Testing Against Independence and a Rényi Information Measure

Amos Lapidoth and Christoph Pfister
Signal and Information Processing Laboratory
ETH Zurich, 8092 Zurich, Switzerland
Email: \{lapidoth,pfister\} @isi.ee.ethz.ch

Abstract

The achievable error-exponent pairs for the type I and type II errors are characterized in a hypothesis testing setup where the observation consists of independent and identically distributed samples from either a known joint probability distribution or an unknown product distribution. The empirical mutual information test, the Hoeffding test, and the generalized likelihood-ratio test are all shown to be asymptotically optimal. An expression based on a Rényi measure of dependence is shown to be the Fenchel biconjugate of the error-exponent function obtained by fixing one error exponent and optimizing the other. An example is provided where the error-exponent function is not convex and thus not equal to its Fenchel biconjugate.

I. Introduction

Let \mathcal{X} and \mathcal{Y} be finite sets and $P_{X Y}$ a probability mass function (PMF) over $\mathcal{X} \times \mathcal{Y}$. Based on a sequence of pairs of random variables $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$, we want to distinguish between two hypotheses:
$0)$ Under the null hypothesis, $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are IID according to $P_{X Y}$.

1) Under the alternative hypothesis, $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are IID according to some unknown PMF of the form $Q_{X Y}=Q_{X} Q_{Y}$, where $Q_{X} \in \mathcal{P}(\mathcal{X})$ and $Q_{Y} \in \mathcal{P}(\mathcal{Y})$ are arbitrary PMFs over \mathcal{X} and \mathcal{Y}, respectively.
An error-exponent pair $\left(E_{P}, E_{Q}\right) \in \mathbb{R}^{2}$ is achievable if there exists a sequence of deterministic tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfying the following two conditions:
$\liminf _{n \rightarrow \infty}-\frac{1}{n} \log P_{X Y}^{\times n}\left[T_{n}\left(X^{n}, Y^{n}\right)=1\right]>\mathrm{E}_{\mathrm{P}}$,
$\liminf _{n \rightarrow \infty} \inf _{Q_{X}, Q_{Y}}-\frac{1}{n} \log \left(Q_{X} Q_{Y}\right)^{\times n}\left[T_{n}\left(X^{n}, Y^{n}\right)=0\right]>\mathrm{E}_{Q},(2)$
where a deterministic test T_{n} is a function from $\mathcal{X}^{n} \times \mathcal{Y}^{n}$ to $\{0,1\}$; we denote by $R_{X Y}^{\times n}[\mathcal{A}]$ the probability of an event \mathcal{A} when $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ are IID according to $R_{X Y}$; the infimum is over all $Q_{X} \in \mathcal{P}(\mathcal{X})$ and all $Q_{Y} \in \mathcal{P}(\mathcal{Y})$; and all logarithms in this paper are natural logarithms. If an error-exponent pair $\left(E_{P}, E_{Q}\right)$ is achievable, then, since the inequalities in (1) and (2) are strict, there exists a sequence of tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ such that for sufficiently large n and for all $\left(Q_{X}, Q_{Y}\right) \in \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{Y})$,

$$
\begin{align*}
P_{X Y}^{\times n}\left[T_{n}\left(X^{n}, Y^{n}\right)\right. & =1] \leq e^{-n \mathrm{E}_{\mathrm{P}}} \tag{3}\\
\left(Q_{X} Q_{Y}\right)^{\times n}\left[T_{n}\left(X^{n}, Y^{n}\right)\right. & =0] \leq e^{-n \mathrm{E}_{Q}} . \tag{4}
\end{align*}
$$

(The reverse is not true: (3) and (4) are not sufficient for the achievability of the pair $\left(E_{P}, E_{Q}\right)$; see Section II for more motivation for our definition.)

Our first result characterizes the achievable error-exponent pairs.
Theorem 1. An error-exponent pair $\left(\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}\right)$ is achievable if, and only if, for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$,

$$
\begin{equation*}
\left(D\left(R_{X Y} \| P_{X Y}\right)>\mathrm{E}_{P}\right) \vee\left(D\left(R_{X Y} \| R_{X} R_{Y}\right)>\mathrm{E}_{\mathrm{Q}}\right) . \tag{5}
\end{equation*}
$$

This characterization is also valid when randomized tests are allowed in (1) and (2).

In Lemmas 8-10 we show that the empirical mutual information test, the Hoeffding test, and the generalized likelihoodratio test can achieve every achievable error-exponent pair. Defining the error-exponent functions $E_{P}: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $E_{Q}: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ as

$$
\begin{align*}
& \mathrm{E}_{P}\left(\mathrm{E}_{Q}\right) \triangleq \sup \left\{\mathrm{E}_{P} \in \mathbb{R}:\left(\mathrm{E}_{P}, \mathrm{E}_{Q}\right) \text { is achievable }\right\} \tag{6}\\
& \mathrm{E}_{Q}\left(\mathrm{E}_{P}\right) \triangleq \sup \left\{\mathrm{E}_{Q} \in \mathbb{R}:\left(\mathrm{E}_{P}, E_{Q}\right) \text { is achievable }\right\} \tag{7}
\end{align*}
$$

we obtain
Corollary 2. For all $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)=\inf _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) ; \\ D\left(R_{X Y} \| R_{X} R_{Y}\right) \leq \mathrm{E}_{Q}}} D\left(R_{X Y} \| P_{X Y}\right), \tag{8}
\end{equation*}
$$

and for all $E_{P} \in \mathbb{R}$,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Q}}\left(\mathrm{E}_{\mathrm{P}}\right)=\inf _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): \\ D\left(R_{X Y} \| P_{X Y}\right) \leq \mathrm{E}_{\mathrm{P}}}} D\left(R_{X Y} \| R_{X} R_{Y}\right) . \tag{9}
\end{equation*}
$$

Our next result relates the Rényi measure of dependence $J_{\alpha}\left(P_{X Y}\right)$ to $\mathrm{E}_{\mathrm{P}}^{* *}(\cdot)$, the Fenchel biconjugate of $\mathrm{E}_{\mathrm{P}}(\cdot)$. Both $J_{\alpha}\left(P_{X Y}\right)$ and $\mathrm{E}_{\mathrm{P}}^{* *}(\cdot)$ are discussed in Section II. (The analogous result for $\mathrm{E}_{Q}^{* *}(\cdot)$ is Theorem 13.)
Theorem 3. For all $\mathrm{E}_{Q} \in \mathbb{R}$,

$$
\begin{equation*}
\sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(J_{\alpha}\left(P_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right)=\mathrm{E}_{P}^{* *}\left(\mathrm{E}_{\mathrm{Q}}\right) \tag{10}
\end{equation*}
$$

Furthermore, $\mathrm{E}_{\mathrm{P}}^{* *}\left(\mathrm{E}_{\mathrm{Q}}\right)=\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)$ for all $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$ if, and only if, $\mathrm{E}_{\mathrm{P}}(\cdot)$ is convex on \mathbb{R}.

Our last contribution is Example 14, where $E_{P}(\cdot)$ is not convex and thus for some $E_{Q} \in \mathbb{R}$,

$$
\begin{equation*}
\sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(J_{\alpha}\left(P_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right) \neq \mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right) . \tag{11}
\end{equation*}
$$

The rest of this paper is organized as follows: in Section II, we review the Rényi divergence and the Fenchel conjugation; in Section III, we review results on simple and composite hypothesis testing; in Section IV, we prove Theorem 1 and provide asymptotically optimal tests; in Section V, we relate $J_{\alpha}\left(P_{X Y}\right)$ to the Fenchel biconjugates $\mathrm{E}_{\mathrm{P}}^{* *}$ and $\mathrm{E}_{\mathrm{Q}}^{* *}$; and in Section VI, we discuss Example 14, where $E_{P}(\cdot)$ is not convex. Additional proofs can be found in [1].

II. Preliminaries

Let P and Q be PMFs over a finite set \mathcal{Z}. The relative entropy (or Kullback-Leibler divergence) is defined as

$$
\begin{equation*}
D(P \| Q) \triangleq \sum_{z \in \mathcal{Z}} P(z) \log \frac{P(z)}{Q(z)} \tag{12}
\end{equation*}
$$

with the conventions that $0 \log (0 / q)=0$ for all $q \geq 0$ and $p \log (p / 0)=+\infty$ for all $p>0$. The Rényi divergence of order α [2], [3] is defined for all positive α other than 1 as

$$
\begin{equation*}
D_{\alpha}(P \| Q) \triangleq \frac{1}{\alpha-1} \log \sum_{z \in \mathcal{Z}} P(z)^{\alpha} Q(z)^{1-\alpha} \tag{13}
\end{equation*}
$$

with the conventions that $\log 0=-\infty$ and that for $\alpha>1$, we read $P(z)^{\alpha} Q(z)^{1-\alpha}$ as $P(z)^{\alpha} / Q(z)^{\alpha-1}$ and use $0 / 0=0$ and $p / 0=+\infty$ for all $p>0$. By continuous extension [3, Theorem 5], $D_{1}(P \| Q) \triangleq D(P \| Q)$.

The measure of dependence $J_{\alpha}\left(P_{X Y}\right)$ [4] is defined as

$$
\begin{equation*}
J_{\alpha}\left(P_{X Y}\right) \triangleq \min _{Q_{X} \in \mathcal{P}(\mathcal{X}), Q_{Y} \in \mathcal{P}(\mathcal{Y})} D_{\alpha}\left(P_{X Y} \| Q_{X} Q_{Y}\right) \tag{14}
\end{equation*}
$$

for all positive α and as zero when α is zero.
The convex conjugate (or Fenchel conjugate) of a function $f: \mathbb{R} \rightarrow[-\infty,+\infty]$ is the function $f^{*}: \mathbb{R} \rightarrow[-\infty,+\infty]$,

$$
\begin{equation*}
f^{*}(\lambda) \triangleq \sup _{x \in \mathbb{R}}[\lambda x-f(x)] . \tag{15}
\end{equation*}
$$

It is lower semicontinuous and convex [5, Section 7.1 and Proposition 1.2.2].

The (Fenchel) biconjugate of a function $f: \mathbb{R} \rightarrow[-\infty,+\infty]$ is $f^{* *}: \mathbb{R} \rightarrow[-\infty,+\infty]$, the convex conjugate of f^{*}. For every f and for every $x \in \mathbb{R}, f^{* *}(x) \leq f(x)$ [6, Section 4.2].

We next motivate the strict inequalities in (1) and (2). Let $\tilde{E}_{P}\left(E_{Q}\right)$ denote the error-exponent function that would have resulted had we replaced the strict inequalities in (1) and (2) with weak inequalities. Then, $\tilde{E}_{P}(\cdot)$ and $\tilde{E}_{P}^{* *}(\cdot)$ cannot be equal because, unlike $E_{P}(\cdot), \tilde{E}_{P}(\cdot)$ is not lower semicontinuous. The difference between $E_{P}(\cdot)$ and $\tilde{E}_{P}(\cdot)$ is best seen at zero: While $\tilde{E}_{P}(0)$ is $+\infty$, it turns out that $E_{P}(0)$ is the optimal error exponent if for a fixed $\epsilon \in(0,1)$, we require the tests to satisfy $\left(Q_{X} Q_{Y}\right)^{\times n}\left[T_{n}\left(X^{n}, Y^{n}\right)=0\right] \leq \epsilon$ for all n and all $\left(Q_{X}, Q_{Y}\right)$. (This setup is similar to the one in Stein's lemma [7, Corollary 1.2]; we do not explore it further in this paper.)
To see that (3) and (4) are not sufficient for the achievability of an error-exponent pair, observe that (3) and (4) hold for every $\mathrm{E}_{\mathrm{p}} \in \mathbb{R}$ if $\mathrm{E}_{\mathrm{Q}}=0$ and $T_{n}\left(X^{n}, Y^{n}\right)=0$ irrespective of X^{n} and Y^{n}. Yet, (8) implies that $\mathrm{E}_{\mathrm{P}}(0)$ is finite, so $\left(\mathrm{E}_{\mathrm{P}}, 0\right)$ is not achievable for every E_{P}.

We conclude this section with two lemmas.

Lemma 4. For all $R_{X Y}, Q_{X}$, and Q_{Y},

$$
\begin{equation*}
D\left(R_{X Y} \| Q_{X} Q_{Y}\right) \geq D\left(R_{X Y} \| R_{X} R_{Y}\right) \tag{16}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\inf _{Q_{X}, Q_{Y}} D\left(R_{X Y} \| Q_{X} Q_{Y}\right)=D\left(R_{X Y} \| R_{X} R_{Y}\right) \tag{17}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
& D\left(R_{X Y} \| Q_{X} Q_{Y}\right) \\
& \quad=D\left(R_{X Y} \| R_{X} R_{Y}\right)+D\left(R_{X} \| Q_{X}\right)+D\left(R_{Y} \| Q_{Y}\right) \tag{18}\\
& \quad \geq D\left(R_{X Y} \| R_{X} R_{Y}\right) \tag{19}
\end{align*}
$$

where (19) holds because $D(P \| Q) \geq 0$. Equality is achieved for $Q_{X}=R_{X}$ and $Q_{Y}=R_{Y}$, which proves (17).
Lemma 5. Let P and Q be PMFs over a finite set \mathcal{Z}. Then, for all $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$,

$$
\begin{equation*}
\inf _{\substack{R \in \mathcal{P}(\mathcal{Z}): \\ D(R \| Q) \leq \mathrm{E}_{Q}}} D(R \| P)=\sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(D_{\alpha}(P \| Q)-\mathrm{E}_{Q}\right) \tag{20}
\end{equation*}
$$

Proof. Omitted.

III. Related Work

Let P and Q be PMFs over a finite set \mathcal{Z}. In the simple hypothesis testing setup where one has to guess whether $\left\{Z_{i}\right\}_{i=1}^{n}$ are IID according to P or Q, Hoeffding [8] and Csiszár and Longo [9] essentially showed that

$$
\begin{equation*}
\tilde{\mathrm{E}}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)=\inf _{R \in \mathcal{P}(\mathcal{Z}): D(R \| Q) \leq \mathrm{E}_{Q}} D(R \| P) \tag{21}
\end{equation*}
$$

where $\tilde{E}_{P}(\cdot)$ is the error-exponent function for the simple hypothesis testing setup. More properties of $\tilde{E}_{P}(\cdot)$ were studied by Blahut [10]; relevant for us is

$$
\begin{equation*}
\tilde{\mathrm{E}}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)=\sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(D_{\alpha}(P \| Q)-\mathrm{E}_{\mathrm{Q}}\right) \tag{22}
\end{equation*}
$$

which follows from [10, Theorem 7] by substituting $\alpha=\frac{1}{1+s}$ and identifying the Rényi divergence.

In the composite hypothesis testing setup where P is tested against an unknown Q from some set \mathcal{Q}, Hoeffding [8] showed that his likelihood-ratio test is asymptotically optimal against all $Q \in \mathcal{Q}$; see also [7, Problem 2.13(b)]. This test statistic is used in Lemma 9.

For the hypothesis testing setup of this paper, Tomamichel and Hayashi [11, first part of (57)] showed that for sufficiently large E_{Q},

$$
\begin{equation*}
\sup _{\alpha \in\left(\frac{1}{2}, 1\right)} \frac{1-\alpha}{\alpha}\left(J_{\alpha}\left(P_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right)=\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right) \tag{23}
\end{equation*}
$$

We provide a negative answer to the question at the end of the paragraph in [11]: an equality of the form (23) does not hold in general because the LHS of (23) is always convex in E_{Q}, but $E_{P}(\cdot)$ from Example 14 is not convex.

Conditions for which the generalized likelihood-ratio test is asymptotically optimal in a Neyman-Pearson sense are studied in [12]. A different approach to composite hypothesis testing has been proposed in [13].

Independence testing is a related setup where one wants to know whether or not the PMF generating $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ has a product form (whereas here, we test a fixed $P_{X Y}$ against an unknown product distribution). Since the empirical mutual information in Lemma 8 does not depend on $P_{X Y}$, it can also be used for independence testing; see for example [14, " G-test of independence"], where G is $2 n$ times the empirical mutual information.

IV. Achievable Error-Exponent Pairs

After two preparatory lemmas, we present in Lemmas 8-10 three tests that achieve any error-exponent pair $\left(E_{P}, E_{Q}\right)$ for which

$$
\begin{equation*}
\left(D\left(R_{X Y} \| P_{X Y}\right)>\mathrm{E}_{\mathrm{P}}\right) \vee\left(D\left(R_{X Y} \| R_{X} R_{Y}\right)>\mathrm{E}_{\mathrm{Q}}\right) \tag{24}
\end{equation*}
$$

holds for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$. These tests are all based on the type [7] $\hat{R}_{X Y}$ of the sequence $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$. The asymptotic optimality of these tests follows from the converse proved in Lemma 11, which establishes Theorem 1 and Corollary 2.
Lemma 6. If (24) holds for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, then there exists an $\epsilon>0$ such that for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$,

$$
\begin{equation*}
\left(D\left(R_{X Y} \| P_{X Y}\right) \geq \mathrm{E}_{\mathrm{P}}+\epsilon\right) \vee\left(D\left(R_{X Y} \| R_{X} R_{Y}\right) \geq \mathrm{E}_{\mathrm{Q}}+\epsilon\right) \tag{25}
\end{equation*}
$$

Proof. Define the function $f: \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\begin{align*}
R_{X Y} \mapsto \max \{ & D\left(R_{X Y} \| P_{X Y}\right)-\mathrm{E}_{P} \\
& \left.D\left(R_{X Y} \| R_{X} R_{Y}\right)-\mathrm{E}_{\mathrm{Q}}\right\} . \tag{26}
\end{align*}
$$

Suppose that (24) holds for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, and consider

$$
\begin{equation*}
\eta \triangleq \inf _{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})} f\left(R_{X Y}\right) . \tag{27}
\end{equation*}
$$

If $\eta>0$, then (25) holds with $\epsilon=\eta$. We show by contradiction that $\eta \leq 0$ is impossible. Assume $\eta \leq 0$. Observe that f is lower semicontinuous on $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$ and that $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$ is a compact set. By the extreme value theorem, there would exist an $R_{X Y}^{*} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ with $f\left(R_{X Y}^{*}\right)=\eta \leq 0$. This leads to a contradiction because then (24) would not hold for $R_{X Y}^{*}$.

Lemma 7. Let $\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}$, and $\epsilon>0$ be such that (25) holds for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$. Define $\tau \triangleq(n+1)^{|\mathcal{X} \times \mathcal{Y}|}$. Then, for all $Q_{X} \in \mathcal{P}(\mathcal{X})$ and all $Q_{Y} \in \mathcal{P}(\mathcal{Y})$,

$$
\begin{align*}
& P_{X Y}^{\times n}\left[D\left(\hat{R}_{X Y} \| P_{X Y}\right) \geq \mathrm{E}_{\mathrm{P}}+\epsilon\right] \leq \tau e^{-n\left(\mathrm{E}_{\mathrm{P}}+\epsilon\right)}, \tag{28}\\
& P_{X Y}^{\times n}\left[D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right)<\mathrm{E}_{\mathrm{Q}}+\epsilon\right] \leq \tau e^{-n\left(\mathrm{E}_{\mathrm{P}}+\epsilon\right)}, \tag{29}\\
& \left(Q_{X} Q_{Y}\right)^{\times n}\left[D\left(\hat{R}_{X Y} \| P_{X Y}\right)<\mathrm{E}_{P}+\epsilon\right] \leq \tau e^{-n\left(\mathrm{E}_{Q}+\epsilon\right)}, \tag{30}\\
& \left(Q_{X} Q_{Y}\right)^{\times n}\left[D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right) \geq \mathrm{E}_{Q}+\epsilon\right] \leq \tau e^{-n\left(\mathrm{E}_{Q}+\epsilon\right)} \text {. } \tag{31}
\end{align*}
$$

Proof. Omitted. (It is based on Sanov's theorem.)
Lemma 8 (Empirical Mutual Information Test). If (24) is satisfied for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, then there exists an $\epsilon>0$ such that the error-exponent pair $\left(\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}\right)$ is achieved by the sequence of tests

$$
T_{n}\left(\hat{R}_{X Y}\right) \triangleq \begin{cases}1 & \text { if } D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right)<\mathrm{E}_{\mathrm{Q}}+\epsilon \tag{32}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. Use the $\epsilon>0$ from Lemma 6. Then, the sequence of tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies (1) because

$$
\begin{align*}
P_{X Y}^{\times n} & {\left[T_{n}\left(X^{n}, Y^{n}\right)=1\right] } \\
& =P_{X Y}^{\times n}\left[D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right)<\mathrm{E}_{Q}+\epsilon\right] \tag{33}\\
& \leq(n+1)^{|\mathcal{X} \times \mathcal{Y}|} \cdot e^{-n\left(\mathrm{E}_{\mathrm{P}}+\epsilon\right)}, \tag{34}
\end{align*}
$$

where (34) follows from Lemma 7. Similarly, the sequence of tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies (2).
Lemma 9 (Hoeffding's Test [8]). If (24) is satisfied for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, then there exists an $\epsilon>0$ such that the error-exponent pair $\left(\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}\right)$ is achieved by the sequence of tests

$$
T_{n}\left(\hat{R}_{X Y}\right) \triangleq \begin{cases}0 & \text { if } D\left(\hat{R}_{X Y} \| P_{X Y}\right)<\mathrm{E}_{\mathrm{P}}+\epsilon \tag{35}\\ 1 & \text { otherwise }\end{cases}
$$

Proof. The proof is very similar to the proof of Lemma 8.
Lemma 10 (Generalized Likelihood-Ratio Test). The logarithm of the generalized likelihood ratio, divided by n, is

$$
\begin{align*}
\Gamma & \triangleq \frac{1}{n} \log \frac{P_{X Y}^{\times n}\left(X^{n}, Y^{n}\right)}{\sup _{Q_{X} \in \mathcal{P}(\mathcal{X}), Q_{Y} \in \mathcal{P}(\mathcal{Y})}\left(Q_{X} Q_{Y}\right)^{\times n}\left(X^{n}, Y^{n}\right)} \tag{36}\\
& =D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right)-D\left(\hat{R}_{X Y} \| P_{X Y}\right) \tag{37}
\end{align*}
$$

If (24) is satisfied for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, then the errorexponent pair $\left(\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{Q}\right)$ is achieved by the sequence of tests

$$
T_{n}\left(\hat{R}_{X Y}\right) \triangleq \begin{cases}1 & \text { if } \Gamma \leq \mathrm{E}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{P}} \tag{38}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. The proof of (37) is omitted. Using the $\epsilon>0$ from Lemma 6, the sequence of tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies (1) because

$$
\begin{align*}
P_{X Y}^{\times n} & {\left[T_{n}\left(X^{n}, Y^{n}\right)=1\right] } \\
\leq & P_{X Y}^{\times n}\left[D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right)<\mathrm{E}_{\mathrm{Q}}+\epsilon\right] \\
& +P_{X Y}^{\times n}\left[D\left(\hat{R}_{X Y} \| P_{X Y}\right) \geq \mathrm{E}_{\mathrm{P}}+\epsilon\right] \tag{39}\\
\leq & 2(n+1)^{|\mathcal{X} \times \mathcal{Y}|} \cdot e^{-n\left(\mathrm{E}_{\mathrm{P}}+\epsilon\right)} \tag{40}
\end{align*}
$$

where (39) follows from the union bound because the events $D\left(\hat{R}_{X Y} \| \hat{R}_{X} \hat{R}_{Y}\right) \geq \mathrm{E}_{\mathrm{Q}}+\epsilon$ and $D\left(\hat{R}_{X Y} \| P_{X Y}\right)<\mathrm{E}_{\mathrm{P}}+\epsilon$ imply $\Gamma>\mathrm{E}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{P}}$; and (40) follows from Lemma 7. In the same way, the sequence of tests $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies (2).

Lemma 11. If (24) does not hold for all $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, i.e., if there exists an $R_{X Y}^{*} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ satisfying

$$
\begin{equation*}
\left(D\left(R_{X Y}^{*} \| P_{X Y}\right) \leq \mathrm{E}_{P}\right) \wedge\left(D\left(R_{X Y}^{*} \| R_{X}^{*} R_{Y}^{*}\right) \leq \mathrm{E}_{Q}\right) \tag{41}
\end{equation*}
$$

then the error-exponent pair $\left(\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}\right)$ is not achievable. (Not even if randomized tests are allowed.)
Proof. Omitted.
Proof of Theorem 1. The theorem follows from Lemma 8 and from Lemma 11.
Proof of Corollary 2. For a fixed $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$, define

$$
\begin{equation*}
C \triangleq \inf _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): \\ D\left(R_{X Y} \| R_{X} R_{Y}\right) \leq \mathrm{E}_{Q}}} D\left(R_{X Y} \| P_{X Y}\right) \tag{42}
\end{equation*}
$$

By Theorem 1, all error-exponent pairs ($\mathrm{E}_{\mathrm{P}}, \mathrm{E}_{\mathrm{Q}}$) with $\mathrm{E}_{\mathrm{P}}<C$ are achievable, while those with $\mathrm{E}_{\mathrm{P}}>C$ are not. Therefore, $\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)=C$. An analogous argument proves (9).

V. Error-Exponent Functions and $J_{\alpha}\left(P_{X Y}\right)$

After a preparatory lemma, we prove Theorem 3 and state Theorem 13, the analog of Theorem 3 for $\mathrm{E}_{Q}^{* *}(\cdot)$.

Lemma 12. The convex conjugate of $\mathrm{E}_{\mathrm{P}}(\cdot)$ is

$$
\mathrm{E}_{\mathrm{P}}^{*}(\lambda)= \begin{cases}+\infty & \text { if } \lambda>0 \tag{43}\\ \lambda J_{\frac{1}{1-\lambda}}\left(P_{X Y}\right) & \text { otherwise }\end{cases}
$$

Proof. By the definition of the convex conjugate,

$$
\begin{equation*}
E_{P}^{*}(\lambda)=\sup _{E_{Q} \in \mathbb{R}}\left[\lambda E_{Q}-E_{P}\left(E_{Q}\right)\right] . \tag{44}
\end{equation*}
$$

For $\lambda>0$, the RHS of (44) is $+\infty$, since we can lower-bound the supremum over E_{Q} with the limit as E_{Q} tends to infinity and since $\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)$ is zero for all $\mathrm{E}_{\mathrm{Q}} \geq D\left(P_{X Y} \| P_{X} P_{Y}\right)$, which can be verified by choosing $R_{X Y}=P_{X Y}$ in the RHS of (8). Now assume $\lambda \leq 0$. Then,

$$
\begin{align*}
& \sup _{E_{Q} \in \mathbb{R}}\left[\lambda E_{Q}-E_{P}\left(E_{Q}\right)\right] \\
& =\sup _{\mathrm{E}_{Q} \in \mathbb{R}}\left[\lambda \mathrm{E}_{\mathrm{Q}}-\inf _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): \\
D\left(R_{X Y} \| R_{X} R_{Y}\right) \leq \mathrm{E}_{Q}}} D\left(R_{X Y} \| P_{X Y}\right)\right] \tag{45}\\
& =\sup _{\mathrm{E}_{Q} \in \mathbb{R}} \sup _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): \\
D\left(R_{X Y} \| R_{X} R_{Y}\right) \leq \mathrm{E}_{Q}}}\left[\lambda \mathrm{E}_{Q}-D\left(R_{X Y} \| P_{X Y}\right)\right] \tag{46}\\
& =\sup _{R_{X Y}} \sup _{\mathrm{E}_{\mathrm{Q}}: \mathrm{E}_{Q} \geq D\left(R_{X Y} \| R_{X} R_{Y}\right)}\left[\lambda \mathrm{E}_{\mathrm{Q}}-D\left(R_{X Y} \| P_{X Y}\right)\right] \tag{47}\\
& =\sup _{R_{X Y}}\left[\lambda D\left(R_{X Y} \| R_{X} R_{Y}\right)-D\left(R_{X Y} \| P_{X Y}\right)\right] \tag{48}\\
& =-(1-\lambda) \inf _{Q_{X}, Q_{Y}} \inf _{R_{X Y}}\left[\frac{-\lambda}{1-\lambda} D\left(R_{X Y} \| Q_{X} Q_{Y}\right)\right. \\
& \left.+\frac{1}{1-\lambda} D\left(R_{X Y} \| P_{X Y}\right)\right] \tag{49}\\
& =\lambda \inf _{Q_{X}, Q_{Y}} D_{\frac{1}{1-\lambda}}\left(P_{X Y} \| Q_{X} Q_{Y}\right) \tag{50}\\
& =\lambda J_{\frac{1}{1-\lambda}}\left(P_{X Y}\right) \text {, } \tag{51}
\end{align*}
$$

where (45) follows from (8); (48) holds because $\lambda \leq 0$, so $\mathrm{E}_{\mathrm{Q}}=D\left(R_{X Y} \| R_{X} R_{Y}\right)$ achieves the maximum; (49) follows from Lemma 4 because $\frac{-\lambda}{1-\lambda} \geq 0$ and $1-\lambda \geq 1$; (50) follows from [3, Theorem 30] with $\alpha=\frac{1}{1-\lambda} \in(0,1]$; and (51) follows from the definition of $J_{\alpha}\left(P_{X Y}\right)$. (Technically, the case $\alpha=1$ is not covered by [3, Theorem 30], but it is easy to see that (50) also holds if $\alpha=1$, i.e., if $\lambda=0$.)

Proof of Theorem 3. Using Lemma 12, we have

$$
\begin{align*}
\mathrm{E}_{P}^{* *}\left(\mathrm{E}_{\mathrm{Q}}\right) & =\sup _{\lambda \in \mathbb{R}}\left[\lambda \mathrm{E}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{P}}^{*}(\lambda)\right] \tag{52}\\
& =\sup _{\lambda \leq 0}\left[\lambda \mathrm{E}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{P}}^{*}(\lambda)\right] \tag{53}\\
& =\sup _{\lambda \leq 0}\left[\lambda \mathrm{E}_{Q}-\lambda J_{\frac{1}{1-\lambda}}\left(P_{X Y}\right)\right] \tag{54}\\
& =\sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(J_{\alpha}\left(P_{X Y}\right)-\mathrm{E}_{Q}\right), \tag{55}
\end{align*}
$$

where (53) holds because $\mathrm{E}_{\mathrm{P}}^{*}(\lambda)=+\infty$ for all $\lambda>0$, and (55) follows from the substitution $\alpha=\frac{1}{1-\lambda} \in(0,1]$.

By [6, Theorem 4.2.1], a function $h: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ is equal to its biconjugate if, and only if, it is lower semicontinuous and convex. The function $\mathrm{E}_{\mathrm{P}}: \mathbb{R} \rightarrow[0,+\infty]$ is always lower semicontinuous. (This follows from a topological argument, which is omitted here.) Thus, $\mathrm{E}_{\mathrm{P}}(\cdot)$ is equal to its biconjugate if, and only if, it is convex.
Theorem 13. For all $E_{P} \in \mathbb{R}$,

$$
\begin{equation*}
\sup _{\alpha \in[0,1)}\left[J_{\alpha}\left(P_{X Y}\right)-\frac{\alpha}{1-\alpha} \mathrm{E}_{\mathrm{P}}\right]=\mathrm{E}_{\mathrm{Q}}^{* *}\left(\mathrm{E}_{\mathrm{P}}\right) \tag{56}
\end{equation*}
$$

Furthermore, $\mathrm{E}_{\mathrm{Q}}^{* *}\left(\mathrm{E}_{\mathrm{P}}\right)=\mathrm{E}_{\mathrm{Q}}\left(\mathrm{E}_{\mathrm{P}}\right)$ for all $\mathrm{E}_{\mathrm{P}} \in \mathbb{R}$ if, and only if, $\mathrm{E}_{Q}(\cdot)$ is convex on \mathbb{R}.
Proof. Omitted; the proof is similar to the proofs of Lemma 12 and Theorem 3.

VI. An Example Where $\mathrm{E}_{\mathrm{p}}(\cdot)$ Is Not Convex

Example 14. Consider $\mathcal{X}=\mathcal{Y}=\{1,2,3\}$ and $P_{X Y}$ given by

$$
\begin{array}{c|ccc}
P_{X Y}(x, y) & y=1 & y=2 & y=3 \\
\hline x=1 & 10^{-4} & \gamma & \gamma \\
x=2 & \gamma & 10^{-4} & \gamma \\
x=3 & \gamma & \gamma & 10^{-4},
\end{array}
$$

where $\gamma=\frac{9997}{60000} \approx 0.167$. Then,

$$
\begin{align*}
& \mathrm{E}_{P}\left(3898 / 2^{17}\right) \leq 58593464420737815 / 2^{56} \tag{57}\\
& \mathrm{E}_{P}\left(3984 / 2^{17}\right) \leq 58382556630811219 / 2^{56} \tag{58}\\
& \mathrm{E}_{P}\left(3941 / 2^{17}\right) \geq 58488010525784883 / 2^{56} \tag{59}
\end{align*}
$$

This implies

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}}\left(\frac{3898+3984}{2 \cdot 2^{17}}\right)-\frac{1}{2} \mathrm{E}_{\mathrm{P}}\left(\frac{3898}{2^{17}}\right)-\frac{1}{2} \mathrm{E}_{\mathrm{P}}\left(\frac{3984}{2^{17}}\right) \\
& \quad=\mathrm{E}_{\mathrm{P}}\left(\frac{3941}{2^{17}}\right)-\frac{1}{2} \mathrm{E}_{\mathrm{P}}\left(\frac{3898}{2^{17}}\right)-\frac{1}{2} \mathrm{E}_{\mathrm{P}}\left(\frac{3984}{2^{17}}\right) \tag{60}\\
& \quad \geq 10366 / 2^{56} \approx 1.44 \cdot 10^{-13} \tag{61}
\end{align*}
$$

so $\mathrm{E}_{\mathrm{P}}(\cdot)$ is not convex. (We estimate the LHS of (60) to be in the order of 10^{-7}.)

To verify (57), we use (8) and check (see Remark 17 below) that a specific $R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ satisfies

$$
\begin{align*}
D\left(R_{X Y} \| R_{X} R_{Y}\right) & \leq 3898 / 2^{17} \tag{62}\\
D\left(R_{X Y} \| P_{X Y}\right) & \leq 58593464420737815 / 2^{56} \tag{63}
\end{align*}
$$

Similarly, (58) can be verified. Establishing (59) is much more involved and is the topic of the rest of this section.

Let \mathcal{Q} denote the set of all product distributions on $\mathcal{X} \times \mathcal{Y}$,

$$
\begin{equation*}
\mathcal{Q} \triangleq\left\{Q_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): Q_{X Y}=Q_{X} Q_{Y}\right\} \tag{64}
\end{equation*}
$$

We express \mathcal{Q} as a finite union, i.e.,

$$
\begin{equation*}
\mathcal{Q}=\bigcup_{i=1}^{k} \mathcal{Q}_{i} \tag{65}
\end{equation*}
$$

where for each $i \in\{1, \ldots, k\}$,

$$
\begin{align*}
& \mathcal{Q}_{i} \triangleq\left\{Q_{X} Q_{Y}:\left(Q_{X}\right.\right.\left.\left.\in \mathcal{Q}_{X, i}\right) \wedge\left(Q_{Y} \in \mathcal{Q}_{Y, i}\right)\right\}, \tag{66}\\
& \mathcal{Q}_{X, i} \triangleq\left\{Q_{X} \in \mathcal{P}(\mathcal{X}): \quad\left(l_{i, 1} \leq Q_{X}(1) \leq u_{i, 1}\right)\right. \\
& \wedge\left(l_{i, 2} \leq Q_{X}(2) \leq u_{i, 2}\right) \\
&\left.\wedge\left(l_{i, 3} \leq Q_{X}(3) \leq u_{i, 3}\right)\right\}, \tag{67}\\
& \mathcal{Q}_{Y, i} \triangleq\left\{Q_{Y} \in \mathcal{P}(\mathcal{Y}): \quad\left(l_{i, 4} \leq Q_{Y}(1) \leq u_{i, 4}\right)\right. \\
& \wedge\left(l_{i, 5} \leq Q_{Y}(2) \leq u_{i, 5}\right) \\
&\left.\wedge\left(l_{i, 6} \leq Q_{Y}(3) \leq u_{i, 6}\right)\right\}, \tag{68}
\end{align*}
$$

where $l_{i, 1}, \ldots, l_{i, 6}$ and $u_{i, 1}, \ldots, u_{i, 6}$ are nonnegative numbers. With the help of Lemma 16 below, we can verify that for specific $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$ and $\Gamma \in \mathbb{R}$ and for all $i \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\inf _{Q_{X Y} \in \mathcal{Q}_{i}} \sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(D_{\alpha}\left(P_{X Y} \| Q_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right) \geq \Gamma \tag{69}
\end{equation*}
$$

which by Lemma 15 below and (65) implies

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{Q}\right) \geq \Gamma . \tag{70}
\end{equation*}
$$

More details are given in Remark 17.
Lemma 15. For all $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$,
$\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right)=\inf _{Q_{X Y} \in \mathcal{Q}} \sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(D_{\alpha}\left(P_{X Y} \| Q_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right)$. (71)
Proof. We have

$$
\begin{align*}
\mathrm{E}_{\mathrm{P}}\left(\mathrm{E}_{\mathrm{Q}}\right) & =\inf _{\substack{R_{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}): \\
D\left(R_{X Y} \| R_{X} R_{Y}\right) \leq \mathrm{E}_{\mathbb{Q}}}} D\left(R_{X Y} \| P_{X Y}\right) \tag{72}\\
& =\inf _{Q_{X Y} \in \mathcal{Q}}^{\inf _{X Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}):} D\left(R_{X Y} \| P_{X Y}\right) \tag{73}\\
& =\inf _{\left.Q_{X Y} \| Q_{X Y}\right) \leq \mathrm{E}_{Q}} \sup _{\alpha \in(0,1]} \frac{1-\alpha}{\alpha}\left(D_{\alpha}\left(P_{X Y} \| Q_{X Y}\right)-\mathrm{E}_{Q}\right),
\end{align*}
$$

where (72) follows from (8); (73) follows from Lemma 4; and (74) follows from Lemma 5.

Lemma 16. Let \mathcal{Q}_{i} be defined as in (66), let $\alpha \in(0,1)$, and let $\beta: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$. Define

$$
\begin{equation*}
D \triangleq \inf _{Q_{X Y} \in \mathcal{Q}_{i}} \sum_{(x, y) \in \mathcal{X} \times \mathcal{Y}} \beta(x, y) Q_{X Y}(x, y)^{1-\alpha} . \tag{75}
\end{equation*}
$$

Then, for all $\mathrm{E}_{\mathrm{Q}} \in \mathbb{R}$,

$$
\begin{align*}
& \inf _{Q_{X Y} \in \mathcal{Q}_{i}} \sup _{\tilde{\alpha} \in(0,1]} \frac{1-\tilde{\alpha}}{\tilde{\alpha}}\left(D_{\tilde{\alpha}}\left(P_{X Y} \| Q_{X Y}\right)-\mathrm{E}_{\mathrm{Q}}\right) \\
& \geq \frac{-1}{\alpha} \log \left\{\left[\sum_{(x, y) \in \mathcal{X} \times \mathcal{Y}}\left(P_{X Y}(x, y)^{\alpha}+\beta(x, y)\right)^{\frac{1}{\alpha}}\right]^{\alpha}\right. \\
& \quad-D\}-\frac{1-\alpha}{\alpha} \mathrm{E}_{Q} . \tag{76}
\end{align*}
$$

Proof. Omitted.

Remark 17. We finish with a few comments about the verification of Example 14.

- Computing D in Lemma 16 for fixed \mathcal{Q}_{i}, α, and β is easy: One can show that there exist an extreme point Q_{X}^{*} of $\mathcal{Q}_{X, i}$ and an extreme point Q_{Y}^{*} of $\mathcal{Q}_{Y, i}$ such that $Q_{X}^{*} Q_{Y}^{*}$ achieves the infimum in the RHS of (75). (This basically holds because $\mathcal{Q}_{X, i}$ and $\mathcal{Q}_{Y, i}$ are bounded convex polytopes and because the objective function is concave in Q_{X} for fixed Q_{Y} and concave in Q_{Y} for fixed Q_{X}.) Since $\mathcal{Q}_{X, i}$ and $\mathcal{Q}_{Y, i}$ have at most six extreme points, there are at most 36 candidate points. One can evaluate the objective function at the candidate points; the minimum function value among these is equal to D.
- To establish (59), we use (65) with $k=1323238$. To ensure that (65) holds, we start with a collection \mathcal{C} of sets that initially contains only \mathcal{Q}; we iteratively remove $a \mathcal{Q}_{i}$ from \mathcal{C}, split it into two parts, and add each part to \mathcal{C}; and we stop when \mathcal{C} has the desired structure.
- We use interval arithmetic [15] to obtain exact bounds.
- The splits to obtain \mathcal{C}, the α and β needed in Lemma 16 for every $i \in\{1, \ldots, k\}$, and the code that allows for a mathematically rigorous verification of our bounds can be found in [16].

References

[1] A. Lapidoth and C. Pfister, "Testing against independence and a Rényi information measure," preprint, arXiv:1805.11059.
[2] A. Rényi, "On measures of entropy and information," in Proc. 4th Berkeley Symp. Math. Statist. and Probability, vol. 1, 1961, pp. 547-561.
[3] T. van Erven and P. Harremoës, "Rényi divergence and Kullback-Leibler divergence," IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797-3820, July 2014.
[4] A. Lapidoth and C. Pfister, "Two measures of dependence," in Proc. 2016 IEEE Int. Conf. Sci. Elect. Eng., pp. 1-5.
[5] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and Optimization, Belmont, MA: Athena Scientific, 2003.
[6] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd ed. New York: Springer, 2006.
[7] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed. Cambridge: Cambridge University Press, 2011.
[8] W. Hoeffding, "Asymptotically optimal tests for multinomial distributions," Ann. Math. Statist., vol. 36, no. 2, pp. 369-401, Apr. 1965.
[9] I. Csiszár and G. Longo, "On the error exponent for source coding and for testing simple statistical hypotheses," Stud. Sci. Math. Hungarica, vol. 6, pp. 181-191, 1971.
[10] R. E. Blahut, "Hypothesis testing and information theory," IEEE Trans. Inf. Theory, vol. 20, no. 4, pp. 405-417, July 1974.
[11] M. Tomamichel and M. Hayashi, "Operational interpretation of Rényi information measures via composite hypothesis testing against product and Markov distributions," IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1064-1082, Feb. 2018.
[12] O. Zeitouni, J. Ziv, and N. Merhav, "When is the generalized likelihood ratio test optimal?," IEEE Trans. Inf. Theory, vol. 38, no. 5, pp. 15971602, Sept. 1992.
[13] M. Feder and N. Merhav, "Universal composite hypothesis testing: a competitive minimax approach," IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1504-1517, June 2002.
[14] R. R. Sokal and F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 4th ed. New York: W. H. Freeman and Company, 2012.
[15] N. Revol and F. Rouillier, "Motivations for an arbitrary precision interval arithmetic and the MPFI library," Reliable Computing, vol. 11, no. 4, pp. 275-290, Aug. 2005.
[16] A. Lapidoth and C. Pfister. Supplementary Material. (2018) [Online]. Available: https://github.com/pfistchr/arxiv-1805.11059

