assumption det

(
Ht�+r�+1(α)

) 
= 0 and thus
rank

(
Ht�+r�+1(α)

) = (t� +r� +1); moreover, by Corollary 12,
rank (Hκ̃ (α)) is either equal to κ̃ or to κ̃ −1. Thus, we achieve
at least the desired multiplexing gain of K −

⌊
K

t�+r�+2

⌋
− 1.

In fact, whenever κ̃ = 0 or det (Hκ̃ (α)) 
= 0, then we can even
achieve a multiplexing gain of K −

⌊
K

t�+r�+2

⌋
.

E. Achieving the Lower Bound in (16)

Recall that (16) holds under the assumption that K >
(t� + r� + 2); that det

(
Ht�+r�+1(α)

) 
= 0; and that
det
(
Ht�+r� (α)

) 
= 0.
We distinguish two cases depending on κ̃ as defined in (74):
1) rank (Hκ̃ (α)) = κ̃;
2) rank (Hκ̃ (α)) < κ̃.
In case 1) we use the same scheme as in the pre-

vious Subsection VI-D. As described above, this scheme
achieves a multiplexing gain of rank

(
Ht�+r�+1(α)

)
over each

of the first
⌊

K
t�+r�+2

⌋
subnets and a multiplexing gain of

rank (Hκ̃ (α)) over the last smaller network. Since we assumed
that det

(
Ht�+r�+1(α)

) 
= 0 and that rank (Hκ̃ (α)) = κ̃,
we conclude we achieve the desired multiplexing gain of
K −

⌊
K

t�+r�+2

⌋
over the entire network.

We now treat case 2). Notice that in this case κ̃ < t� + r�

because we assumed that det
(
Ht�+r�+1(α)

) 
= 0 and that
det
(
Ht�+r� (α)

) 
= 0.

We switch off transmitter/receiver pairs {g(t� + r� + 2)}γ̃−1
g=1

and transmitter/receiver pair γ̃ (t� + r� + 2) − 1, where γ̃ is
defined in (75). This way, the first γ̃ − 1 subnets are of size
t� + r� + 1, the next subnet is of size (t� + r�), and the last
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is of size κ̃ + 1 (where κ̃ is defined in (74)). Thus, all the
subnets consist of at most t� + r� + 1 transmitter/receiver
pairs, and we can apply one of the three schemes described in
Subsection VI-A.

Since det
(
Ht�+r�+1(α)

) 
= 0, by Proposition 10, we achieve
a multiplexing gain of t� + r� + 1 over each of the first γ̃ − 1
subnets. Moreover, since we assumed that det

(
Ht�+r� (α)

) 
= 0,
we further achieve a multiplexing gain of (t� + r�) over the
γ̃ -th subnet. Finally, since we assumed that det (Hκ̃ (α)) = 0,
by Lemma 11, det

(
Hκ̃+1(α)

) 
= 0, and thus we achieve a mul-
tiplexing gain of κ̃ + 1 over the last subnet. We conclude that
our scheme achieves full multiplexing gain (i.e., multiplexing
gain equal to the number of transmitter/receiver pairs) in each
subnet and hence a multiplexing gain of K −

⌊
K

t�+r�+2

⌋
over

the entire network.

F. Achieving the Lower Bound in (17)

Recall that (17) holds under the assumptions that K > t� +
r� + 2 and det

(
Ht�+r�+1

) = 0.
We switch off every (t� + r� + 1)-th transmitter/receiver

pair, i.e., in total
⌊

K
t�+r�+1

⌋
transmitter/receiver pairs, and,

depending on the values of t�, tr , r�, rr , we apply one of the
three schemes in Subsection VI-A over the resulting subnets.
Following similar lines as in the previous proof, it can be
shown that all the resulting subnets have full-rank channel
matrices and thus by Proposition 10 a multiplexing gain of
K −

⌊
K

t�+r�+1

⌋
is achieved over the entire network. The details

of the proof are omitted.

G. General Cross-Gains {αk,�} and {αk,r }
The performance analysis of the schemes presented in the

previous subsections rely on the cross-gains only through the
ranks of various principal submatrices of the network’s channel
matrix HK and on the fact that the cross-gains are nonzero.
Thus, our proofs and results generalize to non-equal cross-
gains {αk,�} and {αk,r }.

More specifically, the three MIMO coding strategies dis-
cussed in Subsection VI-A achieve multiplexing gains equal
to the rank of the subnet’s channel matrix if the subnet consists
of no more than t� + r� + 1 active transmitters and receivers,
irrespective of the actual values of the cross-gains and of
whether they are all equal or different. Thus, for general cross-
gains {αk,�} and {αk,r }, if we silence pairs of consecutive
transmitters, ignore the corresponding receivers’ antennas, and
apply the appropriate MIMO strategies over the resulting
subnets, then we achieve a multiplexing gain over the entire
network that is equal to the sum of the ranks of the subnets’
channel matrices.

The best choice of the pairs of transmitters to silence
depends on the values of the cross-gains. In the case of
equal cross-gains α, Lemma 11 and Corollary 12 helped us
determining the best choices. Finding the optimal choices
for general cross-gains seems very involved. Lemma 11 and
Corollary 12 however generalize, and can provide some help.
Lemma 11, for example, generalizes to arbitrary nonzero
cross-gains in the following way. For each positive integer

p ≤ K , let HNet,p denote the p-th principal submatrix of
HNet. Then, Lemma 11 remains valid if the matrices Hq(α)
are replaced by HNet,q for q ∈ {p − 2, p − 1, p, p + 1, p}.
This can be verified by inspecting the proof. (The main change
concerns (135), where α2 needs to be replaced by the product
αk,� · αk−1,r , for some k ∈ K, which by assumption is again
nonzero. All other steps remain unchanged.)

In a randomized setup where the cross-gains are chosen
independently according to a continuous distribution all cross-
gains are nonzero with probability 1 and all the principal
submatrices of the network’s channel matrix HNet are full rank
with probability 1. This implies in particular that the coding
schemes in Subsections VI-C (for K ≤ t� + r� + 1) or VI-E
(for K ≥ t� + r� + 2) achieve the optimal multiplexing gain
K −

⌊
K

t�+r�+2

⌋
with probability 1.

VII. PROOF OF PROPOSITION 6

We first prove the lower bound in 2), followed by the lower
bounds in 3), 1), and 4).

A. Proof of Lower Bound 2), i.e., (21)

If t� = 0, then (21) follows from lower bound (22).
Moreover, if t� + r� ≤ 1, then there is nothing to prove, as the
multiplexing gain cannot be negative.

Thus, in the following we assume that t� + r� ≥ 2 and
t� ≥ 1, and present a scheme that achieves the lower bound
in (21) under this assumption. Our scheme is similar to the
scheme for the asymmetric network described in Section V-A
when this latter is specialized to tr = rr = 0. (In particular our
scheme here disregards the right side-information available to
the transmitters and the receivers.)

The idea is again to silence some of the transmitters, which
decomposes our asymmetric network into several subnets, and
to apply a scheme based on Costa’s dirty-paper coding and
successive interference cancellation to communicate over the
subnets. However, here, due to the two-sided interference,
pairs of consecutive transmitters are silenced and the dirty-
paper coding and the successive interference cancellation
strategies are used to “cancel” two interference signals.

Define

β2 � (t� + r� + 1) (76)

γ2 �
⌊

K

β2

⌋
(77)

and recall that in Proposition 6 we defined κ2 � K mod β2
and

θ2 �

⎧
⎪⎨

⎪⎩

2, if κ2 ≥ 2

1, if κ2 = 1

0, if κ2 = 0.

(78)

1) Splitting the Network Into Subnets: We silence transmit-
ters {mβ2 + 1}γ2−1

m=0 and transmitters {mβ2}γ2
m=1. Moreover, if

θ2 = 1 we also silence transmitter (γ2β2 + 1) and if θ2 = 2
then also transmitters (γ2β2+1) and K . Notice that in total we
silence 2γ2 + θ2 transmitters. Silencing the chosen subset of
transmitters splits the network into γ2 non-interfering subnets
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if θ2 = 0 and into γ2 + 1 non-interfering subnets if θ2 ≥ 1.
In both cases, the first γ2 subnets all have the same topology
and consist of β2 − 2 active transmit antennas and of β2
receive antennas. In fact, the m-th subnet, for m ∈ {1, . . . , γ2},
consists of transmit antennas ((m − 1)β2 + 2), . . . , (mβ2 − 1)
and receive antennas ((m − 1)β2 + 1), . . . , mβ2. We call these
subnets generic. If θ2 ≥ 1, then there is an additional last
smaller subnet which consists of max{κ2−2, 0} active transmit
antennas and κ2 receive antennas. More precisely, it consists of
transmit antennas (K −κ2+2), . . . , (K −1) (i.e., of no transmit
antennas if κ ≤ 2) and of receive antennas (K −κ2+1), . . . , K .

The scheme employed over a subnet depends on whether the
scheme is generic or reduced and on the parameter r� ≥ 0.
We describe the schemes in the following subsections.

2) Scheme Over a Generic Subnet When r� ≥ 1: We assume
that the first subnet is generic and describe the scheme for this
first subnet.

We transmit Messages M2, . . . , Mr�+t� over the subnet.
Define the sets

F1 � {2, . . . , r� + 1} (79)

F2 � {r� + 2, . . . , r� + t�}. (80)

Messages {Mk}k∈F1 are transmitted as follows.

• For each k ∈ F1 we construct a single-user Gaussian
codebook Ck of power α2 P , blocklength n, and rate Rk =
1
2 log(1 +α2 P). The code Ck is revealed to Transmitter k
and to Receivers 2, . . . , k.

• Each Transmitter k ∈ F1 ignores the side-information
about other transmitters’ messages and codes for a
Gaussian single-user channel. That is, it picks the code-
word from codebook Ck that corresponds to its mes-
sage Mk . Denoting the resulting sequence by X̃n

k , the
transmitter sends the scaled version

Xn
k = 1

α
X̃n

k (81)

over the channel.
• Receiver k ∈ F1, uses successive interference cancella-

tion to decode its desired Message Mk . Let X̂n
0 and X̂n

1 be
two all-zero sequences of length n. Receiver k initializes
j to 2, and while j ≤ k:

– It decodes Message M j based on the difference

Y n
j−1 − α X̂n

j−2 − X̂n
j−1 (82)

using an optimal ML-decoder. Let M̂ j denote the
resulting guess.

– It picks the codeword from codebook C j that corre-
sponds to the guess M̂ j and scales it by 1

α to form
the guess X̂n

j .
– It increases the index j by 1.

• Notice that Receiver k ∈ F1 has access to the output
signals Y n

1 , . . . , Y n
k because k ≤ r� + 1.

• For each k ∈ F1, if the previous two messages were
decoded correctly, M̂k−2 = Mk−2 and M̂k−1 = Mk−1,

Y n
k−1 − α X̂n

k−2 − X̂n
k−1 = X̃n

k + Nn
k−1. (83)

Thus, in this case, Message Mk is decoded based on the
interference-free outputs αXn

k + Nn
k−1, and, by construc-

tion of the code Ck , the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (84)

If t� ≥ 2, Messages {Mk}k∈F2 are transmitted as follows:

• For each k ∈ F2, construct a dirty-paper code Ck of
power α2 P and rate Rk = 1

2 log(1 + α2 P) for noise
variance 1 and interference variance (α2 P + P) (which is
the variance of αXk−2 + Xk−1). The code Ck is revealed
to Transmitters k, . . . , r� + t� and to Receiver k.

• Each Transmitter k ∈ F2 computes the “interference
term” αXn

k−2 + Xn
k−1 and applies the dirty-paper code Ck

to encode its message Mk and mitigate the “interference”
αXn

k−2 + Xn
k−1. Denoting the resulting sequence by X̃n

k ,
the transmitter sends the scaled version

Xn
k = 1

α
X̃n

k . (85)

• Each Receiver k ∈ F2 considers only the outputs at the
antenna of its left neighbor, Y n

k−1. It uses code Ck to apply
dirty-paper decoding based on the outputs

Y n
k−1 = αXn

k−2 + Xn
k−1 + αXn

k + Nn
k (86)

= X̃n
k + αXn

k−2 + Xn
k−1︸ ︷︷ ︸

“interference”

+Nn
k . (87)

• Notice that Transmitter k ∈ F2 can compute the
sequences Xn

k−2 and Xn
k−1, because in our scheme

they only depend on Messages Mr� , . . . , Mk−2 and
Mr� , . . . , Mk−1, respectively.

• By construction, the sequence X̃n
k , which encodes

Message Mk , can completely mitigate the “interference”
αXn

k−2 + Xn
k−1, and the average probability of error

Pr[M̂k = Mk ] → 0 as n → ∞. (88)

To summarize, with the described scheme, we sent
Messages M2, . . . , Mr�+t� with vanishingly small probability
of error, see (84) and (88), and at rates

R2 = · · · = Rr�+t� = 1

2
log(1 + α2 P). (89)

3) Scheme Over a Generic Subnet When r� = 0: In this case
the set F1 is empty whereas by the assumption t� + r� ≥ 2,
t� ≥ 2 and the set F2 is non-empty. We transmit Messages
{Mk−1}k∈F2 over the subnet.

Specifically, each Transmitter k ∈ F2 employs the dirty-
paper scheme as described in th previous subsection VII-A.2,
except that now, instead of sending its own message Mk , it
sends its left-neighbor’s message Mk−1 (to which it has access
because t� ≥ 1). Accordingly, the outputs Y n

k−1, for k ∈ F2,
are now used by Receiver k −1 to decode its desired message
Mk−1.

Here, for each k ∈ F2, the probability of error of Message
Mk−1 equals the probability of error of Message Mk in the
previous subsection VII-A.2. Thus, by (88), for all k ∈ F2:

Pr[M̂k−1 = Mk−1] → 0 as n → ∞. (90)
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We conclude that with the described scheme, the messages
M1, . . . , Mt�−1 are communicated with vanishingly small
probability of error and at rates

R1 = · · · = Rt�−1 = 1

2
log(1 + α2 P). (91)

Conclusion 3: Our schemes for generic subnets described
here and in the previous subsection VII-A.2 achieve a mul-
tiplexing gain of r� + t� − 1 over a generic subnet when
r� ≥ 1 and when r� = 0, respectively. Both schemes use all
the (t� + r� − 1) active transmit antennas of the subnet; but
they use only the first (t� +r� −1) receive antennas and ignore
the last two receive antennas of the subnet.

4) Scheme Over a Reduced Subnet: Over the reduced
subnet we use one of the two schemes for generic subnets
of Subsections VII-A2 and VII-A3, but with reduced side-
information parameters

r ′
� � min [(κ2 − 1) , r�] (92a)

t ′� � min
[
(κ2 − r� − 1)+ , t�

]
. (92b)

By Conclusion 3, this achieves a multiplexing gain of
max{κ2 − 2, 0} over a reduced subnet.

5) Analysis of the Performance Over the Entire Network:
Over the first �K/β2� generic subnets we achieve a multiplex-
ing gain of β2 − 2 and, if it exists, then over the last reduced
subnet we achieve a multiplexing gain of max{κ2 − 2, 0}.
Thus, over the entire network we achieve a multiplexing gain
of

K − 2γ2 − θ2 =
{

K − 2�K/β2� − 2, if κ2 ≥ 2

K − 2�K/β2� − κ2 if κ2 < 2.
(93)

This establishes the desired lower bound.

B. Proof of Lower Bound 3)

By symmetry, this lower bound follows directly from (21).
In particular, if tr ≥ 1 and tr + rr ≥ 2, a scheme that
is symmetric to the scheme described in the previous sub-
section VII-A achieves the desired multiplexing gain in 3).
We briefly sketch this scheme because we will use it to
prove the lower bound in 1), (20), in Subsection VII-C
ahead.

Define

β ′
2 � (tr + rr + 1), (94)

γ ′
2 �

⌊
K

β ′
2

⌋
, (95)

κ ′
2 � K mod β ′

2, (96)

and

θ ′
2 �

⎧
⎪⎨

⎪⎩

2, if κ ′
2 ≥ 2

1, if κ ′
2 = 1

0, if κ ′
2 = 0.

(97)

1) Splitting the Network Into Subnets: We silence transmit-

ters {mβ ′
2 + 1}γ ′

2−1
m=0 and transmitters {mβ ′

2}
γ ′

2
m=1. Moreover, if

θ ′
2 = 1 then we also silence transmitter (γ ′

2β
′
2 + 1) and if

θ ′
2 = 2 then also transmitters (γ ′

2β
′
2 + 1) and K . This splits

the network into γ ′
2 generic subnets with β ′

2−2 active transmit
antennas and β ′

2 receive antennas, and if θ ′
2 ∈ {1, 2} then there

is an additional last reduced subnet with max{κ ′
2 −2, 0} active

transmit antennas and κ ′
2 receive antennas.

The scheme that we employ in the subnets depends on
whether the subnet is generic or reduced and on the parameter
rr ≥ 0.

2) Scheme Over a Generic Subnet When rr ≥ 1: Define the
sets F3 and F4 as:

F3 � {2, . . . , tr }
F4 � {tr + 1, . . . , tr + rr }.

Assume that the first subnet is generic. Then, over this first
subnet we transmit messages M2, . . . , Mtr +rr .

Messages {Mk}k∈F3 are transmitted in a similar way as
Messages {Mk}k∈G3 in the scheme in Subsection V-A, and
Message {Mk}k∈F4 are transmitted in a similar way as Mes-
sages {Mk}k∈G4 in that scheme. The only difference is that
here, each dirty-paper code Ck , for k ∈ F3, has to be designed
for an interference variance (α2 P + P) so that it can mitigate
the “interference” Xn

k+1 +αXn
k+2; likewise, during the succes-

sive interference cancellation steps, each Receiver k ∈ F4 has
to cancel the two “interference” terms Xn

k+1 and αXn
k+2.

For brevity, we omit the details of the scheme and of
the analysis. It can be shown that the scheme achieves a
multiplexing gain of tr + rr − 1 over the generic subnet.

3) Scheme Over a Generic Subnet When rr = 0: In
this case, the set F4 is empty whereas, by the assumption
tr + rr ≥ 2, the set F3 is nonempty. We transmit messages
M3, . . . , Mtr +rr +1 over the subnet.

Messages {Mk+1}k∈F3 are transmitted in the same way as
messages {Mk+1}k∈G3 in Subsection V-A. For brevity, we omit
details and analysis. It can be shown that such a scheme
achieves a multiplexing gain of tr + rr − 1 over the generic
subnet.

Conclusion 4: Our schemes in the previous
subsection VII-B2 and here achieve a multiplexing gain
of rr + tr − 1 over a generic subnet when rr ≥ 1 and when
rr = 0, respectively. Both schemes use all (tr + rr − 1) active
transmit antennas of the subnet; but they use only the last
(tr + rr − 1) receive antennas and ignore the first two receive
antennas of the subnet.

4) Scheme Over a Reduced Subnet: Over a reduced subnet
we employ the schemes for a generic subnet described above,
but with reduced side-information parameters

t ′r � min
[(

κ ′
2 − 2

)
+ , tr

]
(98a)

r ′
r � min

[(
κ ′

2 − tr − 2
)
+ , rr

]
(98b)

By Conclusion 4, such a scheme achieves a multiplexing gain
of max{κ ′

2 − 2, 0} over the reduced subnet.
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C. Proof of Lower Bound 1), i.e., (20)

If t� + r� = 0 or tr + rr = 0, then the proof follows directly
from the lower bounds in 2) or 3). If t� + tr + r� + rr ≤ 2,
there is nothing to prove.

Thus in the following we assume that t� + tr + r� + rr ≥ 3
and (t� + r�), (tr + rr ) ≥ 1. Define

β1 � (t� + tr + r� + rr ) (99)

γ1 �
⌊

K

β1

⌋
, (100)

and recall that in Proposition 6 we defined κ1 � K mod β1
and

θ1 �

⎧
⎪⎨

⎪⎩

2, if κ1 ≥ 2

1, if κ1 = 1

0, if κ1 = 0.

(101)

1) Splitting the Network Into Subnets: We silence transmit-
ters {mβ1 + 1}γ1−1

m=0 and transmitters {mβ1}γ1
m=1. Moreover, if

θ1 = 1, then we also silence transmitter (γ1β1 + 1), and if
θ1 = 2, then also transmitters (γ1β1 + 1) and K . Thus, in
total we silence 2γ1 + θ1 transmitters. This splits the network
into γ1 or γ1 + 1 non-interfering subnets: the first γ1 generic
subnets consist of (β1 − 2) transmit antennas and β1 receive
antennas, and if there is an additional last subnet then it is
smaller and consists of max{κ1 − 2, 0} transmit antennas and
of κ1 receive antennas.

The scheme employed in each subnet depends on whether
the subnet is generic or reduced.

2) Scheme Over a Generic Subnet: We assume that the first
subnet is generic and describe the scheme for this first subnet.
To this end, define the groups

F1/2 � {2, . . . , r� + t�}
F3/4 � {(r� + t� + 1), . . . , (r� + t� + tr + rr − 1)}.

Our scheme is a combination of the two schemes for generic
subnets described in Sections VII-A and VII-B. Over the left
part of the subnet that consists of transmit antennas k ∈ F1/2
and receive antennas 1, . . . , (r� + t� − 1) we use the scheme
in Section VII-A. Over the right part of the subnet that
consists of transmit antennas k ∈ F3/4 and receive antennas
(r� + t� + 2), . . . , (r� + t� + tr + rr ) we use the scheme
in Section VII-B where the set F3 needs to be replaced by
{(r� + t� + 1), . . . , (r� + t� + tr − 1)} and the set F4 by {(r� +
t�+tr ), . . . , (r�+t�+tr +rr −1)} . Thus, the combined scheme
utilizes all the transmit antennas in the subnet but only receive
antennas 1, . . . , r�+t�−1 and r�+t�+2, . . . , r�+t�+tr +rr +2,
i.e., it ignores the two receive antennas (r�+t�) and (r�+t�+1),
see also Conclusions 3 and 4.

Since the transmit antennas k ∈ F1/2 in the “left-hand”
scheme do not influence the signals observed at receive
antennas (r� + t� + 2), . . . , (r� + t� + tr + rr ) employed
in the “left-hand” scheme, and the signals sent at transmit
antennas k ∈ F3/4 in the “right-hand” scheme do not influence
the signals observed at receive antennas 1, . . . , (r� + t� − 1)
employed in the “left-hand” scheme, the performance of the
two schemes can be analyzed separately. By Conclusions 3
and 4 we achieve a multiplexing gain of r� + t� − 1 over the

left part of the subnet and a multiplexing gain of tr +rr −1 over
the right part of the subnet. Thus, we achieve a multiplexing
gain r� + t� + tr + rr − 2 over the entire subnet.

3) Scheme Over a Reduced Subnet: We employ the same
scheme as over a generic subnet but with reduced side-
information parameters. Details and analysis are omitted for
brevity. Such a scheme can achieve a multiplexing gain of
max{κ1 − 2, 0} over a reduced subnet.

4) Analysis of Performance Over the Entire Network: Over
the first �K/β1� generic subnets we achieve a multiplexing
gain of β1−2 and, if it exists, then over the last reduced subnet
we achieve a multiplexing gain of max{κ1 − 2, 0}. Thus, over
the entire network we achieve a multiplexing gain of

K − 2γ1 − θ1 =
{

K − 2�K/β1� − 2, if κ1 ≥ 2

K − 2�K/β1� − κ1 if κ1 < 2.
(102)

This establishes the desired lower bound.

D. Proof of Lower Bound 4), i.e., (22)

In our scheme the transmitters ignore their side-information.
Define

β3 � (r� + rr + 3) (103)

γ3 �
⌊

K

β3

⌋
, (104)

and recall that in Proposition 6 we defined κ3 � K mod β3
and

θ3 �

⎧
⎪⎨

⎪⎩

2, if κ3 ≥ 2

1, if κ3 = 1

0, if κ3 = 0.

(105)

1) Splitting the Network Into Subnets: We silence transmit-
ters {mβ3 + 1}γ3−1

m=0 and transmitters {mβ3}γ3
m=1. Moreover, if

θ3 = 1, we also silence transmitter β3γ3 + 1, and if θ3 = 2,
we also silence transmitters β3γ3 + 1 and K . Notice that in
total we have silenced 2γ3 + θ3 transmitters.

This splits the network into γ3 or γ3 + 1 non-interfering
subnets: the first γ3 subnets consist of β3 − 2 active transmit
antennas and β3 receive antennas (we call these subnets
generic), and if an additional last subnet exists it is smaller and
consists of max{κ3 − 2, 0} transmit and κ3 receive antennas.

The scheme employed over the subnets depends on whether
the subnet is generic or reduced.

2) Scheme Over a Generic Subnet: We assume that the first
subnet is generic and describe our scheme for this first subnet.
Define

H1 � {2, . . . , r� + 1}
H2 � {r� + 2}
H3 � {r� + 3, . . . , r� + rr + 2}.

We only sketch the scheme.

• Messages M2, . . . , Mr�+rr +2 are transmitted over the
subnet.

• For each k ∈ (H1 ∪H2 ∪H3), Transmitter k encodes its
Message Mk using a Gaussian point-to-point code.
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• For each k ∈ H1, Receiver k decodes its message using
successive interference cancellation from the left, starting
with the first antenna in the subnet. These messages can
be decoded with arbitrary small probability of error (for
sufficiently large blocklengths), whenever

Rk ≤ 1

2
log
(

1 + α2 P
)
, ∀k ∈ H1. (106)

• Similarly, for each k ∈ H3, Receiver k decodes its
message using successive interference cancellation but
now from the right and starting with the last antenna
in the subnet. These messages can be decoded with
arbitrary small probability of error (for sufficiently large
blocklengths), whenever

Rk ≤ 1

2
log
(

1 + α2 P
)
, ∀k ∈ H3. (107)

• Receiver r�+2, which has access to antennas 2, . . . , (r�+
rr + 2), decodes its desired Message Mr�+2 by decoding
all the transmitted messages M2, . . . , Mr�+rr +2 using
an optimal MIMO decoder [41]. In this step, we have
arbitrary small probability of error, whenever

r�+rr +2∑

i=2

Ri ≤ 1

2
log
(
det
(
I + PHT

r�+rr +1Hr�+rr +1
)); (108)

where here for ease of notation we wrote Hr�+rr +1 instead
of Hr�+rr +1(α). Notice that since the channel matrix
Hr�+rr +1(α) is non-singular and does not depend on the
power P , by [41]:

lim
P→∞

1
2 log

(
det
(
I + PHT

r�+rr +1Hr�+rr +1

))

1
2 log(P)

= r� + rr + 1.

(109)

Combining (106)–(109), we conclude that the described
scheme can achieve a multiplexing gain of r� + rr + 1 over
the entire subnet.

3) Scheme Over a Reduced Subnet: We employ the same
scheme as over a generic subnet but with reduced side-
information parameters. Such a scheme can achieve a multi-
plexing gain of max{κ3 − 2, 0} over a reduced subnet. Details
and analysis omitted.

4) Analysis of Performance Over the Entire Network: Over
the first �K/β3� generic subnets we achieve a multiplexing
gain of β3−2 and, if it exists, then over the last reduced subnet
we achieve a multiplexing gain of max{κ3 − 2, 0}. Thus, over
the entire network we achieve a multiplexing gain of

K − 2γ3 − θ3 =
{

K − 2�K/β3� − 2, if κ3 ≥ 2

K − 2�K/β3� − κ3 if κ3 < 2.
(110)

This establishes the desired lower bound.

E. General Cross-Gains {αk,�} and {αk,r }
Our proofs and results presented in the previous subsections

generalize to non-equal cross-gains {αk,�} and {αk,r }.
For example, the three coding schemes in

Subsections VII-A–VII-C are solely based on silencing

a subset of the transmitters (which splits the network into
subnets), on dirty-paper coding interference sequences that
are known at the transmitter, and on successive interference
cancellation at the receivers. All these techniques do not rely
on the fact that the values of the cross-gains are all equal and
apply in the same way also to setups with general cross-gains
{αk,�} and {αk,r }. Thus, the results under items 1)–3) remain
valid also for general cross-gains {αk,�} and {αk,r }.

We present now in detail how to adapt the description of the
scheme and the analysis in Subsection VII-A to the setup with
general cross-gains {αk,�} and {αk,r }. In (81), (85), (89), and
(91) α needs to be replaced by αk−1,r ; in (82) α needs to be
replaced by α j−1,�; in (83) and (87) it needs to be replaced
by αk−1,�; and in (86) the first α needs to be replaced by
αk−1,� and the second by αk−1,r . Also, the codebooks Ck , for
k ∈ F1 or k ∈ F2, should be of power α2

k−1,r P and rate
Rk = 1

2 log(1 + α2
k−1,r P), and the codebooks Ck , for k ∈ F2,

should be designed for the interference αk−1,� Xn
k−2 + Xn

k−1
which is of power α2

k−1,� P + P . Finally, Receivers k ∈ F1

produce their estimates X̂n
j , j ≤ k, by picking the codeword

in C j that corresponds to their estimate M̂ j and scaling it
by α j−1,r . This way, if M̂k−2 = Mk−2 and M̂k−1 = Mk−1,
Receiver k can decode its desired message Mk based on the
interference-free output αk−1,r Xn

k + Nn
k−1.

The scheme in Subsection VII-D is based on silencing a
subset of the transmitters (which splits the network into sub-
nets), on successive interference cancellation, and on MIMO
decoding. The multiplexing gain achieved by the scheme relies
on the cross-gains only through the rank of the subnets’
channel matrices which shows up in the performance analysis
of the MIMO decoding, (108) and (109). To achieve the
multiplexing gain in (110) all the subnets’ channel matrices
need to have full rank t� + r� + 1. Thus, the multiplexing-
gain in (110) is achievable also in a setup with general cross-
gains {αk,�} and {αk,r } if all the subnets have full-rank channel
matrices. This is in particular the case (with probability 1)
in a randomized setup where all the cross-gains are drawn
according to continuous distribution, where all the subnets
have full-rank channel matrices.

PROOF OF PROPOSITION 7

A. Proof of Upper Bound 1), i.e., (23)

Define

β4 � t� + tr + r� + rr + 4,

γ4 �
⌊

K

β4

⌋
,

and recall that κ4 � K − γ4β4 and that θ4 equals 1 if κ4 ≥
min{t� + r� + 1, tr + rr + 1}, and it equals 0 otherwise.

The proof is based on the Dynamic-MAC Lemma 9.
To describe the choice of parameters for which we wish to
apply this lemma, we need the following definitions. Define
for every positive integer p ≥ 2 and every non-zero number
α the matrix Mp(α) as the p × p matrix with diagonal
elements α, first upper off-diagonal elements 1, second upper
off-diagonal elements α, and all other elements 0. That means,
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the row- jr column- jc entry of the matrix Mp(α) equals α if
jr = jc or jr = jc − 2, it equals 1 if jr = jc − 1, and it
equals 0 otherwise. Let Minv

p (α) denote the inverse matrix of
Mp(α). This inverse always exists because det (M)p (α) = α p ,
which by our assumption α 
= 0 is nonzero. As we will see
shortly, our main interest lies in the inverses Minv

t�+r�+1(α) and
Minv

tr +rr +1(α). To simplify notation, we therefore denote the
row- jr column- jc entry of Minv

t�+r�+1(α) by a jr , jc and the row-
jr column- jc entry of Minv

tr +rr +1(α) by b jr , jc .
We treat the cases θ4 = 0 and θ4 = 1 separately. If θ4 = 1,

then we apply Lemma 9 to the following choices:

• q = 1;
• g = 2γ4;
• A =⋃γ4−1

m=0 A′(m), where for m ∈ {0, . . . , γ4 − 2}:
A′(m) � {(mβ4 + r� + 2), . . . ,

(mβ4 + r� + t� + tr + 3)}, (111)

and

A′(γ4 − 1) � {((γ4 − 1)β4 + r� + 2), . . . , (γ4β4 − rr + 3)}
∪{(γ4β4 + r� + 2), . . . , K }; (112)

• B1 = K\A;
• for i even and 0 ≤ i ≤ g:

V i =
tr +rr +1∑

j=1

αb1, j N i
2 β4− j

+
t�+r�+1∑

j=1

(a1, j + αa2, j )N i
2 β4+1+ j

−N i
2 β4+1, (113)

and for i odd and 1 ≤ i ≤ g − 1:

V i =
tr +rr +1∑

j=1

(b1, j + αb2, j )N i−1
2 β4− j

+
t�+r�+1∑

j=1

αa1, j N i−1
2 β4+1+ j − N i−1

2 β4
. (114)

Thus, if θ4 = 1,

K\RA = {mβ4 + 1, (m + 1)β4
}γ4−1

m=0 ∪ {γ4β4 + 1}. (115)

If θ4 = 0, we apply Lemma 9 to the choices

• q = 1;
• g = 2γ4 − 1;
• A = ⋃γ4−1

m=0 A′(m), where {A′(m)}γ4−2
m=0 are defined in

(111) and where

A′(γ4−1)� {((γ4−1)β4+r�+2), . . . , (K −rr −1)}; (116)

• B1 = K\A;
• {V m}2(γ4−1)

m=0 are given by (113) and (114) and

V 2γ4−1 =
tr +rr +1∑

j=1

(b1, j + αb2, j )N K− j − N K . (117)

Thus, if θ4 = 0,

K\RA = {
mβ4 + 1, (m + 1)β4

}γ4−2
m=0 ∪ {(γ4 − 1)β4 + 1, K

}
.

(118)

One readily verifies that both for θ4 = 0 and θ4 = 1 the
differential entropy h

({Nk}k∈RA |V 0, . . . , V q
)

is finite and
does not depend on the power constraint P , since neither
does the genie-information. In Appendix B we show that also
Assumption (26) in the Dynamic MAC Lemma is satisfied,
and hence the lemma applies. It gives the desired upper bound,
because by (115) and (118),

|RA| = 2γ4 + θ4. (119)

B. Proof of Upper Bound 3), i.e., (24)

The proof is again based on the Dynamic-MAC Lemma 9.
We first give some definitions.

Define

β5 � t� + tr + r� + rr + 3 (120)

γ5 �
⌊

K

β5

⌋
(121)

and recall that κ5 � K −β5γ5 and θ5 equals 1 if κ5 ≥ tr +rr +2
and 0 otherwise.

For jr , jc ∈ {1, . . . , t� + r� + 1}, denote the row- jr
column- jc entry of the matrix Ht�+r�+1(α) by h jr , jc . Also,
choose a set of real numbers {d2, . . . , dt�+r�+1} so that

h1, jc =
t�+r�+1∑

jr =2

d jr h jr , jc, jc ∈ {1, . . . , t� + r� + 1}. (122)

Such a choice always exists because of the assumption
det(Ht�+r�+1) = 0.

We treat the cases θ5 = 1 and θ5 = 0 separately. If θ5 = 1,
we apply the Dynamic-MAC Lemma to the choices:

• q = 2γ5 + 1;
• g = 2γ5;
• A =⋃γ5

m=0 A′′(m), where

A′′(0) � {1, . . . , tr + 1}, (123)

for m ∈ {1, . . . , γ5 − 1}:
A′′(m) � {mβ5 − t� + 1, . . . , mβ5 + tr + 1}, (124)

and

A′′(γ5) � {(γ5β5 − t� + 1), . . . , (K − rr − 1)}; (125)

• for i odd and 1 ≤ i ≤ 2γ5 − 1,

Bi =
{

(i − 1)

2
β5 + tr + rr + r� + 3

}
; (126)

for i even and 2 ≤ i ≤ 2γ5:

Bi =
{((

i

2
− 1

)
β5 + tr + 2

)
, . . . ,

((
i

2
− 1

)
β5+ tr + rr + r�+2

)}
, (127)
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and

B2γ5+1 = {(K − rr ), . . . , K }; (128)

• for i even and 0 ≤ i ≤ 2(γ5 − 1)9:

V i =
tr +rr +1∑

j=2

d j N i
2 β4+tr +rr +2+ j

+α

tr +rr +1∑

jc=1

b1, jc N i
2 β4+tr +rr +1− jc

−N i
2 β4+tr +rr +3, (129)

for i odd and 1 ≤ i ≤ 2γ5 − 1:

V i =
tr +rr +1∑

jc=1

(αb2, jc + b1, jc)N i−3
2 β4+tr +rr +1− jc

+
t�+r�+1∑

jc=1

αa1, jc N i−3
2 β4+tr +rr +3+ jc

−N i−3
2 β4+tr +rr +2, (130)

and

V 2γ5 �
tr +rr +1∑

jc=1

(αb2, jc + b1, jc)N K−1− jc − NK . (131)

Thus, if θ5 = 1,

K\RA = {
(mβ5 + tr + rr + 2), (mβ5 + tr + rr + 3)

}γ5−1
m=0

∪{K }. (132)

If θ5 = 0, we apply the Dynamic-MAC Lemma to the
following choices:

• q = 2γ5;
• g = 2γ5 − 1;
• A = ⋃γ5

m=0 A′′(m), where
{A′′(m)

}γ5−1
m=0 are defined

in (123) and (124), and where

A′′(γ5) � {(γ5β5 − t� + 1), . . . , K };
• the sets

{Bi
}2γ5

i=1 are defined in (126) and (127);

• {V m}γ5−1
m=0 is defined in (129) and (130).

Thus, if θ5 = 0,

K\RA = {
(mβ5 + tr + rr + 2), (mβ5 + tr + rr + 3)

}γ5−1
m=0 .

(133)

One readily verifies that both for θ5 = 0 and θ5 = 1 the
differential entropy h

({Nk}k∈RA |V 0, . . . , V q
)

is finite and
does not depend on the power constraint P , since neither
does the genie-information. In Appendix B we show that also
Assumption (26) of the Dynamic-MAC Lemma is satisfied,
and hence the lemma applies. It gives the desired upper bound,
because by (132) and (133),

|RA| = 2γ5 + θ5. (134)

9Recall that a jr , jc denotes the row- jr column- jc entry of the matrix
Minv

t�+r�+1(α) defined in the previous Subsection A; and where similarly b jr , jc

denotes the row- jr column jc entry of the matrix Minv
tr +rr ++1(α) also defined

in Subsection A.

APPENDIX A
PROOF OF LEMMA 11

By definition, det (H1(α)) = 1. Therefore, the integer p has
to be at least 2 and Statement 1.) in the lemma follows.

Statement 2.) can be proved as follows. We define
H0(α) � 1 and note that also H1(α) = 1, irrespective of α.
We then have for each positive integer q ≥ 2:

det
(
Hq(α)

) = det
(
Hq−1(α)

)− α2 det
(
Hq−2(α)

)
. (135)

Thus, det
(
Hp(α)

) = 0 implies that the two determinants
det
(
Hp−1(α)

)
and det

(
Hp−2(α)

)
are either both 0 or

both non-zero, and similarly, that the two determinants
det
(
Hp+1(α)

)
and det

(
Hp+2(α)

)
are either both 0

or both non-zero. Applying this argument iteratively,
we see that the determinants det

(
Hp−2(α)

)
and

det
(
Hp−1(α)

)
can only be 0 if all “previous” determinants

det (H0(α)) , . . . , det
(
Hp−3(α)

)
are zero. Similarly, for the

determinants det
(
Hp+1(α)

)
and det

(
Hp+2(α)

)
. However,

since det (H0(α)) = det (H1(α)) = 1, we conclude
that det

(
Hp−2(α)

)
, det

(
Hp−1(α)

)
, det

(
Hp+1(α)

)
, and

det
(
Hp+2(α)

)
must be non-zero, which proves Statement 2.)

APPENDIX B
PROOF THAT ASSUMPTION (26) HOLDS IN SECTION VIII-A

By (115) and (118) it suffices to show that if θ4 = 0, then
the output sequences {Y mβ4+1, Y (m+1)β4}γ4−2

m=0 , Y (γ4−1)β4+1,
and Y K can be reconstructed, and if θ4 = 1, then the
output sequences {Ymβ4+1, Yn

(m+1)β4
}γ4−1
m=0 and Yγ4β4+1 can be

reconstructed.
Notice first that using the given encoding functions

f1, . . . , fn the input sequences {Xmβ4+t�+r�+2,

Xmβ4+t�+r�+3}γ4−1
m=0 can be computed from Messages

{Mk}k∈A. Moreover, if θ4 = 0 then additionally also the
input sequences X(γ4−1)+r�+t�+4, . . . , X K−rr −tr −1 can be
computed from {Mk}k∈A, and if θ4 = 1 additionally also the
input sequences Xγ4β4+t�+r�+2, X K−rr −tr −1 can be computed
from {Mk}k∈A. The result is then proved by showing that
each of the desired output sequences can be expressed
as a linear combination of the genie-information, these
reconstructed inputs, and the outputs observed by the group-A
receivers.

We start with Yβ4 . Notice that by the channel law (9), the
linear systems (136) and (137) on top of the next page hold for
every time-instant t ∈ {1, . . . , n}. Recalling that a jr , jc denotes
the row- jr column- jc entry of the inverse matrix Minv

t�+r�+1(α)
and that b jr , jc denotes the row- jr column- jc entry of
the inverse matrix Minv

tr +rr +1(α), it is easily checked that (136)
implies:

tr +rr +1∑

j=1

b2, j Yβ4− j − (b2,tr +rr α + b2,tr +rr +1)X t�+r�+3

− b2,tr +rr +1αX t�+r�+2

= Xβ4−1 +
tr +rr +1∑

j=1

b2, j Nβ4− j ; (138)
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⎛

⎜⎜⎜⎜⎜⎝

Yβ4−1,t

Yβ4−2,t
...

Yt�+r�+4,t

Yt�+r�+3,t

⎞

⎟⎟⎟⎟⎟⎠
= Mtr +rr +1(α)

⎛

⎜⎜⎜⎜⎜⎝

Xβ4,t

Xβ4−1,t
...

Xt�+r�+5,t

Xt�+r�+4,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

αXt�+r�+3
αXt�+r�+2,t + Xt�+r�+3,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

Nβ4−1,t

Nβ4−2,t
...

Nt�+r�+4,t

Nt�+r�+3,t

⎞

⎟⎟⎟⎟⎟⎠
(136)

⎛
⎜⎜⎜⎜⎜⎝

Yβ4+2,t

Yβ4+3,t
...

Yβ4+t�+r�+1,t

Yβ4+t�+r�+2,t

⎞
⎟⎟⎟⎟⎟⎠

= Mt�+r�+1(α)

⎛
⎜⎜⎜⎜⎜⎝

Xβ4+1,t

Xβ4+2,t
...

Xβ4+t�+r�,t

Xβ4+t�+r�+1,t

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

αXβ4+t�+r�+2
Xβ4+t�+r�+2,t + αXβ4+t�+r�+3,t

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

Nβ4+2,t

Nβ4+3,t
...

Nβ4+t�+r�+1,t

Nβ4+t�+r�+2,t

⎞
⎟⎟⎟⎟⎟⎠

(137)

and

tr +rr +1∑

j=1

b1, j Yβ4− j − (b1,tr+rr α + b1,tr+rr +1)X t�+r�+3

− b1,tr+rr +1αX t�+r�+2

= Xβ4 +
tr +rr +1∑

j=1

b1, j Nβ4− j ; (139)

and that (137) implies:

t�+r�+1∑

j=1

a1, j Yβ4+1+ j − a1,tr+rr +1αXβ4+t�+r�+3

−(a1,tr+rr + a1,tr+rr +1α)Xβ4+t�+r�+2

= Xβ4+1 +
t�+r�+1∑

j=1

a1, j Nβ4+1+ j . (140)

Since the genie-information has been chosen so that

Yβ4 = α

⎛

⎝Xβ4−1 +
tr +rr +1∑

j=1

b2, j Nβ4− j

⎞

⎠

+
⎛

⎝Xβ4 +
tr +rr +1∑

j=1

b1, j Nβ4− j

⎞

⎠

+α

⎛

⎝Xβ4+1 +
t�+r�+1∑

j=1

a1, j Nβ4+1+ j

⎞

⎠−V 1 (141)

the desired linear combination representing Yβ4 is obtained by
combining the linear combinations on the left-hand sides of
Equations (138)–(140) with the genie-information V 1.

We next consider Yβ4+1. By (137),

t�+r�+1∑

j=1

a1, j Yβ4+1+ j − a2,tr+rr +1αXβ4+t�+r�+3

−(a2,tr+rr + a2,tr+rr +1α)Xβ4+t�+r�+2

= Xβ4+2 +
t�+r�+1∑

j=1

a2, j Nβ4+1+ j . (142)

Since the genie-information V 2 has been chosen so that

Yβ4+1 = α

⎛

⎝Xβ4 +
tr +rr +1∑

j=1

b1, j Nβ4− j

⎞

⎠

+
⎛

⎝Xβ4+1 +
t�+r�+1∑

j=1

a1, j Nβ4+1+ j

⎞

⎠

+α

⎛

⎝Xβ4+2 +
t�+r�+1∑

j=1

a2, j Nβ4+1+ j

⎞

⎠− V 2 (143)

the desired linear combination representing Yβ4+1 is obtained
by combining the left-hand sides of (139), (140), and (142)
with the genie-information V 2.

The desired linear combinations representing the outputs
{Y mβ4}γ4−1+θ4

m=2 can be obtained from the equations that result
when in (138)–(141) each vector Xk , for k ∈ {1, . . . , K }, is
replaced by Xk+(m−1)β4 , each vector Y k by Y k+(m−1)β4 , each
vector Nk by Nk+(m−1)β4 , and the genie-information V 1 is
replaced by V 2m−1.

The linear combinations representing the outputs
{Y mβ4+1}γ4−1+θ4

m=2 are obtained from the equations that
result when in (139), (140), (142), and (143) the vectors
Xk , Y k , and Nk , for k ∈ {1, . . . , K }, are replaced by the
vectors Xk+(m−1)β4 ,Y k+(m−1)β4 , and Nk+(m−1)β4 and the
genie-information V 2 is replaced by V 2m . When m = 0 all
the out-of-range indices should be ignored, that means, Xk ,
Y k , Nk are assumed to be deterministically 0 for all k ≤ 0.

Finally, if θ4 = 0, then the desired linear combination rep-
resenting Y K can be obtained by combining the equations that
result when in Equations (138), (139), and (141) the vectors
Xk , Y k , and Nk are replaced by the vectors X K−β4 ,Y K−β4 ,
and N K−β4 and the genie-information V 1 is replaced by
V 2γ4−1. Again, all out-of-range indices should be ingored,
i.e., Xk , Y k , Nk are assumed to be deterministically 0 for
all k > K .

APPENDIX C
PROOF THAT ASSUMPTION (26) HOLDS IN SECTION VIII-B

Notice that for i ∈ {1, . . . , 2γ5} odd,

RBi \(RBi ∩ RAi ) =
{

(i − 1)

2
β5 + tr + rr + 3

}
, (144)
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⎛

⎜⎜⎜⎜⎜⎝

Ytr +rr +3,t

Ytr +rr +4,t
...

Yβ5−1,t

Yβ5,t

⎞

⎟⎟⎟⎟⎟⎠
= Ht�+r�+1(α)

⎛

⎜⎜⎜⎜⎜⎝

Xtr +rr +3,t

Xtr +rr +4,t
...

Xβ5−1,t

Xβ5,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

αXtr +rr +2,t

0
...
0

αXβ5+1,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

N tr +rr +3,t

N tr +rr +4,t
...

Nβ5−1,t

Nβ5

⎞

⎟⎟⎟⎟⎟⎠
(147)

and for i even,

RBi \(RBi ∩ RAi ) =
{

(i − 1)

2
β5 + tr + rr + 2

}
, (145)

and moreover, if θ5 = 1,

RB2γ5+1\(RB2γ5+1 ∩ RA2γ5+1) = {K }. (146)

Thus, for i ≤ 2γ5 − 1 odd we need to show that the
output sequence Y (i−1)

2 β5+tr +rr +3 can be reconstructed from
the messages {Mk}k∈Ai, the outputs {Y k}k∈RAi

, and the genie-
information {V m}g

m=0. Similarly, for i even we need to show
that Y (i−1)

2 β5+tr +rr +2 can be reconstructed, and for i = 2γ5+1,
we need to show that Y K can be reconstructed.

Using the encoding functions f1, . . . , fn , for each i that
is odd and satisfies 1 ≤ i ≤ 2γ5 − 1 the inputs X i−1

2 β5
,

X i−1
2 β5+1, and X i+1

2 β5
can be computed from the messages

{Mk}k∈Ai . For each i that is even and that satisfies 2 ≤ i ≤ 2γ5
the inputs X i−1

2 β5
,X i−1

2 β5+1, X i+1
2 β5

, and X i+1
2 β5+1 can be

computed from messages {Mk}k∈Ai . Finally, if θ5 = 1, then
inputs X K−t�−r�−2 and X K−t�−r�−1 can be computed from the
messages {Mk}k∈A2γ5+1 .

We start with i = 1 and outputs Y tr +rr +3. By the channel
law (9), the linear system (147) on top of this page holds for
every time t ∈ {1, . . . , n}.

Recalling the definition of the parameters {d2, . . . , dt�+r�+1}
in Section VII-B and because det

(
Ht�+r�+1(α)

) = 0, (147)
implies:

Y tr +rr +3 =
t�+r�+1∑

j=2

d j
(
Y tr +rr +2+ j − N tr +rr +2+ j

)

−αdt�+r�+1 Xβ5+1 + αX tr +rr +2

+N tr +rr +3. (148)

We next notice that by the channel law (9), for every time
t ∈ {1, . . . , n}, the linear system in (149) as shown at the
next top of the page holds, where the matrix Mtr +rr +1(α) is
defined in Section VII-A. Recalling that b jr , jc denotes the row-
jr column- jc entry of the inverse Minv

tr +rr +1(α), Equation (149)
implies:

tr +rr +1∑

jc=1

b1, jcY tr +rr +2− jc − (b1,tr+rr +1 + αb1,tr +rr )X1

= X tr +rr +2 +
tr +rr +1∑

jc=1

b1, jc N tr +rr +2− jc . (150)

Finally, by the definition of the genie-information
V 0, combining (148) with (150) yields the desired

linear combination

Y tr +rr +3 =
t�+r�+1∑

j=2

d j Y tr +rr +2+ j

+α

tr +rr +1∑

jc=1

b1, jcY tr +rr +2− jc

−(b1,tr+rr +1 + αb1,tr+rr )X1

−αdt�+r�+1 Xβ5+1 − V 0. (151)

For each i odd and 3 ≤ i ≤ 2γ5 − 1 the desired
linear combination representing Y i−1

2 β5+tr +rr +3 can be found
in a similar way. Specifically, using Equations similar to
(147)–(151) one can show that

Y i−1
2 β5+tr +rr +3 =

t�+r�+1∑

j=2

d j Y i−1
2 β5+tr +rr +2+ j

+α

tr +rr +1∑

jc=1

b1, jcY i−1
2 β5+tr +rr +1− jc

−(b1,tr+rr +1 + αb1,tr+rr )X i−1
2 β5+1

−αb1,tr +rr +1 X i−1
2 β5

−αβt�+r�+1 X i+1
2 β5+1 − V i−1. (152)

We next consider the case where i is even and 2 ≤
i ≤ 2γ5, where we wish to reconstruct Y ( i

2 −1)β5+tr +rr +2. The
construction of the desired linear combination is similar to
Appendix B, that means it is based on equations that are sim-
ilar to equations (138)–(141). Obviously, (136) remains valid
if for each k ∈ {1, . . . , K } the symbols Xk,t , Yk,t , and Nk,t

are replaced by Xk+( i
2 −1)β5−(t�+r�+2),t , Yk+( i

2 −1)β5−(t�+r�+2),t ,
and Nk+( i

2 −1)β5−(t�+r�+2),t , and therefore similar to (138) and
(139) we obtain:

tr +rr +1∑

j=1

b2, j Y ( i
2 −1)β5+t�+r�+2− j

−b2,tr+rr +1αX ( i
2 −1)β5+1

−(b2,tr+rr α + b2,tr+rr +1)X ( i
2 −1)β5+1

= X tr +rr +1 +
tr +rr +1∑

j=1

b2, j N( i
2 −1)β5+tr +rr +2− j (153)

and
tr +rr +1∑

j=1

b1, j Y ( i
2 −1)β5+t�+r�+2− j

−b1,tr+rr +1αX ( i
2 −1)β5+1

−(b1,tr+rr α + b1,tr+rr +1)X ( i
2 −1)β5+1
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⎛

⎜⎜⎜⎜⎜⎝

Ytr +rr +1,t

Ytr +rr ,t
...

Y2,t

Y1,t

⎞

⎟⎟⎟⎟⎟⎠
= Mtr +rr +1(α)

⎛

⎜⎜⎜⎜⎜⎝

Xtr +rr +2,t

Xtr +rr +1,t
...

X3,t

X2,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

αX1,t

X1,t

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

Ntr +rr +1,t

Ntr +rr ,t
...

N2,t

N1,t

⎞

⎟⎟⎟⎟⎟⎠
(149)

= X( i
2 −1)β5+tr +rr +2

+
tr +rr +1∑

j=1

b1, j N( i
2 −1)β5+tr +rr +2− j . (154)

Since also (137) remains valid if for each k ∈ K the symbols
Xk,t , Yk,t , and Nk,t are replaced by Xk+( i

2 −1)β5−(t�+r�+3),t ,
Yk+( i

2 −1)β5−(t�+r�+3),t , and Nk+( i
2 −1)β5−(t�+r�+3),t , we obtain

similarly to (140):

t�+r�+1∑

j=1

a1, j Y ( i
2 −1)β5+tr +rr +2+ j

−a1,tr+rr +1αX ( i
2 +1)β5+1

−(a1,tr+rr + a1,tr+rr +1α)X ( i
2 −1)β5

= X( i
2 −1)β5+tr +rr +3

+
t�+r�+1∑

j=1

a1, j N( i
2 −1)β5+tr +rr +2+ j . (155)

Now, since the genie-information V i−1 has been chosen so that
Equality (156) on top of the next page holds, the desired linear
combination representing Y ( i

2 −1)β5+t�+r�+2 can be obtained by
combining (153)–(156).

If θ5 = 1, then the desired linear combination representing
Y K can be found in a similar manner as in the previous
Appendix B. The details are omitted.

APPENDIX D
PROOF OF PROPOSITION 5

Lemma 13: For an integer p and a real number α, denote
u p(α) = det

(
Hp(α)

)
. Then the following holds.

1) u p(α) is a polynomial in α, u p(0) = 1, and it satisfies
the following second order recursion:

u p+2(α) = u p+1(α) − α2u p(α), (157)

with the initial conditions u0(α) = u1(α) = 1. We
denote by E p the set of roots of u p(α).

2) For α 
= 0, define

v p(α) � u p(α)

(−α)p .

Then v p(α) satisfies the second order recursion:

v p+2(α) = − 1

α
v p+1(α) − v p(α), (158)

with the initial conditions v−1(α) = 0 and v0(α) = 1.

Moreover, for all p ≥ 1 and l ≥ 0,
(
vi · · · vl+p−1

)
Hp

= (−αvl−1 0 · · · 0 −αvl+p
)

(159)

where for simplicity we wrote vl for vl(α).
Proof: Omitted.

We give a proof of Proposition 5 for the case where q is
odd. The case q even goes along the same lines. We define
γ ′′′ � (q − 1)/2 and

L � r� + t�
β ′′′ � 2L + 4.

The first part of the proof follows the first part of the proof
of the Dynamic-MAC Lemma, see Section IV. We construct
a Cognitive MAC as in Section IV using parameters

• q = 2;
• g = 2γ ′′′;
• A =⋃γ ′′′

m=1 A′′′(m) where

A′′′(0) � {r� + 2, . . . , L + tr + 2},
for 1 ≤ m ≤ γ ′′′ − 1,

A′′′(m) � {mβ ′′′ + r� + 1, . . . , mβ ′′′ + L + tr + 2},
and

A′′′(γ ′′′) � {γ ′′′β ′′′ + r� + 1, . . . , K };
• B1 = {r� + 1} and B2 = K\(A ∪ B1);
• the genie-information

V 0 � −αvL+1 X L+1 +
L∑

j=0

v j N j+1,

and where the rest of the genie-informations {V i }2γ ′′′
i=1 is

similar to the genie-information described in (113) and
(114).

By the choice above,

K\RA = {1} ∪ {mβ ′′′ − 1, mβ ′′′}γ ′′′
m=1. (160)

Notice that unlike in the proof in Section VII-A, here, part of
the genie-information depends on the transmitted signal X L+1.
(But notice that the signal to noise ratio of X L+1 with respect
to
∑L

j=0 v j N j+1 goes to 0 like (α − α∗)ν as α goes to α∗.)
Our choice of parameters satisfies Assumption (26) in the

Dynamic-MAC Lemma, and thus we can follow the steps
in the proof of (29) to deduce that the capacity region of
the original network is included in the capacity region of
the Cognitive MAC. That Assumption (26) is satisfied for
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Y ( i
2 −1)β5+tr +rr +2 = α

⎛

⎝X( i
2 −1)β5+tr +rr +1 +

tr +rr +1∑

j=1

b2, j N( i
2 −1)β5+tr +rr +2− j

⎞

⎠

+
⎛

⎝X( i
2 −1)β5+tr +rr +2 +

tr +rr +1∑

j=1

b1, j N( i
2 −1)β5+tr +rr +2− j

⎞

⎠

+α

⎛

⎝X( i
2 −1)β5+tr +rr +3 +

t�+r�+1∑

j=1

a1, j N( i
2 −1)β5+tr +rr +1+ j

⎞

⎠− V i−1 (156)

i = 1 follows because from the messages {Mk}k∈A one can
reconstruct X L+2, and because by
⎛
⎜⎜⎜⎝

Y 1
...

Y L

Y L+1

⎞
⎟⎟⎟⎠ = HL+1

⎛
⎜⎜⎜⎜⎝

X1
...
...

X L+1

⎞
⎟⎟⎟⎟⎠

+ α

⎛
⎜⎜⎜⎝

0
...
0

X L+2

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

N1
...
...

N L+1

⎞
⎟⎟⎟⎟⎠

and by (159), applied to p = L + 1 and l = 0,

L∑

j=0

v j Y j+1 = αvL X L+2 − αvL+1 X L+1 +
L∑

j=0

v j N j+1

= αvL X L+2 + V 0,

and thus it is possible to reconstruct Y 1.
For i = 2, Assumption (26) follows by similar considera-

tions as in Appendix B. Appendix B also shows how to choose
the genie-signals {V m}2γ ′′′

m=1.
Let us now bound the sum-capacity of the Cognitive MAC:

nCMAC,� ≤ I
({Y i }i∈A′′′ , {V i }0≤i≤2γ ′′′ ; M1 . . . , MK

)

= I
({Y i }i∈A′′′ ; M1, . . . , MK | {V i }0≤i≤2γ ′′′

)

+I
({V i }0≤i≤2γ ′′′ ; M1, . . . , MK

)
.

We deal with each term separately.

I ({Y i }i∈A ; M1, . . . , MK | {V i }0≤i≤2γ ′′′)

≤
∑

i∈A
h(Y i ) − h

(
{N i }i∈A

∣∣∣∣ {V i }1≤i≤2γ ′′′ ,
L∑

j=0

v j N j+1

)

≤ n(K − 2γ ′′′ − 1)
1

2
log(P) + n f1(P, α),

where f1 is such that limα→α0 limP→∞ f1(P, α) exists and is
finite.

Moreover, as can be verified, the genie-information
{V i }1≤i≤2γ ′′′ is independent of (V 0, M1, . . . , MK ), and

I ({V i }0≤i≤2γ ′′′ ; M1, . . . , MK )

= I (V 0; M1, . . . , MK )

≤ n
1

2
log

(
1 + Pα2v2

L+1(α)
∥∥(v0 · · · vL

)∥∥2
2

)

= n
1

2
log
(

P
∣∣α − α∗∣∣2ν

)
+ n f2(P, α), (161)

where f2 is such that limα→α0 limP→∞ f2(P, α) exists and is
finite. The last equality follows because for every non-zero α0,

the limit limα→α0

∥∥(v0 · · · vL
)∥∥2

2 exists, is finite, and larger
than 0, and because by definition α∗ is a root of the polynomial
v2

L+1(α) with multiplicity 2ν.
Taking c0(α) = limP→∞ ( f1(P, α) + f2(P, α)) concludes

the proof.
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