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Abstract—Motivated by a distributed task-encoding problem,
two closely related families of dependence measures are intro-
duced. They are based on the Rényi divergence of order α
and the relative α-entropy, respectively, and both reduce to
the mutual information when the parameter α is one. Their
properties are studied and it is shown that the first measure
shares many properties with mutual information, including the
data-processing inequality. The second measure does not satisfy
the data-processing inequality, but it appears naturally in the
context of distributed task encoding.

I. INTRODUCTION

At the heart of information theory lies the Shannon entropy

H(X) =
∑
x∈X

P (x) log
1

P (x)
, (1)

which, together with relative entropy and mutual information,
appears in numerous contexts. One of the more successful
attempts to generalize Shannon entropy was performed by
Rényi [1], who introduced the Rényi entropy of order α,

Hα(X) =
1

1− α
log
∑
x∈X

P (x)
α
, (2)

which is defined for α > 0 and α 6= 1 and has the desirable
property that limα→1Hα(X) = H(X). But there does not
seem to be a unique way to generalize relative entropy and
mutual information to the Rényi setting.

The two classical generalizations of relative entropy are
reviewed in Section II. In Section III, our proposed general-
izations of mutual information, Jα(X;Y ) and Kα(X;Y ), are
introduced. Their properties are analyzed in Sections IV and
V. Section VI provides an operational meaning to Kα(X;Y ).
Additional proofs can be found in [2].

The measure Jα(X;Y ) was discovered independently by
Tomamichel and Hayashi, who show its operational meaning
in composite hypothesis testing [3].

Other generalizations of mutual information appeared in the
past. Notable are those by Sibson [4], Arimoto [5], and Csiszár
[6]. An overview and some properties of these proposals are
provided by Verdú [7].

II. GENERALIZATIONS OF RELATIVE ENTROPY

Throughout this section, P and Q are probability mass
functions on a finite set X . The relative entropy (or Kullback-
Leibler divergence) of P with respect to Q is defined as

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(3)

with the convention 0 log 0
q = 0 and p log p

0 =∞ for p > 0.
The Rényi divergence of order α of Q from P , which was

introduced by Rényi [1], is defined for α > 0 and α 6= 1 as

Dα(P ||Q) =
1

α− 1
log
∑
x∈X

P (x)
α
Q(x)

1−α (4)

with the convention that for α > 1, we read P (x)
α
Q(x)

1−α

as P (x)α

Q(x)α−1 and say that 0
0 = 0 and p

0 = ∞ for p > 0. Its
properties are studied in detail by van Erven and Harremoës
[8]. By a continuity argument [8, Theorem 5], D1(P ||Q) is
defined as D(P ||Q).

The relative α-entropy of P with respect to Q is defined
for α > 0 and α 6= 1 as

∆α(P ||Q) =
α

1− α
log
∑
x∈X

P (x)Q(x)
α−1

+ log
∑
x∈X

Q(x)
α − 1

1− α
log
∑
x∈X

P (x)
α (5)

with the convention that for α < 1, we read P (x)Q(x)
α−1 as

P (x)

Q(x)1−α
and say that 0

0 = 0 and p
0 = ∞ for p > 0. It was

first identified by Sundaresan [9] in the context of the Massey-
Arikan guessing problem [10], [11] and it also plays a role in
the context of mismatched task encoding as shown by Bunte
and Lapidoth [12]. Further properties of relative α-entropy are
studied by Kumar and Sundaresan [13], [14]. By a continuity
argument [13, Lemma 2], ∆1(P ||Q) is defined as D(P ||Q).

The following lemma shows that ∆α(P ||Q) and Dα(P ||Q)
are in fact closely related. (This relationship was first described
in [9, Section V, Property 4].)

Lemma 1. Let P and Q be PMFs over a finite set X and let
α > 0 be a constant. Define the PMFs

P̃ (x) =
P (x)

α∑
x′∈X P (x′)

α , (6)

Q̃(x) =
Q(x)

α∑
x′∈X Q(x′)

α . (7)

Then,

∆α(P ||Q) = D 1
α

(P̃ ||Q̃), (8)

where the LHS is ∞ if and only if the RHS is ∞.

Proof. Note that (6) and (7) are well-defined for every α > 0.
For α ∈ (0, 1) and for α > 1, (8) follows from the definitions
(4) and (5) and from the transformations (6) and (7). Checking
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the conditions under which either side of (8) is ∞ establishes
that the LHS is ∞ if and only if the RHS is ∞ because
P̃ (x) and Q̃(x) are zero if and only if P (x) and Q(x) are
zero, respectively. For α = 1, (8) is valid because we have
P̃ = P , Q̃ = Q, and ∆1(P ||Q) = D1(P ||Q) = D(P ||Q) by
definition. �

III. TWO MEASURES OF DEPENDENCE

Throughout this section, X and Y are random variables
taking values in finite sets according to the joint PMF PXY .
Based on the observation that mutual information can be
characterized as

I(X;Y ) = D(PXY ||PXPY ) (9)
= min
QX,QY

D(PXY ||QXQY ), (10)

where the minimization is over all PMFs QX and QY , two
generalizations are proposed:

Jα(X;Y ) , min
QX,QY

Dα(PXY ||QXQY ), (11)

Kα(X;Y ) , min
QX,QY

∆α(PXY ||QXQY ). (12)

Because D1(P ||Q) = ∆1(P ||Q) = D(P ||Q) and because of
(10), J1(X;Y ) and K1(X;Y ) are equal to I(X;Y ).

The measures Jα(X;Y ) and Kα(X;Y ) are well-defined for
all α > 0: Because Dα(P ||Q) and ∆α(P ||Q) are nonnegative
and continuous in Q and because Dα(PXY ||QXQY ) and
∆α(PXY ||QXQY ) are finite for QX = PX and QY = PY ,
the minima in the RHS of (11) and (12) exist. Note that,
(10) notwithstanding, this choice of QX and QY need not be
optimal if α 6= 1. For all α ≥ 1

2 , the mapping (QX , QY ) 7→
Dα(PXY ||QXQY ) is convex in the pair (QX , QY ), so (11)
can be formulated as a convex optimization problem.1

In light of Lemma 1, Jα(X;Y ) and Kα(X;Y ) are related
as follows:

Lemma 2. Let PXY be a joint PMF over the finite sets X
and Y and let α > 0 be a constant. Define the PMF

P̃XY (x, y) =
PXY (x, y)

α∑
x′∈X

∑
y′∈Y

PXY (x′, y′)
α . (13)

Then,

Kα(X;Y ) = J 1
α

(X̃; Ỹ ). (14)

Proof. For every α > 0,

Kα(X;Y ) = min
QX,QY

∆α(PXY ||QXQY ) (15)

= min
QX,QY

D 1
α

(P̃XY ||Q̃XQY ) (16)

= min
QX,QY

D 1
α

(P̃XY ||Q̃XQ̃Y ) (17)

= min
QX,QY

D 1
α

(P̃XY ||QXQY ) (18)

= J 1
α

(X̃; Ỹ ), (19)

1The proof is omitted; for α ∈ (0, 1
2
), convexity does not hold in general.

where (15) follows from the definition (12); (16) follows from
Lemma 1; (17) follows because the transformation (7) of a
product is the product of the transformations; (18) follows
because the transformation (7) is bijective on the set of PMFs;
and (19) follows from the definition (11). �

IV. PROPERTIES OF Jα(X;Y )

Theorem 1. Let X , X1, X2, Y , Y1, Y2, and Z be random
variables on finite sets. The following properties of the mutual
information I(X;Y ) are also satisfied by Jα(X;Y ) for all
α > 0:

1) Jα(X;Y ) ≥ 0 with equality if and only if X and Y are
independent (nonnegativity).

2) Jα(X;Y ) = Jα(Y ;X) (symmetry).
3) Jα(X;Z) ≤ Jα(X;Y ) if X (−− Y (−− Z, i.e., if X , Y ,

and Z form a Markov chain (data-processing inequality).
4) Jα(X1, X2;Y1, Y2) = Jα(X1;Y1) + Jα(X2;Y2) if the

pairs (X1, Y1) and (X2, Y2) are independent (additivity).
5) Jα(X;Y ) ≤ log |X | and Jα(X;Y ) ≤ log |Y|.

In addition,
6) J1(X;Y ) = I(X;Y ).
7) Jα(X;Y ) is continuous and nondecreasing in α for all

α > 0.
8) For all α > 0 and α 6= 1, Jα(X;Y ) is equal to

min
QX

α

α− 1
log
∑
y∈Y

[∑
x∈X

PXY (x, y)
α
QX(x)

1−α

] 1
α

, (20)

where the minimization is over all PMFs QX . This is a
convex optimization problem if α ≥ 1

2 .
For all α ∈ (0, 1):

9) Jα(X;Y ) = min
RXY

[
IRXY (X;Y ) + α

1−αD(RXY ||PXY )
]
,

where the minimization is over all joint PMFs RXY and
IRXY (X;Y ) denotes D(RXY ||RXRY ).

For all α > 1:
10) Jα(X;Y ) = max

RXY

[
IRXY (X;Y ) + α

1−αD(RXY ||PXY )
]
,

where the maximization is over all joint PMFs RXY and
IRXY (X;Y ) denotes D(RXY ||RXRY ). The expression
in brackets is strictly concave in RXY . It is maximized
by RXY if and only if it is equal to Dα(PXY ||RXRY ).

Furthermore,
11) Jα(X;Y ) is concave in PX for fixed PY |X and α ≥ 1.

12) Jα(X;X) =

{
H α

2α−1
(X) if α > 1

2 ,
α

1−αH∞(X) if α ∈ (0, 12 ].

Proof. It is well-known that Properties 1–5 are satisfied by the
mutual information [15, Chapter 2]. We are left to show that
Jα(X;Y ) satisfies Properties 1–12:

1) We use the fact that for all α > 0, Dα(P ||Q) ≥ 0 with
equality if and only if P = Q [8, Theorem 8]. Then, the
nonnegativity of Jα(X;Y ) follows from (11) and from
Dα(P ||Q) ≥ 0. If X and Y are independent, i.e., if
PXY = PXPY , the choice QX = PX and QY = PY
in the RHS of (11) achieves Jα(X;Y ) = 0. Conversely,
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Jα(X;Y ) = 0 implies that PXY = QXQY for some
PMFs QX and QY , which in turn implies that X and Y
are independent.

2) The symmetry of Jα(X;Y ) in X and Y follows because
(11) is symmetric in X and Y .

3) Assume that X (−− Y (−− Z, which is equivalent to

PZ|XY (z|x, y) = PZ|Y (z|y) (21)

for all x, y, and z. Let QX and QY be PMFs that achieve
the minimum in the RHS of (11), so

Jα(X;Y ) = Dα(PXY ||QXQY ). (22)

Define the PMF QZ as follows:

QZ(z) =
∑
y∈Y

PZ|Y (z|y)QY (y). (23)

We will show that for all α > 0,

Dα(PXZ ||QXQZ) ≤ Dα(PXY ||QXQY ), (24)

which implies the data-processing inequality because

Jα(X;Z) ≤ Dα(PXZ ||QXQZ) (25)
≤ Dα(PXY ||QXQY ) (26)
= Jα(X;Y ), (27)

where (25) follows from (11); (26) follows from (24); and
(27) follows from (22). In order to prove (24), we use the
fact that Dα(P ||Q) satisfies a data-processing inequality,
namely, that for any conditional PMF A(x|x′),

Dα((PA)||(QA)) ≤ Dα(P ||Q), (28)

where (PA)(x) =
∑
x′ A(x|x′)P (x′) and (QA) is de-

fined in the same way [8, Theorem 9]. We choose

A(x, z|x′, y′) = I{x = x′}PZ|XY (z|x′, y′), (29)

where I{x = x′} is the indicator function that is one if
x = x′ and zero otherwise. Processing PXY leads to

(PA)(x, z) =
∑
x′,y′

A(x, z|x′, y′)PXY (x′, y′) (30)

=
∑
y

PZ|XY (z|x, y)PXY (x, y) (31)

= PXZ(x, z), (32)

where (31) follows from (29). Processing QXQY leads
to

(QA)(x, z) =
∑
x′,y′

A(x, z|x′, y′)QX(x′)QY (y′) (33)

=
∑
y

PZ|XY (z|x, y)QX(x)QY (y) (34)

=
∑
y

PZ|Y (z|y)QX(x)QY (y) (35)

= QX(x)QZ(z), (36)

where (34) follows from (29); (35) follows from (21);
and (36) follows from (23). Combining (28), (32), and
(36) now leads to (24).

4) The proof of this property is omitted.
5) For α > 1,

Jα(X;Y ) ≤ max
RXY

IRXY (X;Y ) (37)

≤ log |X |, (38)

where (37) follows from Property 10 and (38) follows
because IRXY (X;Y ) ≤ log |X | for all RXY . The bound
extends to all α > 0 because Jα(X;Y ) is nondecreasing
in α. Because Jα(X;Y ) is symmetric in X and Y ,
Jα(X;Y ) ≤ log |Y| follows.

6) Because D1(P ||Q) = D(P ||Q) and because of (10),
J1(X;Y ) = I(X;Y ).

7) Let α > 0 and let Q∗X and Q∗Y be PMFs that achieve the
minimum in the RHS of (11), so

Jα(X;Y ) = Dα(PXY ||Q∗XQ∗Y ). (39)

The monotonicity of Jα(X;Y ) in α follows because for
every 0 < α′ ≤ α,

Jα′(X;Y ) ≤ Dα′(PXY ||Q∗XQ∗Y ) (40)
≤ Dα(PXY ||Q∗XQ∗Y ) (41)
= Jα(X;Y ), (42)

where (40) follows from (11); (41) follows because
Dα(P ||Q) is nondecreasing in α [8, Theorem 3]; and
(42) follows from (39).
The continuity of Jα(X;Y ) in α for α > 0 and α 6= 1
follows because the set of all PMFs is compact and
because Dα(PXY ||QXQY ) is jointly continuous in α,
QX , and QY .2 To establish the continuity of Jα(X;Y ) at
α = 1, we first show lim supα→1 Jα(X;Y ) ≤ I(X;Y ).
This follows because Jα(X;Y ) ≤ Dα(PXY ||PXPY );
because Dα(PXY ||PXPY ) is continuous in α [8, The-
orem 7]; and because D1(PXY ||PXPY ) = I(X;Y ).
Next, we have Jα(X;Y ) ≥ I(X;Y ) for α ≥ 1 because
Jα(X;Y ) is nondecreasing in α. To finish the proof, it
remains to show lim infα↑1 Jα(X;Y ) ≥ I(X;Y ). For
convenience, set α = 1 − δ for δ ∈ (0, 1), and observe
that

2−δD1−δ(PXY ||QXQY )

=
∑
x,y

P (x, y)

[
QX(x)QY (y)

P (x, y)

]δ
(43)

=
∑
x,y

P (x, y)

[
PX(x)PY (y)

P (x, y)

]δ[
QX(x)QY (y)

PX(x)PY (y)

]δ
(44)

≤

{∑
x,y

P (x, y)

[
PX(x)PY (y)

P (x, y)

]2δ} 1
2

·

{∑
x,y

P (x, y)

[
QX(x)QY (y)

PX(x)PY (y)

]2δ} 1
2

, (45)

2This requires a topological argument, which is omitted here.
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where (43) follows from (4) and (45) follows from the
Cauchy-Schwarz inequality. For δ ∈ (0, 14 ), the second
factor in the RHS of (45) can be bounded as{∑

x,y

P (x, y)

[
QX(x)QY (y)

PX(x)PY (y)

]2δ} 1
2

≤

{∑
x

PX(x)

[
QX(x)

PX(x)

]4δ} 1
4

·

{∑
y

PY (y)

[
QY (y)

PY (y)

]4δ} 1
4

(46)

= 2−δD1−4δ(PX ||QX) · 2−δD1−4δ(PY ||QY ) (47)
≤ 1, (48)

where (46) follows from the Cauchy-Schwarz inequality
and from marginalization; (47) follows from (4); and
(48) follows because the Rényi divergence is nonnegative.
Combining (11), (45), and (48), we obtain

J1−δ(X;Y ) ≥ −1

2δ
log
∑
x,y

P (x, y)

[
PX(x)PY (y)

P (x, y)

]2δ
(49)

for δ ∈ (0, 14 ). In the limit δ ↓ 0, the RHS of (49) tends
to I(X;Y ), so lim infα↑1 Jα(X;Y ) ≥ I(X;Y ).

8) Observe that for all α > 0 and α 6= 1,

Dα(PXY ||QXQY )

=
1

α− 1
log
∑
x,y

P (x, y)
α

[QX(x)QY (y)]
1−α (50)

=
1

α− 1
log
∑
y

γα
[
γ−1R(y)

]α
QY (y)

1−α (51)

=
α

α− 1
log
∑
y

R(y) +Dα(γ−1R||QY ), (52)

where (50) follows from the definition (4); (51) follows
for any positive γ by identifying R : Y → R≥0 as

R(y) =

[∑
x

P (x, y)
α
QX(x)

1−α

] 1
α

; (53)

and (52) follows by choosing the normalization constant
γ =

∑
y R(y) so that γ−1R is a PMF. The claim now

follows because

Jα(X;Y )

= min
QX

min
QY

Dα(PXY ||QXQY ) (54)

= min
QX

α

α− 1
log
∑
y

R(y) (55)

= min
QX

α

α− 1
log
∑
y

[∑
x

P (x, y)
α
QX(x)

1−α

] 1
α

, (56)

where (54) follows from the definition (11); (55) follows
from (52) and from the nonnegativity of Dα(P ||Q); and

(56) follows from (53). We omit the proof that the RHS
of (56) is a convex optimization problem if α ≥ 1

2 .
9) For α ∈ (0, 1), we have [8, Theorem 30]

Dα(P ||Q) = inf
R

[
D(R||Q) +

α

1− α
D(R||P )

]
, (57)

where the infimum is over all PMFs R. The claim follows
by observing that3

Jα(X;Y )

= min
QX,QY

inf
R

[
D(R||QXQY ) +

α

1− α
D(R||PXY )

]
(58)

= inf
R

inf
QX,QY

[
D(R||QXQY ) +

α

1− α
D(R||PXY )

]
(59)

= inf
RXY

[
IRXY (X;Y ) +

α

1− α
D(RXY ||PXY )

]
(60)

= min
RXY

[
IRXY (X;Y ) +

α

1− α
D(RXY ||PXY )

]
, (61)

where (58) follows from (11) and (57); (59) follows by
interchanging the order of the infima; (60) follows from
(10); and (61) follows from a continuity argument.

10) For α > 1, we have [8, Theorem 30]

Dα(P ||Q) = sup
R

[
D(R||Q) +

α

1− α
D(R||P )

]
, (62)

where the supremum is over all PMFs R. A simple
computation reveals that3

D(R||QXQY ) +
α

1− α
D(R||PXY )

=
1

α− 1
H(R) +

∑
x,y

R(x, y) log
PXY (x, y)

α
α−1

QX(x)QY (y)
(63)

is concave in R because H(R) and linear functionals of R
are concave in R; in addition, the LHS of (63) is convex
in QY and continuous in R and QY .4 Then,

inf
QY

sup
R

[
D(R||QXQY ) +

α

1− α
D(R||PXY )

]
= sup

R
inf
QY

[
D(R||QXQY ) +

α

1− α
D(R||PXY )

]
(64)

= sup
R

[
D(R||QXRY ) +

α

1− α
D(R||PXY )

]
, (65)

where (64) can be justified by [16, Corollary 37.3.2]
because the set of all PMFs is compact, convex, and
nonempty and because the expression in brackets is

3For brevity, R is used to denote RXY .
4Here, we ignore the issue that the Rényi divergence can be ∞. It is

possible, but more involved, to justify the statements without this assumption.
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continuous in R and QY , convex in QY , and concave in
R; and (65) follows from a simple computation. Finally,

Jα(X;Y )

= min
QX,QY

sup
R

[
D(R||QXQY ) +

α

1− α
D(R||PXY )

]
(66)

= inf
QX

sup
R

[
D(R||QXRY ) +

α

1− α
D(R||PXY )

]
(67)

= sup
RXY

[
IRXY (X;Y ) +

α

1− α
D(RXY ||PXY )

]
(68)

= max
RXY

[
IRXY (X;Y ) +

α

1− α
D(RXY ||PXY )

]
, (69)

where (66) follows from (11) and (62); (67) follows from
(65); (68) follows from similar steps as (63)–(65); and
(69) follows from a continuity argument. The proofs of
the other two claims are omitted.

11) The proofs of this and the next property are omitted. �

V. PROPERTIES OF Kα(X;Y )

The relationship Kα(X;Y ) = J 1
α

(X̃; Ỹ ) from Lemma 2
allows us to derive some properties of Kα(X;Y ) from the
properties of J 1

α
(X̃; Ỹ ). But, unlike Jα(X;Y ), Kα(X;Y )

does not satisfy the data-processing inequality and is not
monotonic in α.5

Theorem 2. Let X , X1, X2, Y , Y1, and Y2 be random
variables on finite sets. Then, Kα(X;Y ) satisfies the following
properties for all α > 0:

1) Kα(X;Y ) ≥ 0 with equality if and only if X and Y are
independent (nonnegativity).

2) Kα(X;Y ) = Kα(Y ;X) (symmetry).
3) Kα(X1, X2;Y1, Y2) = Kα(X1;Y1) + Kα(X2;Y2) if the

pairs (X1, Y1) and (X2, Y2) are independent (additivity).
4) Kα(X;Y ) ≤ log |X | and Kα(X;Y ) ≤ log |Y|.

In addition,
5) K1(X;Y ) = I(X;Y ).
6) Kα(X;Y ) is continuous in α for all α > 0.

7) Kα(X;X) =

{
2H α

2−α
(X)−Hα(X) if α ∈ (0, 2),

α
α−1H∞(X)−Hα(X) if α ≥ 2.

VI. OPERATIONAL MEANING OF Kα(X;Y )

The motivation to study Jα(X;Y ) and Kα(X;Y ) stems
from [17], which extends the task-encoding problem studied
in [12] to a distributed setting. It considers a discrete source
{(Xi, Yi)}∞i=1 over a finite alphabet that emits pairs of random
variables (Xi, Yi). For any positive integer n, the sequences
{Xi}ni=1 and {Yi}ni=1 are encoded separately, and the decoder
outputs the list of all pairs (xn, yn) that share the given
description.6 The goal is to minimize the ρ-th moment of
the list size for some ρ > 0 as n goes to infinity. In the

5Although Kα(X;Y ) is not monotonic in α, it is possible to show that
the sum Kα(X;Y ) +Hα(X,Y ) is nonincreasing in α.

6The list may also contain pairs with posterior probability zero; for a precise
definition, see (72).

following theorem, necessary and sufficient conditions on the
coding rates are given to drive the ρ-th moment of the list size
asymptotically to one. (For the proof, see [17].)

Theorem 3. Let {(Xi, Yi)}∞i=1 be a discrete source over a
finite alphabet X×Y . For a fixed ρ > 0, a rate pair (RX , RY )
is called achievable if there exists a sequence of encoders
{(fn, gn)}∞n=1,

fn : Xn → {1, . . . , b2nRX c}, (70)
gn : Yn → {1, . . . , b2nRY c}, (71)

such that

lim
n→∞

E
[∣∣{(xn, yn) ∈ Xn × Yn :

xn = fn(Xn) ∧ yn = gn(Y n)}
∣∣ρ] = 1. (72)

For an i.i.d. source, the rate region is the set of pairs (RX , RY )
satisfying the following three conditions:

RX ≥ H 1
1+ρ

(X), (73)

RY ≥ H 1
1+ρ

(Y ), (74)

RX +RY ≥ H 1
1+ρ

(X,Y ) +K 1
1+ρ

(X;Y ). (75)

Rate pairs (RX , RY ) outside this region are not achievable
and rate pairs in the interior of this region are achievable.
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