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Abstract-A necessary condition for the transmissibility of 
correlated sources over a multi-access channel (MAC) is pre

sented. The condition is related to Wyner's common information 

and to the Slepian-Wolf capacity region of the MAC with 
private and common messages. An analogous condition for the 

transmissibility of remote sources over a MAC is also derived. 
Here the transmitters only observe noisy versions of the sources. 

I. INTRODUCTION AND SETUP 

We consider the setup in Figure 1 of a two-to-one discrete 

memoryless multiple-access channel (MAC) with finite input 

alphabets Xl and X2, finite output alphabet Y2, and transition 

law PYIX,X2' The channel is used in order to enable the 

sn 
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Fig. I. Transmission of a remote source over a two-user MAC. 

receiver to reconstruct, with some required fidelity, the two 

source sequences 

and 

where the pairs {(Sl,t, S2,t)} ｾ］Ｑ＠ are drawn IID from the 

finite set SI x S2 according to the joint source distribution 

PS,S2 . Transmitter i observes the sequence Si and generates 

its channel inputs Xi := (Xi,l,"" Xi,n) as 

Xn = j(n) (sn) 
'[ 2 '[, i E {I, 2}, (I) 

for some encoding function t;Cn): Si -+ xin , i E {I, 2}. 

The receiver produces the estimates Sr := (Sl,l"'" Sl,n) 

and ｓｾ＠ := (S2,1,"" S2,n) based on the channel outputs 

yn := (Y1,"" Yn). Thus, 

(sn 1 ) 

ｓｾ＠
= g(n)(yn), (2) 

where the decoding function is of the form g(n): y n -+ 
Sr x ｓｾＬ＠ and where SI and S2 denote the finite reconstruction 

alphabets. 

Given two nonnegative distortion functions 

i E {I, 2}, 

(where lR+ denotes the non negative reals) and two maximum

allowed distortions D 1 , D 2 ｾ＠ 0, we require that 

lim ｾ＠ ｾｊｅ｛､ＱＨｓｬｴＬｓｬｴＩｬ＠ :::; D 1 , (3a) 
n--+oo n ｾ＠ " 

t=l 

lim ｾ＠ ｾ＠ JE [ d2 (S2 to S2 t) 1 :::; D 2. (3b) 
n--+oo n ｾ＠ " 

t=l 

Given distortion functions d 1 and d2 , we say that the source

channel pair (PS,S2 , PYIX,XJ is (D 1 ,D2 )-jeasible if for 

each blocklength n it is possible to find encoding functions 

ｪｾｮＩ＠ and ｪｾｮＩＬ＠ and a reconstruction function g(n) such that (3) 

holds. Our interest is in characterizing the pairs (D 1 , D2 ) that 

are feasible. 

A special case of this problem was studied by Lapidoth and 

Tinguely [1] who considered a bivariate Gaussian source; a 

power-limited Gaussian MAC; and the squared-error distortion 

functions. 

Another special case is the lossless casel where the dis

tortion functions are Hamming distortions and the maximum 

allowed distortions are zero: 

and 

Si cF Si 

.5i = Si 

i E {I, 2}, (4a) 

(4b) 

We say that a source-channel pair is jeasible in the lossless 

case if it is (0, O)-feasible in this setting. 

Cover, EI Gamal, and Salehi [2] (for the lossless case), 

Salehi [3] and Minero, Lim, and Kim [4] (both for the lossy 

case) presented sufficient conditions for a source-channel pair 

(PS,S2, PYIX,X2 ) to be (D1 ,D2 )-feasible. Here we present 

necessary conditions. These do not, in general, coincide with 

the sufficient conditions. 

Necessary conditions for the 10ss1ess case were previously 

derived by Kang and Ulukus [5] by generalizing the necessary 

condition of Lapidoth and Tinguely [1], which is based on the 

observation that when the source is a bivariate Gaussian, the 

correlation coefficient between the MAC inputs cannot exceed 

the correlation coefficient between the source components. 

lThe term lossless source coding is traditionally used for a slightly different 

scenario where the probability 0/ blockerror Sr 1= sr is required to tend 

to 0; specializing Condition (3) to (4) implies that the average probability 0/ 
symbol error tends to O. Our condition is thus stranger, and as a consequence, 

any necessary condition for feasibility that we present for our lossless setup 

is also necessary condition for feasibility in the traditional lossless setup. 
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Our necessary condition for the lossless case (Corollary 1.2) 

is difficult to compare to Kang and Ulukus's condition [5], 

but it does seem to be easier to verify, especially when the 

source has a known rate-distortion function and the MAC has 

a known Slepian-Wolf capacity region for private and common 

messages [6]; see Remark 1. 

In Section III we consider a more general setup and propose 

a necessary condition for the transmissibility of remote sources 

over a MAC. This setup ditlers trom our original setup in that 

each transmitter only observes a noisy version of its source 

component. Special cases of this setup were previously studied 

and solved by Gastpar [7], by Lapidoth and Wang [8], and by 

Tian, Chen, Diggavi, and Shamai [9]. 

11. MATN RESULTS 

A. The General Lossy Case 

Theorem 1: Fix distortion functions d1 and d2 . If the source

channel pair (PSIS2 , PYIXl,X2) is (D 1 , D 2 )-feasible, thenfor 

every auxiliary random variable (RV) W forming a Markov 

chain with the source components, 

(5) 

there exists an auxiliary RV U forming a Markov chain with 

the inputs 

(6) 

and two reconstruction symbols 81 and 82 such that the 

following five constraints (7) are satisfied: 

and 

1(51; 8I) ::.; 1(X1; YIX2 , U) + 1(51; W) (7a) 

1(52; 82) ::.; 1(X2; YIX1, U) + 1(52; W) (7b) 

1(51,52;81,82)::'; 1(X1,X2;YIU) +1(51,52;W) (7c) 

1(51,52 ;81,82 )::'; 1(X1,X2 ;Y), (7d) 

i E {I, 2}. (7e) 

Prao!, Follows by specializing Theorem 2 in Section IV 

to Tl = 51 and T2 = 52. • 

Remark 1: 

1) Every choice of the auxiliary RV W that satis

fies (5) yields a necessary condition. An interesting 

choice for symmetric settings is Wyner's common 

part [10]. (See Corollary 1.1 for more details.) With this 

choice, 1(51,52; W) equals Wyner's common informa

tion CWyner( 51,52) in (8). 

2) The choice of the conditional law P 51 ,[hlsl,S2 atlects 

only the left-hand sides (LHS) of (7a)-(7d) and the 

distortion constraints (7e). For various sources and dis

tortion functions, it is possible to identify sub sets of 

conditional distributions satisfying (7e) to which one can 

restrict attention when evaluating the infeasibility condi

tion in Theorem 1. For example, for a bivariate Gaussian 

source and squared-error distortion functions it suffices 

to consider conditional laws P 5 I 52 1 SI S2 that result in 

(81,82 ) beingjointly Gaussian with the source (51 ,52 ), 

3) The joint law PUXIX2 should be chosen to maximize the 

right-hand sides (RHS) of (7a)-(7d) subject to (6). These 

coincide with the RHSs of the rate-constraints in Slepian 

and Wolf's capacity region of the MAC with private 

and common messages [6]. Our necessary condition is 

thus particularly simple to evaluate for channels, such as 

the Gaussian MAC [11], whose Slepian-Wolf capacity 

region is known. 

We obtain a simpler-albeit generally weaker-necessary 

condition, if in Theorem 1 we relax the "single-rate" con

straints (7a) and (7b). To state the resulting corollary in a 

compact form, we make the following two definitions. Let 

CWyner denote HYner's common information [10]: 

CWyner(51 , 52) := min 1(51,52; W). (8) 
SI --+ W --+S2 

Let R SIS2 (D 1 , D2 ) denote the standard rate-distortion func

tion when compressing the bivariate source sequence (51' 5:;:) 
so as to satisfy the two distortion constraints (3): 

R SlS2 (D1 , D2 ) := min 1(51,52; 81, 82), (9) 

where the minimum is over all reconstruction random variables 

81 and 82 that satisfy (7e). 

Corallary 1.1: Ifthe pair (PSIS2 , PYIXI,xJ is (D1 ,D2 )

feasible then 

RSI S2 (D 1 ,D2 ) 

::.; max min{1(X1,X2;YIU)+Cwyner(51,52), 
X I --+U--+X2 

1(X1,X2;Y)}. (10) 

Example 1: Consider a bivariate Gaussian source 

(lla) 

and a memoryless additive Gaussian noise MAC 

(11 b) 

whose inputs Xl and X 2 are block-power constrained to the 

same power P, and where Z is a standard Gaussian. Let 

d1 , d2 : (8, ,5) c--+ (8 - ,5)2 be squared-error distortion functions 

and D 1 = D 2 = D. 

Let us evaluate the necessary condition of Corollary 1.1 

for this example.2 For this source, RSI S2 (D 1 , D 2 ) and 

CWyner(51,52) are weIl known [10] and 

1 1 + P 
CWyner(51, 52) = -10g2 --. 

2 1- P 
(12) 

Moreover, according to the reasoning in [11, 12], we can 

restrict to jointly Gaussian tripies (U, Xl, X 2 ) where Xl 

and X 2 are of full power P. We thus obtain the following 

necessary condition: If the source-channel pair in (11) is 

(D, D)-feasible, then the source parameters p and Q, the 

channel input-power P, and the maximum allowed distortion 

D have to satisfy Condition (13) on the next page. 

2We derived our results for finite sources and discrete channels without 

input-cost constraints. They extend however in a straight-forward manner to 

the setup in this example, 
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( ( 
-(I-P)+)(1-P)2+4(I+P)(2P+1»)) 

1+2P 1+ ( ) 
21+p 

(13) 

The necessary condition of [1] is stronger than ours and 

is tight in the high-SNR regime. It is obtained if in (13) we 

replace the tenn 

-(1- p) + )(1- p)2 +4(1 + p) (2p+ 1» 

2(1 + p) 
(14) 

by the smaller term p. See Figure 2 for a comparison of the 

two terms when P = 10. However, the Lapidoth-Tinguely 

condition is tailored to the Gaussian source-channel pair, 

whereas our condition in Theorem 1 holds for general sources 

and channels. 

1.2 

0.8 
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Fig. 2. The lower blue line shows the mapping p H P and the upper green 

line shows the mapping from p to the expression in (14). Power P = 10. 

B. The Lossless Case 

In the lossless case, Theorem 1 specializes to the following: 

Corollary 1.2: If the source-channel pair (PSI S2 1 PYIX,X2) 

is feasible in the lossless case, then for every auxiliary RV W 

forming the Markov chain 

(15) 

there exists an auxiliary RV U satisfying 

(16) 

and the following four conditions: 

H(51152) :S1(X1; YIX21 U)+1(51; W152) (l7a) 

H(5215I) :S1(X2; YIX11 U)+1(52; W15I) (l7b) 

H(51152)+H(5215I) :S1(X1, X 2; YIU) 

+1(51; W152) + 1(52; W151) 

H(51, 52) :S1(X1, X 2; Y). (l7c) 

Example 2 (DSBS(q) source and Gaussian MAC): Let 

(51, 52) be a doubly-symmetric binary source of parameter q 

(DSBS(q)), i.e., 51 and 52 are Bernoulli-l/2 random variables 

and Pr[51 -I- 52] = q. Let the MAC be as in Example 1. 

For simplicy we again relax constraints (17 a) and (17b). As 

in Corollary 1.1, the strongest condition is obtained when W 

is Wyner's common part and 1(51,52; W) is hence Wyner's 

common infonnation. For the DSBS(q) in this example [10] 

CWyner(51 , 52) = 1 + Hb(q) - 2Hbb), 

where I = Hl - VI - 2q) and Hb (-) denotes the binary 

entropy function. 

By the arguments in [11, 12], we can restrict ourselves to 

jointly Gaussian tripIes (U, Xl, X 2), where Xl and X 2 are of 

tüll power P. Optimizing over this joint Gaussian distribution, 

we obtain the following necessary condition. 

If the described source-channel pair (PS,S2 , PYIX,X2) is 

feasible for the lossless case, then the source-parameter q and 

the channel input-power P must satisfy 

1 + Hb(q) 

1 ( ＨＩｬＫＴＨＭｬＩＨｬＫＲｾＩＭｬＩＩ＠
:S "2 10g2 1 + P 2 + ß 

(18) 

where ß := 22(1+ Hb(Q)-2Hbh». 

Notice that the LHS of Condition (18) is strictly increasing 

in q E [0, ｾ｝＠ and its RHS is strictly decreasing. Moreover, 

for P < i Condition (18) is violated even for q = O. Thus, 

irrespective of the source parameter q E [0, ｾ｝Ｌ＠ the DSBS(q) 

cannot be sent over the Gaussian MAC with input powers 

P< i. For P ｾ＠ i Condition (18) is satisfied for q = 0, which 

allows us to define qsuP as the supremum over all q E [0, ｾ｝＠
such that Condition (18) holds. Our necessary condition states 

that for all q E ＨｱｳｵｰＬｾ｝Ｌ＠ the DSBS(q) cannot be sent over 

the Gaussian MAC with input powers P. Numerically we find: 

III. TRANSMISSION OF REMOTE SOURCES OVER A MAC 

A. Setup 

Fig. 3. Transmission of remote SOurces over a two-user MAC. 

We now consider a setup (Figure 3) where the transmitters 

cannot direcdy observe the source sequences 51 and 5:;:, 
but only the noisy versions TI' := (T1,1, ... , T1,n) and 

Tr := (T2 ,1, ... , T2 ,n), respectively. For each t E {l, ... , n}, 
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the pair (T1,t, T2 ,t) takes values in the finite set 'Ti x 12 
and is generated by the memoryless channel PT,T21s,S2 from 

the source pair (Sl,t, S2,t). The joint PMF of (Tl, T2, SI, S2) 

is thus Ps,s2X,PT,T2Is,S2. Each transmitter generates its 

channel inputs Xi as a function of its observed symbols Tr: 

X n = f(n) (Tn ) 
1., 1., 1.,' 

i E {I, 2}, (19) 

for some encoding function ln): Tt -+ Xr, i E {I, 2}. 

The receiver acts in the same manner as before. We say that 

the source-channels tripie (PS, S2, PT,T2Is,S2' PY lx,x2 ) is 

(D 1 , D 2 )-jeasible if it is possible to find encoding functions 

{fi(n)} ｾ］ＱＧ＠ for i E {1,2}, and a reconstruction function 

{g(n)} n=l such that (3) holds. 

The special case with a bivariate Gaussian source that is 

observed in Gaussian noise, with a power-limited Gaussian 

MAC, and with squared-error distortion functions was studied 

by Lapidoth and Wang [8], see also [9]. Gastpar derived a 

condition that is sufficient and necessary for another special 

case with a single Gaussian source [7] and where the two 

transmitters have equally-noisy observations and equal power. 

The corresponding asymmetrie setup was partially solved by 

Tian, Chen, Diggavi, and Shamai [9]. 

B. Results and Example 

Theorem 2: Fix distortion functions d1 and d2 . Ifthe source

channels tripie (PS,S2' PT,T2Is,S2' Py1X,x2) is (D 1 ,D2 )

feasible, then jor every auxiliary RV W forming the Markov 

chain 

(20) 

there exists an auxiliary RV U forming a Markov chain with 

the channel inputs, 

Xl -+ U -+ X 2 , 

and a pair (51 ,52 ) so that 

(21) 

1(Sl; SI) :::; 1(X1; YIX2, U) + 1(Sl; T2, W) (22a) 

1(S2; 52) :::; 1(X2; YIX1, U) + 1(S2; Tl, W) (22b) 

1(Sl,S2;51,52 ):::; 1(X1,X2;YIU) +1(Sl,S2;W) (22c) 

1(Sl,S2;51,52 ):::; 1(X1,X2;Y), (22d) 

and 

i E {1,2}. (22e) 

Prao/" See Seetion IV. • 
A special case of interest is a single source 

where the receiver produces a single reconstruction, so 

and (23b) 

Gastpar's [7] joint source-channel version of the Gaussian 

CEO problem is a special case of this scenario. 

To apply Theorem 2 to this setting, let us denote by Rs(D) 

the rate-distortion function 

Rs(D) := min1(S; 5), (24) 

where the minimum is over all reconstructions 5 such that 

lE[d(S,5)] :::; D. 

Corallary 2.1: Consider the special case in (23) and let a 

distortion function d be given. If the source-channels tripie 

(Pss , PT,T2Is, pYIX,xJ is (D, D)-feasible, then for every 

auxiliary RV W forming the Markov chain (20) there exists 

an auxiliary RV U forming the Markov chain (21) and a 

reconstruction 5 so that: 

Rs(D) :::; 1(X1; YIX2, U) + 1(S; T2, W) (25a) 

Rs(D) :::; 1(X2 ; YIX1, U) + 1(S; Tl, W) (25b) 

Rs(D) :::; 1(X1, X 2; YIU) + 1(S; W) (25c) 

Rs(D) :::; 1(X1, X 2; Y). (25d) 

Example 3: Consider a zero-mean Gaussian source S of 

variance Q > O. The transmitters observe 

Tl = ('ii, E) and T2 = (T2, E), (26) 

where E is a Bernoulli-l/2 RV independent of the source S 

and where 

and 

T1:={S+V+SO' 
So, 

T ._ {So, 
2·- S + V + So, 

if E = 0 

if E = 1 

if E = 0 

if E = 1, 

(27) 

(28) 

for So and V zero-mean Gaussians of variances Q and ＨＩｾ＠ > 0 

and independent of each other and of the pair (E, S). The dis

tortion function d is the squared-error distortion function. As 

in the previous examples we consider a memoryless Gaussian 

MAC of unit noise-variance and equal input-powers P. 

We evaluate Corollary 2.1 for the described setup. For our 

Gaussian source, Rs(D) = ｾｬｯｧｴ＠ (%), where logt(x):= 

max{O, x}. We choose W = (So, E), which satisfies Markov 

chain (20) because 1(T1; T2IW) = O. 

Since 1(S; W) = 0 and since 1(X1, X 2; YIU) cannot 

exceed the sum-rate capacity of the Gaussian MAC with 

private messages, namely ｾ＠ log2(1 + 2P), Constraint (25c) 

is equivalent to 

ｾ＠ logt ＨｾＩ＠ :::; ｾ＠ log2 (1 + 2P) . (29a) 

On the other hand, since 1(S; T2 , W) = ｾ＠ log2 (1 + ｾＩ＠
and since 1 (Xl; Y I U, X 2) cannot exceed the capacity of the 

Gaussian point-to-point channel from Transmitter 1 to the 

receiver, i.e., ｾ＠ log2(1 + P), Constraint (25a) is equivalent to 

ｾ＠ logt (Q) :::; ｾ＠ log2 (1 + P) + ｾ＠ log2 (1 + ｾＩ＠ . (29b) 
2 D 2 4 (}v 

Constraints (25b) and (25d) are redundant. 
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We obtain the following necessary condition: If the de

scribed source-channels tripie (Ps, PT,T2Is, PY IX,x2) is 

(D, D)-feasible, then the source variance Q, the channel input 

power P, and the distortion D must satisfy Conditions (29). 

Bound (29b) is active when 0"; is large and Tl and T2 are 

very noisy observations of the source S. Bound (29a) can 

be intuitively understood as saying that Tl and T2 have no 

common part related to the source S that could allow the MAC 

transmitters to cooperate in a useful manner. 

IV. PROOF OF THEOREM 2 

Let distortion functions d1 and d2 and two maximum 

allowed distortions D 1 , D 2 > 0 be given. Suppose a 

source-channels tripie (PS,S2' PT,T2 Is,S2' PY IX, X2) that is 

(D1 , D 2 )-feasible. For each blocklength n, choose encoding 

and reconstruction functions fi n), fJn), and gen) so that (3) 

holds. Choose probability laws PWIS,S2 T,T2 and Pw so that 

PS,S2T,T2 X PW1S,S2T,T2 = PWPT,lwPT2IwPs,S2IT,T2W' 

Fix now a blocklength n, and let Xr, X72, yn, sr, and S72 
denote the channel-input, channel-output, and reconstruction 

sequences corresponding to the chosen fi n), fJn), and g(n). 

For each t E {I, ... , n}, generate the RV W t as the output 

of a channel with transition law PW1S,S2T,T2 and inputs 

Sl,t, S2,t, T 1,t, T2 ,t. Define Ut := W n and let Z be a uniform 

RV over {I, ... , n} that is independent of all other random 

variables such as source symbols, inputs, outputs, etc. Define 

W:= W z , U:= (Wn,Z), Y:= Yz , and fori E {1,2}, 

Si := Si,Z, Ti := Ti,z, Xi := Xi,Z, Si = Si,Z' 

We now proceed to prove constraints (22a)-(22d). Con

straint (22a) is obtained as folIows: 

,(a) ｾ＠ (b) 1 ｾ＠ ｾ＠
1(Sl; Sl)'-::: 1(Sl; SlIZ) = - ｾ＠ 1(Sl,t; Sl,t) 

n 

(c) 1 ｾ＠ A t-1 
.-::: - ｾ＠ 1(Sl,t; Sl,t1S1 ) 

n 
t=l 

t=l 

< .!. ｾ＠ 1(Sl t; ｓｾｉｓｩＭＱＩ＠ = ＮＡＮＱＨｓｾ［＠ ｓｾＩ＠
ｮｾＧ＠ n 

t=l 

(d) 1 1 
< -1(sn. y n ) < -1(sn. yn T n W n ) 
-n l' -n l' '2' 

.!. ＱＨｓｾ［＠ yn ｉｔｾ｜＠ W n ) + .!. ＱＨｓｾ［＠ T;:, W n ) 
n n 

C;l .!. t ＱＨｓｾ［＠ ytIT;:, W n , yt-1) + 1(Sl; T 2 , W) 
n 

t=l 
(f) 1 n 

.-::: - L 1(X1,t; ytIX2 ,t, Ut ) + 1(Sl; T2 , W) 
n 

t=l 

1(X1,z; YIX2,z, Uz , Z) + 1(Sl; T2 , W) 

1(X1; YIX2 , U) + 1(Sl; T2 , W), (30) 

where (a) holds because Z is independent of SI; (b) holds 

by the definition of SI, SI, Z; (c) because Sr is i.i.d.; (d) by 

the data-processing inequality; (e) because (Sr, TI', wn) are 

i.i.d. and by the chain rule of mutual information; (f) because 

conditioning can only reduce entropy, because X 2 ,t can be 

computed as a function from T;: and because of the Markov 

chain (T;:, wn, yt-1) --+ (X1,t, X 2 ,t) --+ yt. 

Constraints (22b) and (22c) are obtained in a similar way. 

Related steps also allow us to prove Constraint (22d): 

1(Sl, S2; SI, S2) .-::: ＱＨｓｾＬ＠ ｓｾ［＠ yn) 
n 

= "" 1(sn sn. y; lyt-1) 
ｾ＠ l' 2' t 

t=l 
n 

.-::: L 1(X1,t, X 2,t; yt) 

t=l 

= 1(X1,z, X 2 ,Z; YIZ) 

.-::: 1(X1, X 2 ; Y). (31) 

Markov chain (21) holds because Tf --+ (Wn , Z) --+ Tr 
and because X 1 ,t and X 2 ,t are functions of Tf and Tr. 
Moreover, for i E {I, 2}: 

ｾ＠ t lE [di(Si,t, Si,t)] = lEz [lE [di(Si, Si) IZ]] 
t=l 

= lE [di (Si, Si)]' 

Thus, given (3), for arbitrary E > 0 and if n is sufficiently 

large, lE[di(Si, Si)] .-::: Di + E, for E {I, 2}. 

Letting E --+ 0 and continuity arguments conclude the proof. 
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