
A Method for the Construction of
Optimal Task Encoders

Amos Lapidoth and Christoph Pfister
ETH Zurich

Email: {lapidoth,pfistchr}@ethz.ch

Abstract—An algorithm of polynomial complexity is proposed
that produces an optimal task encoder for tasks that are
generated according to some given law and that need to be
described using a given number of labels. It thus minimizes the
expectation (or ρ-th moment) of the number of tasks that share
the label of a randomly-generated task.

Index Terms—Task Encoding, Rényi Entropy, Dynamic Pro-
gramming, Guessing.

I. INTRODUCTION

Task encoders were introduced in [1], where asymptotically-
tight upper and lower bounds on their performance in terms
of Rényi entropy were derived. But [1] did not solve for the
optimal firm (nonasymptotic) task encoder. The present paper
fills this gap by describing an algorithm that produces optimal
task encoders. It can be viewed as the task-encoding analog
of Huffman’s procedure from source coding [2].

The task-encoding problem can be described as follows. A
task X is drawn from a finite set1 X according to a probability
mass function P and is mapped by a task encoder f to a label
f(X). You must perform the task X , but you only see its label
f(X). To be sure to perform X , you thus perform all the tasks
that have the same label as X .2 The goal is to choose a task
encoder f that minimizes the expectation (or, more generally,
the ρ-th moment) of the number of performed tasks. This paper
presents an algorithm to produce such an optimal task encoder.

As shown in [4], the asymptotics of the task-encoding
problem are related to those of the Massey-Arikan guessing
problem [5]. But the algorithmic aspects are quite different. In
the former, an algorithm like the one proposed here is required,
whereas in the latter the optimal rule is obvious: one should
simply guess in decreasing order of probabilities.

Let us denote the number of different tasks by K, so K =
|X |, where throughout this paper | · | denotes the cardinality
of a set. Let M denote the number of available labels. A task
encoder is a function from X to {1, . . . ,M} that maps tasks
to labels. The number of tasks that share the label of a task
x ∈ X under a task encoder f is denoted by

Lf (x) =
∣∣f−1(f(x))

∣∣ =
∣∣{x′ ∈ X : f(x′) = f(x)}

∣∣. (1)

1The task-encoding problem for continuous alphabets is described in [3].
2Depending on our interpretation of probabilities, this may or may not be

true in the presence of tasks that are assigned with probability zero. This
philosophical issue affects only the interpretation of (1) and none of the
mathematical statements.

The cost is the expected value of Lf (X) or, more generally,
its ρ-th moment (for any ρ > 0):

E[Lf (X)ρ] =
∑
x∈X

P (x)
∣∣f−1(f(x))

∣∣ρ. (2)

A task encoder f is called optimal if its cost is minimal among
all possible task encoders, i.e., if

E[Lf (X)ρ] = min
g : X→{1,...,M}

E[Lg(X)ρ]. (3)

Optimal task encoders exist because the set of all possible task
encoders is finite. The algorithm presented in Section III finds
an optimal task encoder in O(K2M) arithmetic operations.

II. OPTIMAL TASK ENCODERS

From now on, let us denote the different tasks by
x1, . . . , xK, and let us assume that they are ordered according
to their probabilities, so

P (x1) ≤ P (x2) ≤ P (x3) ≤ . . . ≤ P (xK). (4)

Given such an order, we say that a task encoder f is monotonic
if tasks with higher probabilities have larger labels, or, more
precisely, if

f(x1) ≤ f(x2) ≤ f(x3) ≤ . . . ≤ f(xK). (5)

The main result of this section is Lemma II.3, which states that
there exists an optimal task encoder that is also monotonic. To
that end, we show in Lemma II.1 and Lemma II.2 how every
task encoder can be turned into a monotonic task encoder
without increasing its cost.

Lemma II.1. For every task encoder g, there exists a task
encoder f that has the same cost as g and that satisfies

|f−1(1)| ≥ |f−1(2)| ≥ |f−1(3)| ≥ . . . ≥ |f−1(M)|. (6)

Proof: We construct f by relabeling the tasks. Let φ be
a permutation on {1, . . . ,M} that maps one of the labels with
the largest preimage to 1 and so on. Then the task encoder
f(x) = φ(g(x)) fulfills (6) and has the same cost as g because
permuting the labels does not change the cost.

Lemma II.2. If the tasks are ordered according to (4), then
any task encoder satisfying (6) can be turned into a monotonic
task encoder satisfying (6) without increasing its cost.



Proof: Let f be a task encoder that satisfies (6). If f is
not monotonic, i.e., if we have f(xi) > f(xi+1) for some
i ∈ {1, . . . ,K− 1}, define a task encoder g that has the labels
of the tasks xi and xi+1 swapped:

g(x) =


f(xi+1) if x = xi,

f(xi) if x = xi+1,

f(x) if x ∈ X \ {xi, xi+1}.
(7)

Because |g−1(m)| = |f−1(m)| holds for all m ∈ {1, . . . ,M},
(6) is also satisfied for g. Replace f by g and repeat these
steps until f is monotonic.

Next, we argue that this procedure terminates. Note that
the quantity

∑K
k=1 k · f(xk) increases by at least one after

every repetition, yet it is bounded from above. Therefore, the
procedure must terminate after finitely many steps.

Finally, we show that the cost never increases:

E[Lg(X)ρ]− E[Lf (X)ρ]

= P (xi) · (Lg(xi)ρ − Lf (xi)
ρ)

+ P (xi+1) · (Lg(xi+1)ρ − Lf (xi+1)ρ) (8)
= (P (xi)− P (xi+1))︸ ︷︷ ︸

≤0

· (Lf (xi+1)ρ − Lf (xi)
ρ)︸ ︷︷ ︸

≥0

(9)

≤ 0. (10)

Here (8) follows because Lg(x) is equal to Lf (x) for every
x ∈ X\{xi, xi+1}, and (9) is true because Lg(xi) = Lf (xi+1)
and Lg(xi+1) = Lf (xi) hold. The first factor on the RHS of
(9) is nonpositive because of (4). Combining f(xi) > f(xi+1)
and (6) leads to Lf (xi) ≤ Lf (xi+1), and as yρ is increasing
in y (for y ≥ 0 and ρ > 0), the second factor on the RHS of
(9) is nonnegative.

Lemma II.3. If the tasks are ordered according to (4), then
there exists an optimal task encoder that is monotonic and
that satisfies (6).

Proof: Let g be an optimal task encoder. By Lemma II.1,
there exists an optimal task encoder f satisfying (6). Applying
Lemma II.2 to f leads to an optimal task encoder that is
monotonic and that satisfies (6).

Although the following observations are not needed in the
next sections, they still deserve to be stated here.

Lemma II.4. Let the tasks be ordered according to (4). If a
monotonic task encoder f satisfies (6), then tasks with higher
probabilities end up in smaller sets, or, more precisely,

Lf (x1) ≥ Lf (x2) ≥ Lf (x3) ≥ . . . ≥ Lf (xK). (11)

In particular, there exists an optimal task encoder that satisfies
(11).

Proof: By Lemma II.3, there exists an optimal task
encoder that is monotonic and that satisfies (6). This task
encoder satisfies (11) because (5) and (6) imply (11).

Lemma II.5. Let the tasks be ordered according to (4). Let
α1, . . . , αM ∈ {0, . . . ,K} satisfy

∑M
m=1 αm = K and

α1 ≥ α2 ≥ α3 ≥ . . . ≥ αM. (12)

If the set sizes of the task encoders are fixed, i.e., if only task
encoders f are considered that satisfy

|f−1(m)| = αm ∀m ∈ {1, . . . ,M}, (13)

then the following task encoder g minimizes the cost among
these task encoders:

g(xi) =



1 if i ∈ {1, . . . , α1},
2 if i ∈ {α1 + 1, . . . , α1 + α2},
...

M if i ∈
{

M−1∑
m=1

αm + 1, . . . ,
M∑

m=1
αm

}
.

(14)

Proof: Let S denote the set of all task encoders satisfying
(13). S is not empty because it contains g. Let f ∈ S be a
task encoder with minimal cost. Because of (12), f satisfies
(6), and Lemma II.2 can be applied to obtain a monotonic task
encoder f ′. f ′ satisfies (13) because the procedure employed
in the proof of Lemma II.2 does not change the set sizes. As
only one task encoder exists that satisfies (5) and (13) at the
same time, f ′ must be equal to g. Because g = f ′ does not
have a higher cost than f , its cost is minimal among S .

III. ALGORITHM

We continue to assume that the tasks x1, . . . , xK are ordered
by their probability, i.e., that (4) holds. The algorithm that we
present in this section will produce a monotonic task encoder
with minimal cost. By Lemma II.3, we know that there is no
loss in optimality in restricting ourselves to monotonic task
encoders, therefore the task encoder produced by the algorithm
will be optimal.

This section is organized as follows. First, we discuss
the basic idea behind the algorithm. Next, we provide a
formal treatment in Lemma III.1. Finally, we show a simple
implementation of the algorithm in Figure 1.

The algorithm is based on dynamic programming. (For a
general introduction to this method, see for example [6].)
Assume M ≥ 2 and let f be an optimal monotonic task
encoder. Let l = |f−1(M)| denote the number of tasks that
are mapped to M, and let X ′ ⊆ X be the set of the tasks
that are not mapped to M. As f is monotonic, X ′ is equal
to {x1, . . . , xK−l}. The restriction of f to X ′ is a monotonic
task encoder f ′ : X ′ → {1, . . . ,M−1} with f ′(x) = f(x) for
all x ∈ X ′. The cost of f can then be expressed as

E[Lf (X)ρ] =
∑
x∈X ′

P (x)Lf ′(x)ρ +
∑

x∈X\X ′
P (x)lρ. (15)

As we next argue, the optimality of f implies that f ′ must be
optimal with respect to the partial cost

∑
x∈X ′ P (x)Lf ′(x)ρ.

Indeed if f ′ were not optimal, i.e., if there existed a task
encoder g′ : X ′ → {1, . . . ,M − 1} with a lower partial cost,
then (15) demonstrates that the extension of g′ to X , namely

x 7→

{
g′(x) if x ∈ X ′,
M if x ∈ X \ X ′,

(16)



would have a lower cost than f . But this would contradict the
assumption that f is optimal.

As we do not know the optimal value of l in advance, we
could solve the problem recursively for all l ∈ {0, . . . ,K}
and select the value with the lowest cost. But this would lead
to an algorithm of exponential complexity. Instead, we build
an M × K table whose cell in the m-th row and the k-th
column contains an optimal monotonic task encoder for the
first k tasks and the first m labels. We will show that we
can construct this table easily row by row and that we need
O(K) arithmetic operations per cell. Taking into account that
we have an M × K table, we can thus find an optimal task
encoder in O(K2M) arithmetic operations.

Lemma III.1. Let the tasks be ordered according to (4).
Define an optimal partial cost for every m ∈ {1, . . . ,M} and
for every k ∈ {1, . . . ,K} by

J(m, k) = min
g : {x1,...,xk}→{1,...,m}

k∑
i=1

P (xi)Lg(xi)
ρ. (17)

We seek J(M,K). This can be computed inductively on m as
follows. If there is only one label, i.e., for m = 1, we have

J(1, k) =

k∑
i=1

P (xi)k
ρ. (18)

If there is more than one label, we can build on the case with
one fewer label, i.e., for m > 1, we can express J(m, k) in
terms of J(m− 1, ·) as

J(m, k) = min
g : {x1,...,xk}→{1,...,m}

k∑
i=1

P (xi)Lg(xi)
ρ (19)

= min
k′∈{1,...,k}

[
min

g′ : {x1,...,xk′}→{1,...,m−1}

k′∑
i=1

P (xi)Lg′(xi)
ρ

+

k∑
i=k′+1

P (xi)(k − k′)ρ
]

(20)

= min
k′∈{1,...,k}

[
J(m− 1, k′) +

k∑
i=k′+1

P (xi)(k − k′)ρ
]
. (21)

Proof: The case m = 1 is easy: there is only one label,
so all tasks have to be mapped to the same label, and (18)
follows from (17).

Next, we prove the case m > 1. To improve the readability,
(17) has been restated as (19). The RHS of (20) is equal to
the RHS of (21) because of (17), so (21) is valid. We are left
to prove (20). If P (x1) = . . . = P (xk) = 0 holds, then (20) is
trivially satisfied because both sides are zero. Otherwise, we
have

∑k
i=1 P (xi) > 0 because P is a nonnegative function.

In that case, we show (20) by proving that neither side of the
equation is larger than the other.

First, we show that the RHS of (19) is not larger than
the RHS of (20). To that end, let k′ ∈ {1, . . . , k} and
g′ : {x1, . . . , xk′} → {1, . . . ,m− 1} attain the minima in the
RHS of (20). The RHS of (19) cannot be larger than the RHS

of (20) because equality is achieved for the following choice
of g : {x1, . . . , xk} → {1, . . . ,m} in the RHS of (19):

g(x) =

{
g′(x) if x ∈ {x1, . . . , xk′},
m otherwise.

(22)

Second, we show that the RHS of (20) is not larger than
the RHS of (19). Note that for any α > 0, the RHS of (19) is
equal to

α−1 min
g : {x1,...,xk}→{1,...,m}

k∑
i=1

(αP (xi))Lg(xi)
ρ. (23)

We choose α = 1/
∑k
i=1 P (xi) > 0, so that x 7→ αP (x) is a

probability mass function for {x1, . . . , xk}. By Lemma II.3,
there exists a monotonic task encoder g that attains the
minimum in (23) and that satisfies (6). This g also attains the
minimum in the RHS of (19). Set k′ = k − |g−1(m)|. As we
have m > 1 and as g satisfies (6), |g−1(m)| < k holds and k′

is in {1, . . . , k}. Set g′(x) = g(x) for all x ∈ {x1, . . . , xk′}.
Because g is monotonic and because of our choice of k′, the
codomain of g′ is {1, . . . ,m − 1}. The RHS of (20) cannot
be larger than the RHS of (19) because equality is achieved
for our choice of k′ and g′ in the RHS of (20).

Figure 1 illustrates a simple implementation of these ideas.
We assume that the tasks x1, . . . , xK are ordered by their
probability, i.e., that (4) holds, and use following shorthand
notation: pi = P (xi) for all i ∈ {1, . . . ,K}. The optimal
partial cost function (17) is represented as the M×K table J .
As we want to be able to construct an optimal task encoder
at the end of the algorithm, we keep track of the necessary
information in the M × K table setSizes. For every cell, it
contains the number of tasks that an optimal task encoder
in that cell maps to the last label. In other words, its value
is equal to k − k′ for an optimal value of k′ in the RHS
of (21). In lines 3–6, the first row of the table is computed
according to (18). In lines 7–21, the other rows of the table are
computed according to (21). Finally, an optimal task encoder
is constructed for J(M,K) by assigning an optimal number of
tasks to the label M, to the label M− 1, etc.

Note that it is not efficient to compute the summations by
adding up the values. Instead, compute Ψ(k) =

∑k
i=1 pi for

all k ∈ {1, . . . ,K} once at the beginning and replace the
summations in line 4 and 12 by the following expressions:

k∑
i=1

pik
ρ = Ψ(k)kρ, (24)

k∑
i=k′+1

pi(k − k′)ρ = (Ψ(k)−Ψ(k′)) · (k − k′)ρ. (25)

Lines 12–16 are executed O(K2M) times and determine the
asymptotic complexity. Using (25), these lines can be executed
with a constant number of arithmetic operations. Therefore,
the algorithm can find an optimal task encoder in O(K2M)
arithmetic operations.



Input: M,K, ρ and p1, . . . , pK (satisfying p1 ≤ . . . ≤ pK)
Output: an optimal task encoder

1: J ← M× K table of real numbers
2: setSizes← M× K table of integers
3: for k ← 1, 2, . . . ,K do . compute first row
4: J [1][k]←

∑k
i=1 pik

ρ

5: setSizes[1][k]← k
6: end for
7: for m← 2, 3, . . . ,M do . compute other rows
8: for k ← 1, 2, . . . ,K do
9: minCost← J [m− 1][k]

10: optSetSize← 0
11: for k′ ← k − 1, k − 2, . . . , 1 do
12: c← J [m− 1][k′] +

∑k
i=k′+1 pi(k − k′)ρ

13: if c < minCost then
14: minCost← c
15: optSetSize← k − k′
16: end if
17: end for
18: J [m][k]← minCost
19: setSizes[m][k]← optSetSize
20: end for
21: end for
22: encoder ← task encoder . construct task encoder
23: task ← K
24: for m← M,M− 1, . . . , 1 do
25: count← setSizes[m][task]
26: for i← 1, 2, . . . , count do
27: encoder[task] = m
28: task ← task − 1
29: end for
30: end for
31: return encoder

Fig. 1. Algorithm to produce an optimal task encoder.

IV. EXAMPLE

In Figure 2, a numerical example of the algorithm is
depicted. The set X consists of five tasks and the probability
mass function P is given by

P (x) =



0.0 if x = x1,

0.1 if x = x2,

0.2 if x = x3,

0.3 if x = x4,

0.4 if x = x5.

(26)

We set ρ = 1, and the resulting partial cost function J(m, k)
defined in Lemma III.1 is shown in Figure 2. The arrows
are used to keep track of recurrence relation (21). The arrow
from J(3, 5) to J(2, 4) for example means that an optimal
task encoder g for five tasks and three labels is obtained by
extending an optimal task encoder g′ that achieves J(2, 4) in

J(m, k) k = 1 k = 2 k = 3 k = 4 k = 5

m = 1 0.0 0.2 0.9 2.4 5.0

m = 2 0.0 0.1 0.4 1.2 2.3

m = 3 0.0 0.1 0.3 0.7 1.6

m = 4 0.0 0.1 0.3 0.6 1.1

m = 5 0.0 0.1 0.3 0.6 1.0

Fig. 2. Numerical example with five tasks.

the following way:

g(xi) =

{
g′(xi) if i ∈ {1, . . . , 4},

3 if i = 5.
(27)

Therefore, it is easy to read off the optimal costs and the task
encoders achieving these costs for M ∈ {1, . . . , 5}:

1) For M = 1, the optimal cost is 5.0, and all tasks are
mapped to 1.

2) For M = 2, the optimal cost is 2.3, and x1, . . . , x3 are
mapped to 1, while x4 and x5 are mapped to 2.

3) For M = 3, the optimal cost is 1.6, and x1, . . . , x3 are
mapped to 1, x4 is mapped to 2, and x5 is mapped to
3.

4) For M = 4, the optimal cost is 1.1, and x1 and x2 are
mapped to 1, x3 is mapped to 2, x4 is mapped to 3, and
x5 is mapped to 4.

5) For M = 5, the optimal cost is 1.0, and task xi is mapped
to i for i ∈ {1, . . . , 5}.

V. DISCUSSION

We conclude the discussion of the algorithm with a few
remarks.

1) If m ≥ k holds, then J(m, k) is equal to
∑k
i=1 P (xi).

Every injective task encoder achieves that partial cost,
and one cannot do better because Lg(xi)ρ in the RHS
of (17) cannot be smaller than 1.

2) The idea behind the algorithm also works if an M × K
table is built whose cells contain an optimal monotonic
task encoder for the last tasks and the last labels. In
other words, an analog of Lemma III.1 can be derived
for the following partial cost function:

J ′(m, k) = min
g : {xK−k+1,...,xK}
→{M−m+1,...,M}

K∑
i=K−k+1

P (xi)Lg(xi)
ρ.

(28)
3) For M > K/2, it follows from (11) that there is no loss

in optimality if the last (2M− K) tasks have their own
label.



4) If h : {1, 2, . . .} → R is an increasing function, then the
algorithm in Figure 1 can be easily adapted to produce a
task encoder that is optimal with respect to the following
generalized cost:

E[h(Lf (X))] =
∑
x∈X

P (x)h(|f−1(f(x))|). (29)

The cost (2) is then a special case of (29) for h(l) = lρ.
In the proof of Lemma II.2 it is required that h is an
increasing function, but apart from that, our derivation
of the algorithm does not need any assumption about h.

REFERENCES

[1] C. Bunte and A. Lapidoth, “Encoding Tasks and Rényi Entropy,” IEEE
Trans. Inf. Theory, vol. 60, no. 9, pp. 5065–5076, Sept. 2014.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ: Wiley, 2006.

[3] C. Bunte and A. Lapidoth, “Rényi entropy and quantization for densi-
ties,” in Proc. 2014 IEEE Information Theory Workshop (ITW), Hobart,
Tasmania, Australia, 2014, pp. 257–261.

[4] A. Bracher, E. Hof, and A. Lapidoth, “Distributed storage for data
security,” in Proc. 2014 IEEE Information Theory Workshop (ITW),
Hobart, Tasmania, Australia, 2014, pp. 506–510.

[5] E. Arikan, “An inequality on guessing and its application to sequential
decoding,” IEEE Trans. Inf. Theory, vol. 42, no. 1, pp. 99–105, Jan. 1996.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, MA: The MIT Press, 2009.


