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Abstract: Motivated by a horse betting problem, a new conditional Rényi divergence is introduced.
It is compared with the conditional Rényi divergences that appear in the definitions of the dependence
measures by Csiszár and Sibson, and the properties of all three are studied with emphasis on their
behavior under data processing. In the same way that Csiszár’s and Sibson’s conditional divergence
lead to the respective dependence measures, so does the new conditional divergence lead to the
Lapidoth–Pfister mutual information. Moreover, the new conditional divergence is also related to the
Arimoto–Rényi conditional entropy and to Arimoto’s measure of dependence. In the second part
of the paper, the horse betting problem is analyzed where, instead of Kelly’s expected log-wealth
criterion, a more general family of power-mean utility functions is considered. The key role in
the analysis is played by the Rényi divergence, and in the setting where the gambler has access to
side information, the new conditional Rényi divergence is key. The setting with side information
also provides another operational meaning to the Lapidoth–Pfister mutual information. Finally,
a universal strategy for independent and identically distributed races is presented that—without
knowing the winning probabilities or the parameter of the utility function—asymptotically maximizes
the gambler’s utility function.

Keywords: conditional Rényi divergence; horse betting; Kelly gambling; Rényi divergence; Rényi
mutual information

1. Introduction

As shown by Kelly [1,2], many of Shannon’s information measures appear naturally in the context
of horse gambling when the gambler’s utility function is expected log-wealth. Here, we show that
under a more general family of utility functions, gambling also provides a context for some of Rényi’s
information measures. Moreover, the setting where the gambler has side information motivates a new
Rényi-like conditional divergence, which we study and compare to other conditional divergences.
The proposed family of utility functions in the context of gambling with side information also provides
another operational meaning to the Rényi-like mutual information that was recently proposed by
Lapidoth and Pfister [3]: it measures the gambler’s gain from the side information as measured by the
increase in the minimax value of the two-player zero-sum game in which the bookmaker picks the
odds and the gambler then places the bets based on these odds and her side information.

Deferring the gambling-based motivation to the second part of the paper, we first describe
the different conditional divergences and study some of their properties with emphasis on their
behavior under data processing. We also show that the new conditional Rényi divergence relates to the
Lapidoth–Pfister mutual information in much the same way that Csiszár’s and Sibson’s conditional
divergences relate to their corresponding mutual informations. Before discussing the conditional
divergences, we first recall other information measures.
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The Kullback–Leibler divergence (or relative entropy) is an important concept in information
theory and statistics [2,4–6]. It is defined between two probability mass functions (PMFs) P and Q over
a finite set X as

D(P‖Q) , ∑
x∈X

P(x) log
P(x)
Q(x)

, (1)

where log(·) denotes the base-2 logarithm. Defining a conditional Kullback–Leibler divergence is
straightforward because, as simple algebra shows, the two natural approaches lead to the same result:

D(PY|X‖QY|X |PX) , ∑
x∈supp(PX)

P(x)D(PY|X=x‖QY|X=x) (2)

= D(PXPY|X‖PXQY|X), (3)

where supp(P) , {x ∈ X : P(x) > 0} denotes the support of P, and in (3) and throughout PXPY|X
denotes the PMF on X ×Y that assigns (x, y) the probability PX(x)PY|X(y|x).

The Rényi divergence of order α [7,8] between two PMFs P and Q is defined for all positive α’s
other than one as

Dα(P‖Q) ,
1

α− 1
log ∑

x∈X
P(x)α Q(x)1−α. (4)

A conditional Rényi divergence can be defined in more than one way. In this paper, we consider
the following three definitions, two classic and one new:

Dc
α(PY|X‖QY|X |PX) , ∑

x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x), (5)

Ds
α(PY|X‖QY|X |PX) , Dα(PXPY|X‖PXQY|X), (6)

Dl
α(PY|X‖QY|X |PX) ,

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x), (7)

where (5) is inspired by Csiszár [9]; (6) is inspired by Sibson [10]; and (7) is motivated by the horse
betting problem discussed in Section 9. The first two conditional Rényi divergences were used to
define the Rényi measures of dependence of Csiszár Icα (X; Y) [9] and of Sibson Isα (X; Y) [10]:

Icα (X; Y) , min
QY

Dc
α(PY|X‖QY|PX), (8)

Isα (X; Y) , min
QY

Ds
α(PY|X‖QY|PX), (9)

where the minimization is over all PMFs on the set Y . (Gallager’s E0 function [11] and Isα (X; Y) are
in one-to-one correspondence; see (65) below.) The analogous minimization of Dl

α(·) leads to the
Lapidoth–Pfister mutual information Jα(X; Y) [3]:

Jα(X; Y) , min
QX ,QY

Dα(PXY‖QXQY) (10)

= min
QY

Dl
α(PY|X‖QY|PX), (11)

where (11) is proved in Proposition 5.
The first part of the paper is structured as follows: In Section 2, we discuss some preliminaries.

In Sections 3–5, we study the properties of the three conditional Rényi divergences and their associated
measure of dependence. In Section 6, we express the Arimoto–Rényi conditional entropy Hα(X|Y)
and the Arimoto measure of dependence Iaα (X; Y) [12] in terms of Dl

α(PX|Y‖UX |PY). In Section 7,
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we relate the conditional Rényi divergences to each other and discuss the relations between the Rényi
dependence measures.

The second part of the paper deals with horse gambling under our proposed family of power-mean
utility functions. It is in this context that the Rényi divergence (Theorem 9) and the conditional Rényi
divergence Dl

α(·) (Theorem 10) appear naturally.
More specifically, consider a horse race with a finite nonempty set of horsesX , where a bookmaker

offers odds o(x)-for-1 on each horse x ∈ X , where o : X → (0, ∞) [2] (Section 6.1). A gambler spends
all her wealth placing bets on the horses. The fraction of her wealth that she bets on Horse x ∈ X is
denoted b(x) ≥ 0, which sums up to 1 over x ∈ X , and the PMF b is her “betting strategy.” The winning
horse, which we denote X, is drawn according to the PMF p, where we assume p(x) > 0 for all x ∈ X .
The wealth relative (or end-to-beginning wealth ratio) is the random variable

S , b(X)o(X). (12)

Hence, given an initial wealth γ, the gambler’s wealth after the race is γS. We seek betting
strategies that maximize the utility function

Uβ ,

{
1
β log E[Sβ] if β 6= 0,

E[log S] if β = 0,
(13)

where β ∈ R is a parameter that accounts for the risk sensitivity. This optimization generalizes the
following cases:

(a) In the limit as β tends to −∞, we optimize the worst-case return. The optimal strategy is
risk-free in the sense that S does not depend on the winning horse (see Proposition 8).

(b) If β = 0, then we optimize E[log S], which is known as the doubling rate [2] (Section 6.1).
The optimal strategy is proportional betting, i.e., to choose b = p (see Remark 4).

(c) If β = 1, then we optimize E[S], the expected return. The optimal strategy is to put all the
money on a horse that maximizes p(x)o(x) (see Proposition 9).

(d) In general, if β ≥ 1, then it is optimal to put all the money on one horse (see Proposition 9).
This is risky: if that horse loses, the gambler will go broke.

(e) In the limit as β tends to +∞, we optimize the best-case return. The optimal strategy is to put
all the money on a horse that maximizes o(x) (see Proposition 10).

Note that, for β 6= 0 and η , 1− β, maximizing Uβ is equivalent to maximizing

E
[

S1−η

1− η

]
, (14)

which is known in the finance literature as Constant Relative Risk Aversion (CRRA) [13,14].
We refer to our utility function as “power mean” because it can be written as the logarithm of a

weighted power mean [15,16]:

Uβ = log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

. (15)

Because the power mean tends to the geometric mean as β tends to zero [15] (Problem 8.1), Uβ is
continuous at β = 0:

lim
β→0

Uβ = log ∏
x

(
b(x)o(x)

)p(x) (16)

= E[log S]. (17)
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Campbell [17,18] used an exponential cost function with a similar structure to (15) to provide an
operational meaning to the Rényi entropy in source coding. Other information-theoretic applications
of exponential moments were studied in [19].

The second part of the paper is structured as follows: In Section 8, we relate the utility function Uβ

to the Rényi divergence (Theorem 9) and derive its optimal gambling strategy. In Section 9, we consider
the situation where the gambler observes side information prior to betting, a situation that leads to the
conditional Rényi divergence Dl

α(·) (Theorem 10) and to a new operational meaning for the measure
of dependence Jα(X; Y) (Theorem 11). In Section 10, we consider the situation where the gambler
invests only part of her money. In Section 11, we present a universal strategy for independent and
identically distributed (IID) races that requires neither knowledge of the winning probabilities nor of
the parameter β of the utility function and yet asymptotically maximizes the utility function for all
PMFs p and all β ∈ R.

2. Preliminaries

Throughout the paper, log(·) denotes the base-2 logarithm, X and Y are finite sets, PXY denotes a
joint PMF over X ×Y , QX denotes a PMF over X , and QY denotes a PMF over Y . An expression of
the form PXPY|X denotes the PMF on X ×Y that assigns (x, y) the probability PX(x)PY|X(y|x). We use
P and Q as generic PMFs over a finite set X . We denote by supp(P) , {x ∈ X : P(x) > 0} the
support of P, and by P(X ) the set of all PMFs over X . When clear from the context, we often omit
sets and subscripts: for example, we write ∑x for ∑x∈X , minQX ,QY for min(QX ,QY)∈P(X )×P(Y), P(x)
for PX(x), and P(y|x) for PY|X(y|x). When P(x) is 0, we define the conditional probability P(y|x) as
1/|Y|. The conditional distribution of Y given X = x is denoted by PY|X=x, thus

PY|X=x(y) = P(y|x). (18)

We denote by 1{condition} the indicator function that is one if the condition is satisfied and zero
otherwise.

In the definition of the Kullback–Leibler divergence in (1), we use the conventions

0 log
0
q
= 0 ∀q ≥ 0, p log

p
0
= ∞ ∀ p > 0. (19)

In the definition of the Rényi divergence in (4), we read P(x)α Q(x)1−α as P(x)α/Q(x)α−1 for
α > 1 and use the conventions

0
0
= 0,

p
0
= ∞ ∀ p > 0. (20)

For α being zero, one, or infinity, we define by continuous extension of (4)

D0(P‖Q) , − log ∑
x∈supp(P)

Q(x), (21)

D1(P‖Q) , D(P‖Q), (22)

D∞(P‖Q) , log max
x

P(x)
Q(x)

. (23)

The Rényi divergence for negative α is defined as

Dα(P‖Q) ,
1

α− 1
log ∑

x

Q(x)1−α

P(x)−α
. (24)
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(We use negative α in the proof of Proposition 1 (e) below and in Remark 6. More about negative
orders can be found in [8] (Section V). For other applications of negative orders, see [20] (Proof of
Theorem 1 and Example 1).)

The Rényi divergence satisfies the following basic properties:

Proposition 1. Let P and Q be PMFs. Then, the Rényi divergence Dα(P‖Q) satisfies the following:

(a) For all α ∈ [0, ∞], Dα(P‖Q) ≥ 0. If α ∈ (0, ∞], then Dα(P‖Q) = 0 if and only if P = Q.

(b) For all α ∈ [0, 1), Dα(P‖Q) is finite if and only if |supp(P) ∩ supp(Q)| > 0. For all α ∈ [1, ∞],
Dα(P‖Q) is finite if and only if supp(P) ⊆ supp(Q).

(c) The mapping α 7→ Dα(P‖Q) is continuous on [0, ∞].

(d) The mapping α 7→ Dα(P‖Q) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dα(P‖Q) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dα(P‖Q) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)D1/α(P‖Q) is concave on (0, ∞).

(h) (Data-processing inequality.) Let AX′ |X be a conditional PMF, and define the PMFs

P′(x′) , ∑
x

P(x)AX′ |X(x′|x), (25)

Q′(x′) , ∑
x

Q(x)AX′ |X(x′|x). (26)

Then, for all α ∈ [0, ∞],

Dα(P′‖Q′) ≤ Dα(P‖Q). (27)

Proof. See Appendix A.

All three conditional Rényi divergences reduce to the unconditional Rényi divergence when both
PY|X and QY|X are independent of X:

Remark 1. Let PY, QY, and PX be PMFs. Then, for all α ∈ [0, ∞],

Dc
α(PY‖QY|PX) = Ds

α(PY‖QY|PX) = Dl
α(PY‖QY|PX) = Dα(PY‖QY). (28)

Proof. This follows from the definitions of Dc
α(·), Ds

α(·), and Dl
α(·) in (5)–(7).

3. Csiszár’s Conditional Rényi Divergence

For a PMF PX and conditional PMFs PY|X and QY|X , Csiszár’s conditional Rényi divergence Dc
α(·)

is defined for every α ∈ [0, ∞] as

Dc
α(PY|X‖QY|X |PX) , ∑

x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x). (29)

For α ∈ (0, 1) ∪ (1, ∞),

Dc
α(PY|X‖QY|X |PX) =

1
α− 1 ∑

x∈supp(PX)

P(x) log ∑
y

P(y|x)α Q(y|x)1−α, (30)
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which follows from the definition of the Rényi divergence in (4). For α being zero, one, or infinity, we
obtain from (21)–(23) and (2)

Dc
0 (PY|X‖QY|X |PX) = − ∑

x∈supp(PX)

P(x) log ∑
y∈supp(PY|X=x)

Q(y|x), (31)

Dc
1 (PY|X‖QY|X |PX) = D(PY|X‖QY|X |PX), (32)

Dc
∞(PY|X‖QY|X |PX) = ∑

x∈supp(PX)

P(x) log max
y

P(y|x)
Q(y|x) . (33)

Augustin [21] and later Csiszár [9] defined the measure of dependence

Icα (X; Y) , min
QY

Dc
α(PY|X‖QY|PX). (34)

Augustin used this measure to study the error exponents for channel coding with input constraints,
while Csiszár used it to study generalized cutoff rates for channel coding with composition constraints.
Nakiboğlu [22] studied more properties of Icα (X; Y). Inter alia, he analyzed the minimax properties of
the Augustin capacity

sup
PX∈A

Icα (PX , PY|X) = sup
PX∈A

min
QY

Dc
α(PY|X‖QY|PX), (35)

where A ⊆ P(X ) is a constraint set. The Augustin capacity is used in [23] to establish the sphere
packing bound for memoryless channels with cost constraints.

The rest of the section presents some properties of Dc
α(·). Being an average of Rényi divergences

(see (29)), Dc
α(·) inherits many properties from the Rényi divergence:

Proposition 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Dc
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Dc

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Dc
α(PY|X‖QY|X |PX) is finite if and only if

(
|supp(PY|X=x) ∩ supp(QY|X=x)| >

0 for all x ∈ supp(PX)
)
. For all α ∈ [1, ∞], Dc

α(PY|X‖QY|X |PX) is finite if and only if(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Dc
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Dc
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dc

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dc
α(PY|X‖QY|X |PX) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)Dc
1/α(PY|X‖QY|X |PX) is concave on (0, ∞).

Proof. These follow from (29) and the properties of the Rényi divergence (Proposition 1). For Parts (f)
and (g), recall that a nonnegative weighted sum of concave functions is concave.

We next consider data-processing inequalities for Dc
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:
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Theorem 1. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (36)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (37)

Then, for all α ∈ [0, ∞],

Dc
α(PY′ |X‖QY′ |X |PX) ≤ Dc

α(PY|X‖QY|X |PX). (38)

Proof. See Appendix B.

The following data-processing inequality for processing X holds for α ∈ [0, 1] (as shown in
Example 1 below, it does not extend to α ∈ (1, ∞]):

Theorem 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF BX′ |X,
define the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (39)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(40)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x), (41)

QY|X′(y|x′) , ∑
x

BX|X′(x|x′)QY|X(y|x). (42)

Then, for all α ∈ [0, 1],

Dc
α(PY|X′‖QY|X′ |PX′) ≤ Dc

α(PY|X‖QY|X |PX). (43)

Note that PX′ , PY|X′ , and QY|X′ in Theorem 2 can be obtained from the following marginalizations:

PX′(x′)PY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)PY|X(y|x), (44)

PX′(x′)QY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)QY|X(y|x). (45)

Proof of Theorem 2. See Appendix C.

As a special case of Theorem 2, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 1. For a PMF PX and conditional PMFs PY|X and QY|X , define the marginal PMFs

PY(y) , ∑
x

PX(x)PY|X(y|x), (46)

QY(y) , ∑
x

PX(x)QY|X(y|x). (47)

Then, for all α ∈ [0, 1],

Dα(PY‖QY) ≤ Dc
α(PY|X‖QY|X |PX). (48)
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Proof. See Appendix D.

Consider next α ∈ (1, ∞]. It turns out that Corollary 1, and hence Theorem 2, cannot be extended
to these values of α (not even if QY|X is restricted to be independent of X, i.e., if QY|X = QY):

Example 1. Let X = Y = {0, 1}. For ε ∈ (0, 1), define the PMFs PX , Q(ε)
Y , and P(ε)

Y|X as

PX(0) = 0.5, PX(1) = 0.5, (49)

Q(ε)
Y (0) = 1− ε, Q(ε)

Y (1) = ε, (50)

P(ε)
Y|X(0|0) = 1− ε, P(ε)

Y|X(1|0) = ε, (51)

P(ε)
Y|X(0|1) = ε, P(ε)

Y|X(1|1) = 1− ε. (52)

Then, for every α ∈ (1, ∞], there exists an ε ∈ (0, 1) such that

Dα

(
PY‖Q

(ε)
Y
)
> Dc

α

(
P(ε)

Y|X‖Q
(ε)
Y |PX

)
, (53)

where the PMF PY is defined by (46) and, irrespective of ε, satisfies PY(0) = PY(1) = 0.5.

Proof. See Appendix E.

4. Sibson’s Conditional Rényi Divergence

For a PMF PX and conditional PMFs PY|X and QY|X , Sibson’s conditional Rényi divergence Ds
α(·)

is defined for every α ∈ [0, ∞] as

Ds
α(PY|X‖QY|X |PX) , Dα(PXPY|X‖PXQY|X). (54)

For α ∈ (0, 1) ∪ (1, ∞),

Ds
α(PY|X‖QY|X |PX) =

1
α− 1

log ∑
x∈supp(PX)

P(x)∑
y

P(y|x)α Q(y|x)1−α (55)

=
1

α− 1
log ∑

x∈supp(PX)

P(x)2(α−1)Dα(PY|X=x‖QY|X=x), (56)

where (55) and (56) follow from the definition of the Rényi divergence in (4). For α being zero, one, or
infinity, we obtain from (21)–(23) and (3)

Ds
0 (PY|X‖QY|X |PX) = − log ∑

x∈supp(PX)

P(x) ∑
y∈supp(PY|X=x)

Q(y|x), (57)

Ds
1 (PY|X‖QY|X |PX) = D(PY|X‖QY|X |PX), (58)

Ds
∞(PY|X‖QY|X |PX) = log max

x∈supp(PX)
max

y

P(y|x)
Q(y|x) . (59)

Sibson [10] defined the measure of dependence

Isα (X; Y) , min
QY

Ds
α(PY|X‖QY|PX). (60)

This minimum can be computed explicitly [10] (Corollary 2.3): For α ∈ (0, 1) ∪ (1, ∞),

Isα (X; Y) =
α

α− 1
log ∑

y

[
∑
x

P(x)P(y|x)α

] 1
α

, (61)
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and for α being one or infinity,

Is1 (X; Y) = I(X; Y), (62)

Is∞(X; Y) = log ∑
y

max
x

P(y|x), (63)

where I(X; Y) denotes Shannon’s mutual information.
The concavity and convexity properties of Ds

α(·) and Isα (X; Y) were studied by Ho–Verdú [24].
More properties of Isα (X; Y) were collected by Verdú [25]. The maximization of Isα (X; Y) with respect
to PX and the minimax properties of Ds

α(·) were studied by Nakiboğlu [26] and Cai–Verdú [27].
The conditional Rényi divergence Ds

α(·) was used by Fong and Tan [28] to establish strong
converse theorems for multicast networks. Yu and Tan [29] analyzed channel resolvability, among
other measures, in terms of Ds

α(·).
From (61) we see that Gallager’s E0 function [11], which is defined as

E0(ρ, PX , PY|X) , − log ∑
y

[
∑
x

P(x)P(y|x)
1

1+ρ

]1+ρ

, (64)

is in one-to-one correspondence to Sibson’s measure of dependence:

Isα (X; Y) =
α

1− α
E0

(
1− α

α
, PX , PY|X

)
. (65)

Gallager’s E0 function is important in channel coding: it appears in the random coding
exponent [30] and in the sphere packing exponent [31,32] (see also Gallager [11]). The exponential
strong converse theorem proved by Arimoto [33] also uses the E0 function. Polyanskiy and Verdú [34]
extended the exponential strong converse theorem to channels with feedback. Augustin [21] and
Nakiboğlu [35,36] extended the sphere packing bound to channels with feedback.

The rest of the section presents some properties of Ds
α(·). Because Ds

α(·) can be written as an
(unconditional) Rényi divergence (see (54)), it inherits many properties from the Rényi divergence:

Proposition 3. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Ds
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Ds

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Ds
α(PY|X‖QY|X |PX) is finite if and only if

(
there exists an x ∈ supp(PX) such that

|supp(PY|X=x) ∩ supp(QY|X=x)| > 0
)
. For all α ∈ [1, ∞], Ds

α(PY|X‖QY|X |PX) is finite if and only
if
(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Ds
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Ds
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Ds

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Ds
α(PY|X‖QY|X |PX) is concave on [0, ∞).

(g) The mapping α 7→ (α− 1)Ds
1/α(PY|X‖QY|X |PX) is concave on (0, ∞).

Proof. These follow from (54) and the properties of the Rényi divergence (Proposition 1).

We next consider data-processing inequalities for Ds
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:
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Theorem 3. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (66)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (67)

Then, for all α ∈ [0, ∞],

Ds
α(PY′ |X‖QY′ |X |PX) ≤ Ds

α(PY|X‖QY|X |PX). (68)

Proof. See Appendix F.

The data-processing inequality for processing X similarly follows from the data-processing
inequality for the (unconditional) Rényi divergence:

Theorem 4. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF BX′ |X,
define the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (69)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(70)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x), (71)

QY|X′(y|x′) , ∑
x

BX|X′(x|x′)QY|X(y|x). (72)

Then, for all α ∈ [0, ∞],

Ds
α(PY|X′‖QY|X′ |PX′) ≤ Ds

α(PY|X‖QY|X |PX). (73)

Proof. See Appendix G.

As a special case of Theorem 4, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 2. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Define the marginal PMFs

PY(y) , ∑
x

PX(x)PY|X(y|x), (74)

QY(y) , ∑
x

PX(x)QY|X(y|x). (75)

Then, for all α ∈ [0, ∞],

Dα(PY‖QY) ≤ Ds
α(PY|X‖QY|X |PX). (76)

Proof. This follows from Theorem 4 in the same way that Corollary 1 followed from Theorem 2.
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5. New Conditional Rényi Divergence

Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For α ∈ (0, 1) ∪ (1, ∞), define

Dl
α(PY|X‖QY|X |PX) ,

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (77)

=
α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

, (78)

where (78) follows from the definition of the Rényi divergence in (4). (Except for the sign, the
exponential averaging in (77) is very similar to the one of the Arimoto–Rényi conditional entropy;
compare with (147) below.) For α being zero, one, or infinity, we define by continuous extension of (77)

Dl
0 (PY|X‖QY|X |PX) , − log max

x∈supp(PX)
∑

y∈supp(PY|X=x)

Q(y|x), (79)

Dl
1 (PY|X‖QY|X |PX) , D(PY|X‖QY|X |PX), (80)

Dl
∞(PY|X‖QY|X |PX) , log ∑

x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) . (81)

This conditional Rényi divergence has an operational meaning in horse betting with side
information (see Theorem 10 below). Before discussing the measure of dependence associated with
Dl

α(·), we establish the following alternative characterization of Dl
α(·):

Proposition 4. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then, for all α ∈ [0, ∞],

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (82)

Proof. We first treat the case α ∈ (0, 1) ∪ (1, ∞). Some algebra reveals that, for every PMF QX ,

Dα(PXPY|X‖QXQY|X) = Dα

(
Q∗(α)X ‖QX

)
+

α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

, (83)

where the PMF Q∗(α)X is defined as

Q∗(α)X (x) ,
P(x)

[
∑y P(y|x)α Q(y|x)1−α

]1/α

∑x′∈supp(PX)
P(x′)

[
∑y P(y|x′)α Q(y|x′)1−α

]1/α
. (84)

The right-hand side (RHS) of (82) is thus equal to the minimum over QX of the RHS of (83). Since
Dα

(
Q∗(α)X ‖QX

)
≥ 0 with equality if QX = Q∗(α)X (Proposition 1 (a)), this minimum is equal to the

second term on the RHS of (83), which, by (78), equals Dl
α(PY|X‖QY|X |PX).

For α = 1 and α = ∞, (82) follows from the same argument using that, for every PMF QX ,

D1(PXPY|X‖QXQY|X) = D(PX‖QX) + D(PY|X‖QY|X |PX), (85)

D∞(PXPY|X‖QXQY|X) = D∞
(
Q∗(∞)

X ‖QX
)
+ log ∑

x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) , (86)
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where the PMF Q∗(∞)
X is defined as

Q∗(∞)
X (x) ,

P(x)maxy
[
P(y|x)/Q(y|x)

]
∑x′∈supp(PX)

P(x′)maxy
[
P(y|x′)/Q(y|x′)

] . (87)

For α = 0, (82) holds because

min
QX

D0(PXPY|X‖QXQY|X) = min
QX
− log ∑

x∈supp(PX)

Q(x) ∑
y∈supp(PY|X=x)

Q(y|x) (88)

= − log max
QX

∑
x∈supp(PX)

Q(x) ∑
y∈supp(PY|X=x)

Q(y|x) (89)

= − log max
x∈supp(PX)

∑
y∈supp(PY|X=x)

Q(y|x) (90)

= Dl
0 (PY|X‖QY|X |PX), (91)

where (88) follows from the definition of D0(P‖Q) in (21), and (91) follows from (79).

Tomamichel and Hayashi [37] and Lapidoth and Pfister [3] independently introduced and studied
the dependence measure

Jα(X; Y) , min
QX ,QY

Dα(PXY‖QXQY). (92)

(For some measure-theoretic properties of Jα(X; Y), see Aishwarya–Madiman [38].) The measure
Jα(X; Y) can be related to the error exponents in a hypothesis testing problem where the samples are
either from a known joint distribution or an unknown product distribution (see [37] (Equation (57))
and [39]). It also appears in horse betting with side information (see Theorem 11 below).

Similar to Icα (X; Y) in (34) and Isα (X; Y) in (60), the measure Jα(X; Y) can be expressed as a
minimization involving the new conditional Rényi divergence:

Proposition 5. Let PXY be a joint PMF. Denote its marginal PMFs by PX and PY and its conditional PMFs by
PY|X and PX|Y, so PXY = PXPY|X = PYPX|Y. Then, for all α ∈ [0, ∞],

Jα(X; Y) = min
QY

Dl
α(PY|X‖QY|PX) (93)

= min
QX

Dl
α(PX|Y‖QX |PY). (94)

Proof. Equation (93) holds because

min
QY

Dl
α(PY|X‖QY|PX) = min

QY
min
QX

Dα(PXPY|X‖QXQY) (95)

= Jα(X; Y), (96)

where (95) follows from Proposition 4, and (96) follows from (92). Swapping the roles of X and Y
establishes (94):

min
QX

Dl
α(PX|Y‖QX |PY) = min

QX
min
QY

Dα(PYPX|Y‖QYQX) (97)

= Jα(X; Y), (98)

where (97) follows from Proposition 4, and (98) follows from (92).

The rest of the section presents some properties of Dl
α(·).
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Proposition 6. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. Then,

(a) For all α ∈ [0, ∞], Dl
α(PY|X‖QY|X |PX) ≥ 0. If α ∈ (0, ∞], then Dl

α(PY|X‖QY|X |PX) = 0 if and only
if
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) For all α ∈ [0, 1), Dl
α(PY|X‖QY|X |PX) is finite if and only if

(
there exists an x ∈ supp(PX) such that

|supp(PY|X=x) ∩ supp(QY|X=x)| > 0
)
. For all α ∈ [1, ∞], Dl

α(PY|X‖QY|X |PX) is finite if and only
if
(
supp(PY|X=x) ⊆ supp(QY|X=x) for all x ∈ supp(PX)

)
.

(c) The mapping α 7→ Dl
α(PY|X‖QY|X |PX) is continuous on [0, ∞].

(d) The mapping α 7→ Dl
α(PY|X‖QY|X |PX) is nondecreasing on [0, ∞].

(e) The mapping α 7→ 1−α
α Dl

α(PY|X‖QY|X |PX) is nonincreasing on (0, ∞).

(f) The mapping α 7→ (1− α)Dl
α(PY|X‖QY|X |PX) is concave on [0, 1].

(g) The mapping α 7→ (α− 1)Dl
1/α(PY|X‖QY|X |PX) is concave on [1, ∞).

Proof. We prove these properties as follows:

(a) For all α ∈ [0, ∞], Proposition 4 implies

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (99)

The nonnegativity of Dl
α(·) now follows from the nonnegativity of the Rényi divergence

(Proposition 1 (a)). If
(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
, then PXPY|X = PXQY|X . Hence,

using QX = PX on the RHS of (99), Dl
α(PY|X‖QY|X |PX) equals zero. Conversely, if α ∈ (0, ∞]

and Dl
α(·) = 0, then PXPY|X = QXQY|X for some QX by Proposition 1 (a), which implies(

PY|X=x = QY|X=x for all x ∈ supp(PX)
)
.

(b) This follows from the definitions in (77) and (79)–(81) and the conventions in (20).
(c) For α ∈ (0, 1)∪ (1, ∞), Dl

α(·) is continuous because it is, by its definition in (77), a composition of
continuous functions. The continuity at α = 1 follows from a careful application of L’Hôpital’s
rule.

We next consider the continuity at α = 0. Define τ , minx∈supp(PX)
P(x). Then, for all α ∈ (0, 1),

(α− 1)Dl
α(PY|X‖QY|X |PX) = α log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (100)

≥ α log ∑
x∈supp(PX)

τ2
α−1

α Dα(PY|X=x‖QY|X=x) (101)

≥ α log max
x∈supp(PX)

τ2
α−1

α Dα(PY|X=x‖QY|X=x) (102)

= α log τ + max
x∈supp(PX)

(α− 1)Dα(PY|X=x‖QY|X=x), (103)

where (100) follows from the definition in (77). On the other hand, for all α ∈ (0, 1),

(α− 1)Dl
α(PY|X‖QY|X |PX) = α log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (104)

≤ α log max
x∈supp(PX)

2
α−1

α Dα(PY|X=x‖QY|X=x) (105)

= max
x∈supp(PX)

(α− 1)Dα(PY|X=x‖QY|X=x). (106)
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Because limα→0 α log τ = 0, it follows from (103) and (106) and the sandwich theorem that

lim
α↓0

Dl
α(PY|X‖QY|X |PX) = lim

α↓0

1
α− 1

max
x∈supp(PX)

(α− 1)Dα(PY|X=x‖QY|X=x) (107)

= − log max
x∈supp(PX)

∑
y∈supp(PY|X=x)

Q(y|x), (108)

where (108) follows from the continuity of the Rényi divergence (Proposition 1 (c)) and the
definition of D0(P‖Q) in (21).

We conclude with the continuity at α = ∞. Observe that

lim
α→∞

Dl
α(PY|X‖QY|X |PX) = lim

α→∞

α

α− 1
log ∑

x∈supp(PX)

P(x)2
α−1

α Dα(PY|X=x‖QY|X=x) (109)

= log ∑
x∈supp(PX)

P(x)2limα→∞ Dα(PY|X=x‖QY|X=x) (110)

= log ∑
x∈supp(PX)

P(x)max
y

P(y|x)
Q(y|x) , (111)

where (109) follows from the definition in (77), and (111) follows from the continuity of the
Rényi divergence (Proposition 1 (c)) and the definition of D∞(P‖Q) in (23).

(d) For all α ∈ [0, ∞], Proposition 4 implies

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X). (112)

Because α 7→ Dα(P‖Q) is nonincreasing on [0, ∞] (Proposition 1 (d)) and because the pointwise
minimum preserves the monotonicity, the mapping α 7→ Dl

α(·) is nonincreasing on [0, ∞].
(e) By Proposition 4,

1− α

α
Dl

α(PY|X‖QY|X |PX) =

{
minQX

1−α
α Dα(PXPY|X‖QXQY|X) if α ∈ (0, 1],

maxQX
1−α

α Dα(PXPY|X‖QXQY|X) if α ∈ (1, ∞).
(113)

By the nonnegativity of the Rényi divergence (Proposition 1 (a)), the RHS of (113) is nonnegative
for α ∈ (0, 1] and nonpositive for α ∈ (1, ∞). Hence, it suffices to show separately that the
mapping α 7→ 1−α

α Dl
α(PY|X‖QY|X |PX) is nonincreasing on (0, 1] and on (1, ∞). This is indeed

the case: the mapping α 7→ 1−α
α Dα(PXPY|X‖QXQY|X) on the RHS of (113) is nonincreasing on

(0, ∞) (Proposition 1 (e)), and the monotonicity is preserved by the pointwise minimum and
maximum, respectively.

(f) For α ∈ [0, 1], Proposition 4 implies that

(1− α)Dl
α(PY|X‖QY|X |PX) = min

QX

[
(1− α)Dα(PXPY|X‖QXQY|X)

]
. (114)

Because α 7→ (1− α)Dα(PXPY|X‖QXQY|X) is concave on [0, 1] (Proposition 1 (f)) and because
the pointwise minimum preserves the concavity, the mapping α 7→ (1− α)Dl

α(PY|X‖QY|X |PX)

is concave on [0, 1].
(g) This follows from Proposition 1 (g) in the same way that Part (f) followed from

Proposition 1 (f).

We next consider data-processing inequalities for Dl
α(·). We distinguish between processing Y

and processing X. The data-processing inequality for processing Y follows from the data-processing
inequality for the (unconditional) Rényi divergence:
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Theorem 5. Let PX be a PMF, and let PY|X and QY|X be conditional PMFs. For a conditional PMF AY′ |XY,
define

PY′ |X(y′|x) , ∑
y

PY|X(y|x)AY′ |XY(y′|x, y), (115)

QY′ |X(y′|x) , ∑
y

QY|X(y|x)AY′ |XY(y′|x, y). (116)

Then, for all α ∈ [0, ∞],

Dl
α(PY′ |X‖QY′ |X |PX) ≤ Dl

α(PY|X‖QY|X |PX). (117)

Proof. We prove (117) for α ∈ (0, 1) ∪ (1, ∞); the claim will then extend to α ∈ [0, ∞] by the continuity
of Dl

α(·) in α (Proposition 6 (c)). For every x ∈ supp(PX), we can apply Proposition 1 (h) with the
substitution of AY′ |Y,X=x for AY′ |Y to obtain

Dα(PY′ |X=x‖QY′ |X=x) ≤ Dα(PY|X=x‖QY|X=x). (118)

For α ∈ (0, 1) ∪ (1, ∞), (117) now follows from (77) and (118).

Processing X is different. Consider first QY|X that does not depend on X. Then, writing QY|X =

QY, we have the following result (which, as shown in Example 2 below, does not extend to general
QY|X):

Theorem 6. Let PX and QY be PMFs, and let PY|X be a conditional PMF. For a conditional PMF BX′ |X , define
the PMFs

PX′(x′) , ∑
x

PX(x)BX′ |X(x′|x), (119)

BX|X′(x|x′) ,
{

PX(x)BX′ |X(x′|x)/PX′(x′) if PX′(x′) > 0,

1/|X | otherwise,
(120)

PY|X′(y|x′) , ∑
x

BX|X′(x|x′)PY|X(y|x). (121)

Then, for all α ∈ [0, ∞],

Dl
α(PY|X′‖QY|PX′) ≤ Dl

α(PY|X‖QY|PX). (122)

Once we provide the operational meaning of Dl
α(·) in horse betting with side information

(Theorem 10 below), Theorem 6 will become very intuitive: it expresses the fact that preprocessing
the side information cannot increase the gambler’s utility; see Remark 8. Note that PX′ and PY|X′ in
Theorem 6 can be obtained from the following marginalization:

PX′(x′)PY|X′(y|x′) = ∑
x

PX(x)BX′ |X(x′|x)PY|X(y|x). (123)

Proof of Theorem 6. We show (122) for α ∈ (0, 1) ∪ (1, ∞); the claim will then extend to α ∈ [0, ∞] by
the continuity of Dl

α(·) in α (Proposition 6 (c)). Consider first α ∈ (1, ∞). Then, (122) holds because

α− 1
α

Dl
α(PY|X′‖QY|PX′)

= log ∑
x′∈supp(PX′ )

PX′(x′)

[
∑
y

PY|X′(y|x′)α QY(y)1−α

] 1
α

(124)
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= log ∑
x′∈supp(PX′ )

PX′(x′)

[
∑
y

[
∑
x

BX|X′(x|x′)PY|X(y|x)QY(y)
1−α

α

]α
] 1

α

(125)

= log ∑
x′∈supp(PX′ )

[
∑
y

[
∑

x∈supp(PX)

PX(x)BX′ |X(x′|x)PY|X(y|x)QY(y)
1−α

α

]α] 1
α

(126)

≤ log ∑
x′∈supp(PX′ )

∑
x∈supp(PX)

[
∑
y

[
PX(x)BX′ |X(x′|x)PY|X(y|x)QY(y)

1−α
α

]α
] 1

α

(127)

= log ∑
x∈supp(PX)

PX(x)

[
∑

x′∈supp(PX′ )

BX′ |X(x′|x)
][

∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

(128)

= log ∑
x∈supp(PX)

PX(x)

[
∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

(129)

=
α− 1

α
Dl

α(PY|X‖QY|PX), (130)

where (124) follows from (78); (125) follows from (121); (126) follows from (120); (127) follows from
the Minkowski inequality [16] (III 2.4 Theorem 9); (129) holds because PX(x) > 0 and PX′(x′) = 0
imply BX′ |X(x′|x) = 0, hence the first expression in square brackets on the left-hand side (LHS) of (129)
equals one; and (130) follows from (78).

The proof for α ∈ (0, 1) is very similar: (124)–(126) and (128)–(130) continue to hold, and (127) is
reversed [16] (III 2.4 Theorem 9). Because now α−1

α < 0, (122) continues to hold for α ∈ (0, 1).

As a special case of Theorem 6, we obtain the following relation between the conditional and the
unconditional Rényi divergence:

Corollary 3. Let PX and QY be PMFs, and let PY|X be a conditional PMF. Define the marginal PMF

PY(y) , ∑
x

PX(x)PY|X(y|x). (131)

Then, for all α ∈ [0, ∞],

Dα(PY‖QY) ≤ Dl
α(PY|X‖QY|PX). (132)

Proof. This follows from Theorem 6 in the same way that Corollary 1 followed from Theorem 2.

Consider next QY|X that does depend on X. It turns out that Corollary 3, and hence Theorem 6,
cannot be extended to this setting:

Example 2. Let X = {0, 1} and Y = {0, 1, 2}. Define the PMFs PX , PY|X , and QY|X as

PX(0) = 0.5, PX(1) = 0.5, (133)

PY|X(0|0) = 0.96, PY|X(1|0) = 0.02, PY|X(2|0) = 0.02, (134)

PY|X(0|1) = 0.12, PY|X(1|1) = 0.02, PY|X(2|1) = 0.86, (135)

QY|X(0|0) = 0.06, QY|X(1|0) = 0.92, QY|X(2|0) = 0.02, (136)

QY|X(0|1) = 0.02, QY|X(1|1) = 0.16, QY|X(2|1) = 0.82. (137)

Then, for α = 0.5 and for α = 2,

Dα(PY‖QY) > Dl
α(PY|X‖QY|X |PX), (138)
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where the PMFs PY and QY are given by

PY(y) , ∑
x

PX(x)PY|X(y|x), (139)

QY(y) , ∑
x

PX(x)QY|X(y|x). (140)

Proof. Numerically, D0.5(PY‖QY) ≈ 1.11 bits, which is larger than Dl
0.5(PY|X‖QY|X |PX) ≈ 0.93 bits.

Similarly, D2(PY‖QY) ≈ 2.95 bits, which is larger than Dl
2 (PY|X‖QY|X |PX) ≈ 2.75 bits.

6. Relation to Arimoto’s Measures

Before discussing Arimoto’s measures, we first recall the definition of the Rényi entropy. The
Rényi entropy of order α [7] is defined for all positive α’s other than one as

Hα(X) ,
1

1− α
log ∑

x
P(x)α. (141)

For α being zero, one, or infinity, we define by continuous extension of (141)

H0(X) , log |supp(PX)|, (142)

H1(X) , H(X), (143)

H∞(X) , − log max
x

P(x), (144)

where H(X) denotes Shannon’s entropy. The Rényi entropy can be related to the Rényi divergence as
follows:

Hα(X) = log |X | − Dα(PX‖UX), (145)

where UX denotes the uniform distribution over X .
There are different ways to define a conditional Rényi entropy [40]; we use Arimoto’s proposal.

The Arimoto–Rényi conditional entropy of order α [12,38,40,41] is defined for positive α other than
one as

Hα(X|Y) , α

1− α
log ∑

y∈supp(PY)

P(y)

[
∑
x

P(x|y)α

] 1
α

(146)

=
α

1− α
log ∑

y∈supp(PY)

P(y)2
1−α

α Hα(PX|Y=y), (147)

where (147) follows from the definition of the Rényi entropy in (141). The Arimoto–Rényi conditional
entropy plays a key role in guessing with side information [20,42–44] and in task encoding with side
information [45]; and it can be related to hypothesis testing [41]. For α being zero, one, or infinity, we
define by continuous extension of (146)

H0(X|Y) , log max
y∈supp(PY)

∣∣supp(PX|Y=y)
∣∣, (148)

H1(X|Y) , H(X|Y), (149)

H∞(X|Y) , − log ∑
y∈supp(PY)

P(y)max
x

P(x|y), (150)

where H(X|Y) denotes Shannon’s conditional entropy. The analog of (145) for Hα(X|Y) is:
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Remark 2. For all α ∈ [0, ∞],

Hα(X|Y) = log |X | − Dl
α(PX|Y‖UX |PY) (151)

= log |X | −min
QY

Dα(PYPX|Y‖QYUX). (152)

Proof. Equation (151) follows, using some algebra, from the definition of Dl
α(·) in (78)–(81); and (152)

follows from Proposition 4. (The characterization in (152) previously appeared as [40] (Theorem 4).)

Arimoto [12] also defined the following measure of dependence:

Iaα (X; Y) , Hα(X)− Hα(X|Y) (153)

=
α

α− 1
log ∑

y

[
∑
x

P(x)α

∑x′∈X P(x′)α
P(y|x)α

] 1
α

, (154)

where (154) follows from (141) and (146). Using Remark 2, we can express Iaα (X; Y) in terms of Dl
α(·):

Remark 3. For all α ∈ [0, ∞],

Iaα (X; Y) = Dl
α(PX|Y‖UX |PY)− Dα(PX‖UX). (155)

Proof. This follows from (145), (151), and (153).

7. Relations Between the Conditional Rényi Divergences and the Rényi Dependence Measures

In this section, we first establish the greater-or-equal-than order between the conditional Rényi
divergences, where the order depends on whether α ∈ [0, 1] or α ∈ [1, ∞]. We then show that
this implies the same order between the dependence measures derived from the conditional Rényi
divergences. Finally, we remark that many of the dependence measures coincide when they are
maximized over all PMFs PX .

Proposition 7. For all α ∈ [0, ∞],

Dl
α(PY|X‖QY|X |PX) ≤ Ds

α(PY|X‖QY|X |PX). (156)

Proof. This holds because

Dl
α(PY|X‖QY|X |PX) = min

QX
Dα(PXPY|X‖QXQY|X) (157)

≤ Dα(PXPY|X‖PXQY|X) (158)

= Ds
α(PY|X‖QY|X |PX), (159)

where (157) follows from Proposition 4, and (159) follows from the definition of Ds
α(·) in (54).

Theorem 7. For all α ∈ [0, 1],

Dl
α(PY|X‖QY|X |PX) ≤ Ds

α(PY|X‖QY|X |PX) ≤ Dc
α(PY|X‖QY|X |PX). (160)

For all α ∈ [1, ∞],

Dc
α(PY|X‖QY|X |PX) ≤ Dl

α(PY|X‖QY|X |PX) ≤ Ds
α(PY|X‖QY|X |PX). (161)

Proof. For both α ∈ [0, 1] and α ∈ [1, ∞], the relation Dl
α(·) ≤ Ds

α(·) follows from Proposition 7.
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We next show that Ds
α(·) ≤ Dc

α(·) for α ∈ [0, 1]. We show this for α ∈ (0, 1); the claim will then
extend to α ∈ [0, 1] by the continuity in α of Ds

α(·) and Dc
α(·) (Proposition 3 (c) and Proposition 2 (c)).

For α ∈ (0, 1),

(α− 1)Ds
α(PY|X‖QY|X |PX) = log ∑

x∈supp(PX)

P(x)∑
y

P(y|x)α Q(y|x)1−α (162)

≥ ∑
x∈supp(PX)

P(x) log ∑
y

P(y|x)α Q(y|x)1−α (163)

= (α− 1)Dc
α(PY|X‖QY|X |PX), (164)

where (162) follows from (55); (163) follows from Jensen’s inequality because log(·) is a concave
function; and (164) follows from (30). The proof of the claim for α ∈ (0, 1) is finished by dividing
(162)–(164) by α− 1, which reverses the inequality because α− 1 < 0.

We conclude by showing that Dc
α(·) ≤ Dl

α(·) for α ∈ [1, ∞]. We show this for α ∈ (1, ∞); the
claim will then extend to α ∈ [1, ∞] by the continuity of Dc

α(·) and Dl
α(·) in α (Proposition 2 (c) and

Proposition 6 (c)). For α ∈ (1, ∞),

Dc
α(PY|X‖QY|X |PX) = ∑

x∈supp(PX)

P(x)
1

α− 1
log ∑

y
P(y|x)α Q(y|x)1−α (165)

=
α

α− 1 ∑
x∈supp(PX)

P(x) log

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

(166)

≤ α

α− 1
log ∑

x∈supp(PX)

P(x)

[
∑
y

P(y|x)α Q(y|x)1−α

] 1
α

(167)

= Dl
α(PY|X‖QY|X |PX), (168)

where (165) follows from (30); (167) follows from Jensen’s inequality because log(·) is a concave
function; and (168) follows from (78).

Corollary 4. For all α ∈ [0, 1],

Jα(X; Y) ≤ Isα (X; Y) ≤ Icα (X; Y). (169)

For all α ∈ [1, ∞],

Icα (X; Y) ≤ Jα(X; Y) ≤ Isα (X; Y). (170)

Proof. By (34) and (60) and Proposition 5, respectively,

Icα (X; Y) = min
QY

Dc
α(PY|X‖QY|PX), (171)

Isα (X; Y) = min
QY

Ds
α(PY|X‖QY|PX), (172)

Jα(X; Y) = min
QY

Dl
α(PY|X‖QY|PX). (173)

The corollary now follows from (171)–(173) and Theorem 7.

Despite Icα (X; Y), Isα (X; Y), Iaα (X; Y), and Jα(X; Y) being different measures, they often coincide
when maximized over all PMFs PX :
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Theorem 8. For every conditional PMF PY|X and every α ∈ (0, 1) ∪ (1, ∞),

max
PX

Icα (PX , PY|X) = max
PX

Isα (PX , PY|X) (174)

= max
PX

Iaα (PX , PY|X). (175)

In addition, for every conditional PMF PY|X and every α ∈ [ 1
2 , 1) ∪ (1, ∞),

max
PX

Jα(PX , PY|X) = max
PX

Isα (PX , PY|X). (176)

For α ∈ (0, 1
2 ), the situation is different: there exists a conditional PMF PY|X such that, for every

α ∈ (0, 1
2 ),

max
PX

Jα(PX , PY|X) < max
PX

Isα (PX , PY|X). (177)

Proof. Equation (174) follows from [9] (Proposition 1); (175) follows from [12] (Lemma 1); and (176)
follows from [38] (Theorem V.1) for α ∈ (1, ∞).

We next establish (176) for α ∈ [ 1
2 , 1). Observe that, for α ∈ [ 1

2 , 1), (176) is equivalent to

max
PX
−2

α−1
α Jα(PX ,PY|X) = max

PX
−2

α−1
α Isα (PX ,PY|X). (178)

For α ∈ [ 1
2 , 1), (178) holds because

max
PX
−2

α−1
α Jα(PX ,PY|X) = max

PX
min
QY
−2

α−1
α Dl

α(PY|X‖QY |PX) (179)

= −min
PX

max
QY

∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(180)

= −max
QY

min
PX

∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(181)

= −max
QY

min
x

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(182)

= −
[

max
QY

min
x ∑

y
P(y|x)α QY(y)1−α

] 1
α

(183)

= −
[

max
QY

min
PX

∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(184)

= −
[

min
PX

max
QY

∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(185)

= −min
PX

max
QY

[
∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α

] 1
α

(186)

= max
PX

min
QY
−2

α−1
α Ds

α(PY|X‖QY |PX) (187)

= max
PX
−2

α−1
α Isα (PX ,PY|X), (188)
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where (179) follows from Proposition 5; (180) follows from (78); (181) and (185) follow from a minimax
theorem and are justified below; (187) follows from (55); and (188) follows from (60).

To justify (181), we apply the minimax theorem [46] (Corollary 37.3.2) to the function f : P(Y)×
P(X )→ R,

f (QY, PX) = ∑
x

PX(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

. (189)

The sets of all PMFs over X and over Y are convex and compact; the function f is jointly
continuous in the pair (QY, PX) because it is a composition of continuous functions; for every QY ∈
P(Y), the function f is linear and hence convex in PX ; and it only remains to show that the function
f is concave in QY for every PX ∈ P(X ). Indeed, for every λ, λ′ ∈ [0, 1] with λ + λ′ = 1, every
QY, Q′Y ∈ P(Y), and every PX ∈ P(X ),

f (λQY + λ′Q′Y, PX) (190)

= ∑
x

PX(x)

[
∑
y

P(y|x)α
[
λQY(y) + λ′Q′Y(y)

]1−α

] 1
α

(191)

= ∑
x

PX(x)

[
∑
y

[
λ P(y|x)

α
1−α QY(y) + λ′P(y|x)

α
1−α Q′Y(y)

]1−α

] 1
1−α ·

1−α
α

(192)

≥∑
x

PX(x)

{[
∑
y

[
λ P(y|x)

α
1−α QY(y)

]1−α

] 1
1−α

+

[
∑
y

[
λ′P(y|x)

α
1−α Q′Y(y)

]1−α

] 1
1−α
} 1−α

α

(193)

= ∑
x

PX(x)

{
λ

[
∑
y

P(y|x)α QY(y)1−α

] 1
1−α

+ λ′
[
∑
y

P(y|x)α Q′Y(y)
1−α

] 1
1−α
} 1−α

α

(194)

≥∑
x

PX(x)

{
λ

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

+ λ′
[
∑
y

P(y|x)α Q′Y(y)
1−α

] 1
α
}

(195)

= λ f (QY, PX) + λ′ f (Q′Y, PX), (196)

where (193) follows from the reverse Minkowski inequality [16] (III 2.4 Theorem 9) because α ∈ [ 1
2 , 1);

and (195) holds because the function z 7→ z(1−α)/α is concave for α ∈ [ 1
2 , 1).

The justification of (185) is very similar to that of (181); here, we apply the minimax theorem to
the function g : P(Y)×P(X )→ R,

g(QY, PX) = ∑
x

PX(x)∑
y

P(y|x)α QY(y)1−α. (197)

Compared to the justification of (181), the only essential difference lies in showing that the function
g is concave in QY for every PX ∈ P(X ): here, this follows easily from the concavity of the function
z 7→ z1−α for α ∈ [ 1

2 , 1).
We conclude the proof by establishing (177). Let X = Y = {0, 1}, and let the conditional PMF

PY|X be given by PY|X(y|x) = 1{y = x}. (This corresponds to a binary noiseless channel.) Then,
denoting by UX the uniform distribution over X ,

max
PX

Isα (PX , PY|X) ≥ Isα (UX , PY|X) (198)

= log 2, (199)
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where (199) follows from (61). On the other hand, for every α ∈ (0, 1
2 ) and every PMF PX ,

Jα(PX , PY|X) =
α

1− α
H∞(PX) (200)

≤ α

1− α
log 2 (201)

< log 2, (202)

where (200) follows from [3] (Lemma 11); (201) follows from (144); and (202) holds because α ∈ (0, 1
2 ).

Inequality (177) now follows from (199) and (202).

8. Horse Betting

In this section, we analyze horse betting with a gambler investing all her money. Recall from
the introduction that the winning horse X is distributed according to the PMF p, where we assume
p(x) > 0 for all x ∈ X ; that the odds offered by the bookmaker are denoted by o : X → (0, ∞); that
the fraction of her wealth that the gambler bets on Horse x ∈ X is denoted b(x) ≥ 0; that the wealth
relative is the random variable S , b(X)o(X); and that we seek betting strategies that maximize the
utility function

Uβ ,

{
1
β log E[Sβ] if β 6= 0,

E[log S] if β = 0.
(203)

Because the gambler invests all her money, b is a PMF. As in [47] (Section 10.3), define the constant

c ,

[
∑
x

1
o(x)

]−1

(204)

and the PMF

r(x) ,
c

o(x)
. (205)

Using these definitions, the utility function Uβ can be decomposed as follows:

Theorem 9. Let β ∈ (−∞, 1), and let b be a PMF. Then,

Uβ = log c + D 1
1−β

(p‖r)− D1−β(g(β)‖b), (206)

where the PMF g(β) is given by

g(β)(x) ,
p(x)

1
1−β o(x)

β
1−β

∑x′∈X p(x′)
1

1−β o(x′)
β

1−β

. (207)

Thus, choosing b = g(β) uniquely maximizes Uβ among all PMFs b.

The three terms in (206) can be interpreted as follows:

1. The first term, log c, depends only on the odds and is related to the fairness of the odds. The odds
are called subfair if c < 1, fair if c = 1, and superfair if c > 1.

2. The second term, D1/(1−β)(p‖r), is related to the bookmaker’s estimate of the winning
probabilities. It is zero if and only if the odds are inversely proportional to the winning
probabilities.
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3. The third term, −D1−β(g(β)‖b), is related to the gambler’s estimate of the winning probabilities.
It is zero if and only if b is equal to g(β).

Remark 4. For β = 0, (206) reduces to the following decomposition of the doubling rate E[log S]:

E[log S] = log c + D(p‖r)− D(p‖b). (208)

(This decomposition appeared previously in [47] (Section 10.3).) Equation (208) implies that the doubling
rate is maximized by proportional gambling, i.e., that E[log S] is maximized if and only if b is equal to p.

Remark 5. Considering the limits β→ −∞ and β ↑ 1, the PMF g(β) satisfies, for every x ∈ X ,

lim
β→−∞

g(β)(x) =
c

o(x)
, (209)

lim
β↑1

g(β)(x) =
p(x)1{x ∈ S}

∑x′∈X p(x′)1{x′ ∈ S} , (210)

where the set S is defined as S ,
{

x′ ∈ X : p(x′)o(x′) = maxx[p(x)o(x)]
}

. It follows from Proposition 8
below that the RHS of (209) is the unique maximizer of limβ→−∞ Uβ; and it follows from the proof of
Proposition 9 below that the RHS of (210) is a maximizer (not necessarily unique) of U1.

Proof of Remark 5. Recall that we assume p(x) > 0 for every x ∈ X . Then, (209) follows from (207)
and the definition of c in (204). To establish (210), define τ , maxx[p(x)o(x)] and observe that, for
every x ∈ X ,

lim
β↑1

g(β)(x) = lim
β↑1

p(x)
[
p(x)o(x)/τ

] β
1−β

∑x′∈X p(x′)
[
p(x′)o(x′)/τ

] β
1−β

(211)

=
p(x)1{x ∈ S}

∑x′∈X p(x′)1{x′ ∈ S} , (212)

where (211) follows from (207) and some algebra; and (212) is justified as follows: if x ∈ S , then[
p(x)o(x)/τ

]β/(1−β) equals one; and if x /∈ S , then
[
p(x)o(x)/τ

]β/(1−β) tends to zero as β ↑ 1 because

p(x)o(x)/τ < 1 and because limβ↑1
β

1−β = +∞.

Remark 6. Using the definition in (24) for the Rényi divergence of negative orders, it is not difficult to see from
the proof of Theorem 9 below that (206) also holds for β > 1. However, because the Rényi divergence of negative
orders is nonpositive instead of nonnegative, the above interpretation is not valid anymore; in particular, for
β > 1, choosing b = g(β) is in general not optimal.

Proof of Theorem 9. We first show the maximization claim. The only term on the RHS of (206) that
depends on b is −D1−β(g(β)‖b). Because 1− β > 0, this term is maximized if and only if b = g(β)

(Proposition 1 (a)).
We now establish (206) for β ∈ (−∞, 0) ∪ (0, 1); we omit the proof for β = 0, which can be found

in [47] (Section 10.3). For β ∈ (−∞, 0) ∪ (0, 1),

Uβ =
1
β

log ∑
x

p(x)b(x)β o(x)β. (213)
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For every x ∈ X ,

p(x)b(x)β o(x)β =

[
∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β

]1−β

· g(β)(x)1−β b(x)β, (214)

which follows from (207). Now, (206) holds because

Uβ =
1− β

β
log ∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β +

1
β

log ∑
x

g(β)(x)1−β b(x)β (215)

=
1− β

β
log ∑

x′∈X
p(x′)

1
1−β o(x′)

β
1−β − D1−β(g(β)‖b) (216)

= log c +
1− β

β
log ∑

x′∈X
p(x′)

1
1−β r(x′)

−β
1−β − D1−β(g(β)‖b) (217)

= log c + D 1
1−β

(p‖r)− D1−β(g(β)‖b), (218)

where (215) follows from (213) and (214); (216) follows from identifying the Rényi divergence (recall
that g(β) and b are PMFs); (217) follows from (205); and (218) follows from identifying the Rényi
divergence (recall that r is a PMF).

The rest of the section presents the cases β→ −∞, β ≥ 1, and β→ +∞.

Proposition 8. Let b be a PMF. Then,

lim
β→−∞

Uβ = log min
x

[
b(x)o(x)

]
(219)

≤ log c. (220)

Inequality (220) holds with equality if and only if b(x) = c/o(x) for all x ∈ X .

Observe that if b(x) = c/o(x) for all x ∈ X , then S = c with probability one, i.e., S does not
depend on the winning horse.

Proof of Proposition 8. Equation (219) holds because

lim
β→−∞

Uβ = lim
β→−∞

log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

(221)

= log min
x

[
b(x)o(x)

]
, (222)

where (222) holds because, in the limit as β tends to −∞, the power mean tends to the minimum (since
p is a PMF with p(x) > 0 for all x ∈ X [15] (Chapter 8)).

We show (220) by contradiction. Assume that there exists a PMF b that does not satisfy (220), thus

b(x)o(x) > c (223)

for all x ∈ X . Then,

1 = ∑
x

b(x) (224)

> ∑
x

c
o(x)

(225)

= 1, (226)
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where (224) holds because b is a PMF; (225) follows from (223); and (226) follows from the definition of
c in (204). Because 1 > 1 is impossible, such a b cannot exist, which establishes (220).

It is not difficult to see that (220) holds with equality if b(x) = c/o(x) for all x ∈ X . We therefore
focus on establishing that if (220) holds with equality, then b(x) = c/o(x) for all x ∈ X . Observe first
that, if (220) holds with equality, then, for all x ∈ X ,

b(x)o(x) ≥ c. (227)

We now claim that (227) holds with equality for all x ∈ X . Indeed, if this were not the case, then
there would exist an x′ ∈ X for which b(x′)o(x′) > c, thus (224)–(226) would hold, which would lead
to a contradiction. Hence, if (220) holds with equality, then b(x) = c/o(x) for all x ∈ X .

Proposition 9. Let β ≥ 1, and let b be a PMF. Then,

Uβ ≤ log max
x

[
p(x)1/β o(x)

]
. (228)

Equality in (228) can be achieved by choosing b(x) = 1{x = x′} for some x′ ∈ X satisfying

p(x′)1/β o(x′) = max
x

[
p(x)1/β o(x)

]
. (229)

Remark 7. Proposition 9 implies that if β ≥ 1, then it is optimal to bet on a single horse. Unless |X | = 1, this
is not the case when β < 1: When β < 1, an optimal betting strategy requires placing a bet on every horse. This
follows from Theorem 9 and our assumption that p(x) and o(x) are all positive.

Proof of Proposition 9. Inequality (228) holds because

Uβ =
1
β

log ∑
x

p(x)b(x)β o(x)β (230)

≤ 1
β

log ∑
x

p(x)b(x)o(x)β (231)

≤ 1
β

log ∑
x

b(x) ·max
x′∈X

[
p(x′)o(x′)β

]
(232)

=
1
β

log max
x′∈X

[
p(x′)o(x′)β

]
(233)

= log max
x′∈X

[
p(x′)1/β o(x′)

]
, (234)

where (231) holds because b(x) ∈ [0, 1] and β ≥ 1, and (233) holds because b is a PMF. It is not difficult
to see that (228) holds with equality if b(x) = 1{x = x′} for some x′ ∈ X satisfying (229).

Proposition 10. Let b be a PMF. Then,

lim
β→+∞

Uβ = log max
x

[
b(x)o(x)

]
(235)

≤ log max
x

o(x). (236)

Equality in (236) can be achieved by choosing b(x) = 1{x = x′} for some x′ ∈ X satisfying

o(x′) = max
x

o(x). (237)
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Proof. Equation (235) holds because

lim
β→+∞

Uβ = lim
β→+∞

log

[
∑
x

p(x)
(
b(x)o(x)

)β

] 1
β

(238)

= log max
x

[
b(x)o(x)

]
, (239)

where (239) holds because in the limit as β tends to +∞, the power mean tends to the maximum (since
p is a PMF with p(x) > 0 for all x ∈ X [15] (Chapter 8)). Inequality (236) holds because b(x) ≤ 1 for
all x ∈ X . It is not difficult to see that (236) holds with equality if b(x) = 1{x = x′} for some x′ ∈ X
satisfying (237).

9. Horse Betting with Side Information

In this section, we study the horse betting problem where the gambler observes some side
information Y before placing her bets. This setting leads to the conditional Rényi divergence Dl

α(·)
discussed in Section 5 (see Theorem 10). In addition, it provides a new operational meaning to the
dependence measure Jα(X; Y) (see Theorem 11).

We adapt our notation as follows: The joint PMF of X and Y is denoted pXY. (Recall that X
denotes the winning horse.) We drop the assumption that the winning probabilities p(x) are positive,
but we assume that p(y) > 0 for all y ∈ Y . We continue to assume that the gambler invests all her
wealth, so a betting strategy is now a conditional PMF bX|Y, and the wealth relative S is

S , b(X|Y)o(X). (240)

As in Section 8, define the constant

c ,

[
∑
x

1
o(x)

]−1

(241)

and the PMF

rX(x) ,
c

o(x)
. (242)

The following decomposition of the utility function Uβ parallels that of Theorem 9:

Theorem 10. Let β ∈ (−∞, 1). Then,

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY)− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
, (243)

where the conditional PMF g(β)
X|Y and the PMF g(β)

Y are given by

g(β)
X|Y(x|y) , p(x|y)

1
1−β o(x)

β
1−β

∑x′ p(x′|y)
1

1−β o(x′)
β

1−β

, (244)

g(β)
Y (y) ,

p(y)
[
∑x′ p(x′|y)

1
1−β o(x′)

β
1−β

]1−β

∑y′ p(y′)
[
∑x′ p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β
. (245)

Thus, choosing bX|Y = g(β)
X|Y uniquely maximizes Uβ among all conditional PMFs bX|Y.
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Proof. We first show that Uβ is uniquely maximized by g(β)
X|Y. The only term on the RHS of (243) that

depends on bX|Y is −D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
. Because 1− β > 0, this term is maximized if and only

if bX|Yg(β)
Y = g(β)

X|Yg(β)
Y (Proposition 1 (a)). By our assumptions that p(y) > 0 for all y ∈ Y and o(x) > 0

for all x ∈ X , we have g(β)
Y (y) > 0 for all y ∈ Y . Consequently, bX|Yg(β)

Y = g(β)
X|Yg(β)

Y if and only if

bX|Y = g(β)
X|Y.

Consider now (243) for β = 0. For β = 0, (243) reduces to

E[log S] = log c + D(pX|Y pY‖rX pY)− D(pX|Y pY‖bX|Y pY), (246)

and some algebra reveals that (246) holds.
We conclude with establishing (243) for β ∈ (−∞, 0) ∪ (0, 1). For β ∈ (−∞, 0) ∪ (0, 1),

Uβ =
1
β

log ∑
x,y

p(x, y)b(x|y)β o(x)β. (247)

For every x ∈ X and every y ∈ Y ,

p(x, y)b(x|y)β o(x)β = ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

· g(β)
Y (y)g(β)

X|Y(x|y)1−β b(x|y)β, (248)

which follows from (244) and (245). Now, (243) holds because

Uβ =
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

+
1
β

log ∑
x,y

[
g(β)

X|Y(x|y)g(β)
Y (y)

]1−β [b(x|y)g(β)
Y (y)

]β (249)

=
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β o(x′)

β
1−β

]1−β

− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)

(250)

= log c +
1
β

log ∑
y′∈Y

p(y′)

[
∑

x′∈X
p(x′|y′)

1
1−β rX(x′)

−β
1−β

]1−β

− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)

(251)

= log c + Dl
1

1−β
(pX|Y‖rX |pY)− D1−β

(
g(β)

X|Yg(β)
Y ‖bX|Yg(β)

Y
)
, (252)

where (249) follows from (247) and (248) and the fact that g(β)
Y (y) = g(β)

Y (y)1−β g(β)
Y (y)β; (250) follows

by identifying the Rényi divergence; (251) follows from (242); and (252) follows by identifying the
conditional Rényi divergence using (78).

Remark 8. It follows from Theorem 10 that, if the gambler gambles optimally, then, for β ∈ (−∞, 1),

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY). (253)

Operationally, it is clear that preprocessing the side information cannot increase the gambler’s utility, i.e.,
that, for every conditional PMF pY′ |Y,

Dl
1

1−β
(pX|Y′‖rX |pY′) ≤ Dl

1
1−β

(pX|Y‖rX |pY), (254)
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where pX|Y′ and pY′ are derived from the joint PMF pXYY′ given by

pXYY′(x, y, y′) = pY(y) pX|Y(x|y) pY′ |Y(y′|y). (255)

This provides the intuition for Theorem 6, where (254) is shown directly.
The extreme case is when the preprocessing maps the side information to a constant and hence leads to the

case where the side information is absent. In this case, Y′ is deterministic and pX|Y′ equals pX . Theorem 9 and
Theorem 10 then lead to the following relation between the conditional and unconditional Rényi divergence:

D 1
1−β

(pX‖rX) ≤ Dl
1

1−β
(pX|Y‖rX |pY), (256)

where the marginal PMF pX is given by

pX(x) = ∑
y

pXY(x, y). (257)

This motivates Corollary 3, where (256) is derived from (254).

The last result of this section provides a new operational meaning to the Lapidoth–Pfister mutual
information Jα(X; Y): assuming that β ∈ (−∞, 1) and that the gambler knows the winning probabilities,
J1/(1−β)(X; Y) measures how much the side information that is available to the gambler but not the
bookmaker increases the gambler’s smallest guaranteed utility for a fixed level of fairness c. To see
this, consider first the setting without side information. By Theorem 9, the gambler chooses b = g(β)

to maximize her utility, where g(β) is defined in (207). Then, using the nonnegativity of the Rényi
divergence (Proposition 1 (a)), the following lower bound on the gambler’s utility follows from (206):

Uβ ≥ log c. (258)

We call the RHS of (258) the smallest guaranteed utility for a fixed level of fairness c because
(258) holds with equality if the bookmaker chooses the odds inversely proportional to the winning
probabilities. Comparing (258) with (259) below, we see that the difference due to the side information
is J1/(1−β)(X; Y). Note that J1/(1−β)(X; Y) is typically not the difference between the utility with and
without side information; this is because the odds for which (258) and (259) hold with equality are
typically not the same.

Theorem 11. Let β ∈ (−∞, 1). If bX|Y is equal to g(β)
X|Y from Theorem 10, then

Uβ ≥ log c + J 1
1−β

(X; Y). (259)

Moreover, for every c > 0, there exist odds o : X → (0, ∞) such that (259) holds with equality.

Proof. For this choice of bX|Y, (259) holds because

Uβ = log c + Dl
1

1−β
(pX|Y‖rX |pY) (260)

≥ log c + min
r̃X∈P(X )

Dl
1

1−β
(pX|Y‖r̃X |pY) (261)

= log c + J 1
1−β

(X; Y), (262)

where (260) follows from Theorem 10, and (262) follows from Proposition 5.
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Fix now c > 0, let r̃∗X achieve the minimum on the RHS of (261), and choose the odds

o(x) =
c

r̃∗X(x)
. (263)

Then, (261) holds with equality because rX = r̃∗X by (241) and (242).

10. Horse Betting with Part of the Money

In this section, we treat the possibility that the gambler does not invest all her wealth. We restrict
ourselves to the setting without side information and to β ∈ (−∞, 0) ∪ (0, 1). (For the case β = 0,
see [47] (Section 10.5).) We assume that p(x) > 0 and o(x) > 0 for all x ∈ X . Denote by b(0) the fraction
of her wealth that the gambler does not use for betting. (We assume 0 /∈ X .) Then, b : X ∪ {0} → [0, 1]
is a PMF, and the wealth relative S is the random variable

S , b(0) + b(X)o(X). (264)

As in Section 8, define the constant

c ,

[
∑
x

1
o(x)

]−1

. (265)

We treat the cases c < 1 and c ≥ 1 separately, starting with the latter. If c ≥ 1, then it is optimal to
invest all the money:

Proposition 11. Assume c ≥ 1, let β ∈ R, and let b be a PMF on X ∪ {0} with utility Uβ. Then, there exists
a PMF b′ on X ∪ {0} with b′(0) = 0 and utility U′β ≥ Uβ.

Proof. Choose the PMF b′ as follows:

b′(x) =

 c
o(x) · b(0) + b(x) if x ∈ X ,

0 if x = 0.
(266)

Then, for every x ∈ X ,

b′(0) + b′(x)o(x) = c · b(0) + b(x)o(x) (267)

≥ b(0) + b(x)o(x), (268)

where (268) holds because c ≥ 1 by assumption. For β > 0, U′β ≥ Uβ holds because (268) implies

E[S′β] ≥ E[Sβ]. For β < 0 and β = 0, U′β ≥ Uβ follows similarly from (268).

On the other hand, if β < 1 and the odds are subfair, i.e., if c < 1, then Claim (c) of the following
theorem shows that investing all the money is not optimal:

Theorem 12. Assume c < 1, let β ∈ (−∞, 0) ∪ (0, 1), and let b∗ be a PMF on X ∪ {0} that maximizes Uβ

among all PMFs b. Defining

S , {x ∈ X : b∗(x) > 0}, (269)

Γ ,
1−∑x∈S p(x)
1−∑x∈S

1
o(x)

, (270)

γ(x) , max
{

0, Γ
1

β−1 p(x)
1

1−β o(x)
β

1−β − 1
o(x)

}
∀x ∈ X , (271)
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the following claims hold:

(a) Both the numerator and denominator on the RHS of (270) are positive, so Γ is well-defined and positive.
(b) For every x ∈ X ,

b∗(x) = γ(x)b∗(0). (272)

(c) The quantity b∗(0) satisfies

b∗(0) =
1

1 + ∑x∈X γ(x)
. (273)

In particular, b∗(0) > 0.

Claim (b) implies that for every x ∈ X , b∗(x) > 0 if and only if p(x)o(x) > Γ. Ordering the
elements x1, x2, . . . of X such that p(x1)o(x1) ≥ p(x2)o(x2) ≥ . . ., the set S thus has a special structure:
it is either empty or equal to {x1, x2, . . . , xk} for some integer k. To maximize Uβ, the following
procedure can be used: for every S with the above structure, compute the corresponding b according
to (270)–(273); and from these b’s, take one that maximizes Uβ. This procedure leads to an optimal
solution: an optimal solution b∗ exists because we are optimizing a continuous function over a compact
set, and b∗ corresponds to a set S that will be considered by the procedure.

Proof of Theorem 12. The proof is based on the Karush–Kuhn–Tucker conditions. By separately
considering the cases β ∈ (0, 1) and β < 0, we first show that, for β ∈ (−∞, 0) ∪ (0, 1), a strategy b(·)
is optimal if and only if the following conditions are satisfied for some µ ∈ R:

∑
x∈X

p(x)
(
b(0) + b(x)o(x)

)β−1
{
= µ if b(0) > 0,

≤ µ if b(0) = 0,
(274)

and, for every x ∈ X ,

p(x)o(x)
(
b(0) + b(x)o(x)

)β−1
{
= µ if b(x) > 0,

≤ µ if b(x) = 0.
(275)

Consider first β ∈ (0, 1), and define the function τ : P(X ∪ {0})→ R,

τ(b) , ∑
x∈X

p(x)
(
b(0) + b(x)o(x)

)β. (276)

Since β > 0 and since the logarithm is an increasing function, maximizing Uβ = 1
β log E[Sβ] over

b is equivalent to maximizing τ(b). Observe that τ is concave, thus, by the Karush–Kuhn–Tucker
conditions [11] (Theorem 4.4.1), it is maximized by a PMF b if and only if there exists a λ ∈ R such that
(i) for all x ∈ X ∪ {0} with b(x) > 0,

∂τ

∂b(x)
(b) = λ, (277)

and (ii) for all x ∈ X ∪ {0} with b(x) = 0,

∂τ

∂b(x)
(b) ≤ λ. (278)
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Henceforth, we use the following notation: to designate that (i) and (ii) both hold, we write

∂τ

∂b(x)
(b)

{
= λ if b(x) > 0,

≤ λ if b(x) = 0.
(279)

Dividing both sides of (279) by β > 0 and defining µ , λ
β , we obtain that (279) is equivalent to

1
β
· ∂τ

∂b(x)
(b)

{
= µ if b(x) > 0,

≤ µ if b(x) = 0.
(280)

Now, (280) translates to (274) for x = 0 and to (275) for x ∈ X .
Consider now β < 0, and define τ as in (276). Then, because β < 0, maximizing Uβ = 1

β log E[Sβ]

is equivalent to minimizing τ. The function τ is convex, thus Inequality (278) is reversed. Dividing by
β < 0 again reverses the inequalities, thus (280), (274), and (275) continue to hold for β < 0.

Having established that, for all β ∈ (−∞, 0)∪ (0, 1), a strategy b is optimal if and only if (274) and
(275) hold, we next continue with the proof. Let β ∈ (−∞, 0) ∪ (0, 1), and let b∗ be a PMF on X ∪ {0}
that maximizes Uβ. By the above discussion, (274) and (275) are satisfied by b∗ for some µ ∈ R. The
LHS of (274) is positive, so µ > 0. We now show that for all x ∈ X ,

b∗(x) = max
{

0,
[

p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

}
. (281)

To this end, fix x ∈ X . If b∗(x) > 0, then (275) implies

b∗(x) =
[

p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

, (282)

and the RHS of (282) is equal to the RHS of (281) because, being equal to b∗(x), it is positive. If
b∗(x) = 0, then (275) implies

[
p(x)o(x)β

µ

] 1
1−β

− b∗(0)
o(x)

≤ 0, (283)

so the RHS of (281) is zero and (281) hence holds.
Having established (281), we next show that b∗(x̂) = 0 for some x̂ ∈ X . For a contradiction,

assume that b∗(x) > 0 for all x ∈ X . Then,

∑
x∈X

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
= µ ∑

x∈X

1
o(x)

(284)

> µ, (285)

where (284) follows from (275), and (285) holds because c < 1 by assumption. However, this is
impossible: (285) contradicts (274).

Let now x̂ ∈ X be such that b∗(x̂) = 0. Then, by (281),

[
p(x̂)o(x̂)β

µ

] 1
1−β

− b∗(0)
o(x̂)

≤ 0. (286)

Because p(x̂) and o(x̂) are positive, this implies b∗(0) > 0. Thus, by (274),

∑
x∈X

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
= µ. (287)
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Splitting the sum on the LHS of (287) depending on whether b∗(x) > 0 or b∗(x) = 0, we obtain

µ = ∑
x∈S

p(x)
(
b∗(0) + b∗(x)o(x)

)β−1
+ ∑

x/∈S
p(x)

(
b∗(0) + b∗(x)o(x)

)β−1 (288)

= ∑
x∈S

µ

o(x)
+ ∑

x/∈S
p(x)b∗(0)β−1 (289)

= µ ∑
x∈S

1
o(x)

+ b∗(0)β−1

[
1− ∑

x∈S
p(x)

]
, (290)

where (289) follows from (275). Rearranging (290), we obtain

µ

[
1− ∑

x∈S

1
o(x)

]
= b∗(0)β−1

[
1− ∑

x∈S
p(x)

]
. (291)

Recall that µ > 0 and b∗(0) > 0. In addition, 1− ∑x∈S p(x) > 0 because b∗(x̂) = 0 and hence
x̂ /∈ S . Thus, 1−∑x∈S

1
o(x) > 0, so both the numerator and denominator in the definition of Γ in (270)

are positive, which establishes Claim (a), namely that Γ is well-defined and positive.
To establish Claim (b), note that (291) and (270) imply that µ is given by

µ = b∗(0)β−1 Γ, (292)

which, when substituted into (281), yields (272).
We conclude by proving Claim (c). Because b∗ is a PMF on X ∪ {0},

1 = b∗(0) + ∑
x∈X

b∗(x) (293)

= b∗(0)

[
1 + ∑

x∈X
γ(x)

]
, (294)

where (294) follows from (272). Rearranging (294) yields (273).

11. Universal Betting for IID Races

In this section, we present a universal gambling strategy for IID races that requires neither
knowledge of the winning probabilities nor of the parameter β of the utility function and yet
asymptotically maximizes the utility function for all PMFs p and all β ∈ R. Consider n consecutive
horse races, where the winning horse in the ith race is denoted Xi for i ∈ {1, . . . , n}. We assume that
X1, . . . , Xn are IID according to the PMF p, where p(x) > 0 for all x ∈ X . In every race, the bookmaker
offers the same odds o : X → (0, ∞), and the gambler spends all her wealth placing bets on the horses.
The gambler plays race-after-race, i.e., before placing bets for a race, she is revealed the winning
horse of the previous race and receives the money from the bookmaker. Her betting strategy is hence
a sequence of conditional PMFs

(
bX1 , bX2|X1 , bX3|X1X2 , . . . , bXn |X1X2···Xn−1

)
. The wealth relative is the

random variable

Sn ,
n

∏
i=1

b(Xi|X1, . . . , Xi−1)o(Xi). (295)

We seek betting strategies that maximize the utility function

Uβ,n ,

{
1
β log E[Sβ

n ] if β 6= 0,

E[log Sn] if β = 0.
(296)
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We first establish that to maximize Uβ,n for a fixed β ∈ R, it suffices to use the same betting
strategy in every race; see Theorem 13. We then show that the individual-sequence-universal strategy
by Cover–Ordentlich [48] allows to asymptotically achieve the same normalized utility without
knowing p or β (see Theorem 14).

For a fixed β ∈ R, let the PMF b∗ be a betting strategy that maximizes the single-race utility Uβ

discussed in Section 8, and denote by U∗β the utility associated with b∗. Using the same betting strategy
b∗ over n races leads to the utility Uβ,n, and it follows from (295) and (296) that

Uβ,n = nU∗β . (297)

As we show next, nU∗β is the maximum utility that can be achieved among all betting strategies:

Theorem 13. Let β ∈ R, and let
(
bX1 , bX2|X1 , bX3|X1X2 , . . . , bXn |X1X2···Xn−1

)
be a sequence of conditional

PMFs. Then,

Uβ,n ≤ nU∗β . (298)

Proof. We show (298) for β > 0; analogous arguments establish (298) for β < 0 and β = 0. We prove
(298) by induction on n. For n = 1, (298) holds because U∗β is the maximum single-race utility. Assume
now n ≥ 2 and that (298) is valid for n− 1. For β > 0, (298) holds because

Uβ,n =
1
β

log E[Sβ
n ] (299)

=
1
β

log ∑
x1,...,xn

P(x1) · · · P(xn)
n

∏
i=1

b(xi|xi−1)β o(xi)
β (300)

=
1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
∑
xn

P(xn)b(xn|xn−1)β o(xn)
β (301)

≤ 1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
max

b∈P(X )
∑
xn

P(xn)b(xn)
β o(xn)

β (302)

=
1
β

log ∑
x1,...,xn−1

P(x1) · · · P(xn−1)

[
n−1

∏
i=1

b(xi|xi−1)β o(xi)
β

]
∑
xn

P(xn)b∗(xn)
β o(xn)

β (303)

= Uβ,n−1 + U∗β (304)

≤ (n− 1)U∗β + U∗β (305)

= nU∗β , (306)

where (303) holds because b∗ maximizes the single-race utility Uβ, and (305) holds because (298) is
valid for n− 1.

In portfolio theory, Cover–Ordentlich [48] (Definition 1) proposed a universal strategy. Adapted
to our setting, it leads to the following sequence of conditional PMFs:

b̂(xi|xi−1) =

∫
b∈P(X ) b(xi)Si−1(b, xi−1)dµ(b)∫

b∈P(X ) Si−1(b, xi−1)dµ(b)
, (307)

where i ∈ {1, 2, . . .}; µ is the Dirichlet(1/2, . . . , 1/2) distribution on P(X ); S0(b, x0) , 1; and

Si(b, xi) ,
i

∏
j=1

b(xj)o(xj). (308)
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This strategy depends neither on the winning probabilities p nor on the parameter β. Denoting
the utility (296) associated with the strategy b̂(xi|xi−1) by Ûβ,n, we have the following result:

Theorem 14. For every β ∈ R,

nU∗β − log 2− |X | − 1
2

log(n + 1) ≤ Ûβ,n (309)

≤ nU∗β . (310)

Hence,

lim
n→∞

1
n

Ûβ,n = U∗β . (311)

Proof. Inequality (310) follows from Theorem 13; and (311) follows from (309) and (310) and the
sandwich theorem. It thus remains to establish (309): We do so for β > 0; analogous arguments
establish (309) for β < 0 and β = 0. For a fixed sequence xn ∈ X n, let b̃ be a PMF on X that maximizes
Sn(b, xn), and denote the wealth relative in (295) associated with using b̃ in every race by S̃n(xn), thus

S̃n(xn) = max
b∈P(X )

n

∏
i=1

b(xi)o(xi). (312)

Let Ŝn(xn) denote the wealth relative in (295) associated with the strategy b̂(xi|xi−1) and the
sequence xn. Using [48] (Theorem 2) it follows that, for every xn ∈ X n,

Ŝn(xn) ≥ 1
2(n + 1)(|X |−1)/2

S̃n(xn). (313)

This implies that (309) holds for β > 0 because

Ûβ,n =
1
β

log E
[
Ŝn(Xn)β

]
(314)

≥ 1
β

log E
[
S̃n(Xn)β

]
− log 2− |X | − 1

2
log(n + 1) (315)

≥ 1
β

log ∑
x1,...,xn

P(x1) · · · P(xn)
n

∏
i=1

b∗(xi)
β o(xi)

β − log 2− |X | − 1
2

log(n + 1) (316)

= nU∗β − log 2− |X | − 1
2

log(n + 1), (317)

where (315) follows from (313), and (316) follows from (312).

Remark 9. As discussed in Section 8, the optimal single-race betting strategy varies significantly with different
values of β, thus it might be a bit surprising that the Cover–Ordentlich strategy is not only universal with
respect to the winning probabilities, but also with respect to β. This is due to the following two reasons: First,
for fixed winning probabilities and a fixed β, it is optimal to use the same betting strategy in every race (see
Theorem 13). Second, for every xn ∈ X n, the wealth relative of the Cover–Ordentlich strategy is not much worse
than that of using the same strategy b(·) in every race, irrespective of b(·) (see (313)). Hence, irrespective of the
optimal single-race betting strategy, the Cover–Ordentlich strategy is able to asymptotically achieve the same
normalized utility.
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Appendix A. Proof of Proposition 1

These properties mostly follow from van Erven–Harremoës [8]:

(a) See [8] (Theorem 8).
(b) This follows from the definitions in (4) and (21)–(23) and the conventions in (20).
(c) This follows from [8] (Theorem 7) and the fact that limα→1 Dα(P‖Q) = D(P‖Q) by L’Hôpital’s

rule. (Note that α 7→ Dα(P‖Q) does not need to be continuous at α = 1 when the alphabets are
not finite; see the discussion after [8] (Equation (18)).)

(d) See [8] (Theorem 3).
(e) Let α, α′ ∈ (0, ∞) satisfy α ≤ α′. Then,

1− α

α
Dα(P‖Q) = D1−α(Q‖P) (A1)

≥ D1−α′(Q‖P) (A2)

=
1− α′

α′
Dα′(P‖Q), (A3)

where (A1) and (A3) follow from [8] (Lemma 10), and (A2) holds because the Rényi divergence,
extended to negative orders, is nondecreasing ([8] (Theorem 39)).

(f) See [8] (Corollary 2).
(g) For α ∈ (0, ∞),

(α− 1)D1/α(P‖Q) = α

(
1− 1

α

)
D1/α(P‖Q) (A4)

= α inf
R

[
1
α

D(R‖P) +
(

1− 1
α

)
D(R‖Q)

]
(A5)

= inf
R

[
D(R‖P) + (α− 1)D(R‖Q)

]
, (A6)

where (A5) follows from [8] (Theorem 30). Hence, (α− 1)D1/α(P‖Q) is concave in α because
the expression in square brackets on the RHS of (A6) is concave in α for every R and because
the pointwise infimum preserves the concavity.

(h) See [8] (Theorem 9).

Appendix B. Proof of Theorem 1

Beginning with (29),

Dc
α(PY′ |X‖QY′ |X |PX) = ∑

x∈supp(PX)

P(x)Dα(PY′ |X=x‖QY′ |X=x) (A7)

≤ ∑
x∈supp(PX)

P(x)Dα(PY|X=x‖QY|X=x) (A8)

= Dc
α(PY|X‖QY|X |PX), (A9)

where (A8) follows by applying, separately for every x ∈ supp(PX), Proposition 1 (h) with the
conditional PMF AY′ |Y,X=x.
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Appendix C. Proof of Theorem 2

We show (43) for α ∈ (0, 1); the claim then extends to α ∈ [0, 1] by the continuity of Dc
α(·) in α

(Proposition 2 (c)). Let α ∈ (0, 1). Keeping in mind that α− 1 < 0, (43) holds because

(α− 1)Dc
α(PY|X′‖QY|X′ |PX′)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

PY|X′(y|x′)α QY|X′(y|x′)1−α (A10)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

[
∑
x

BX|X′(x|x′)PY|X(y|x)
]α[

∑
x

BX|X′(x|x′)QY|X(y|x)
]1−α

(A11)

≥ ∑
x′∈supp(PX′ )

PX′(x′) log ∑
y

∑
x

BX|X′(x|x′)PY|X(y|x)α QY|X(y|x)1−α (A12)

= ∑
x′∈supp(PX′ )

PX′(x′) log ∑
x∈supp(PX)

BX|X′(x|x′)∑
y

PY|X(y|x)α QY|X(y|x)1−α (A13)

≥ ∑
x′∈supp(PX′ )

PX′(x′) ∑
x∈supp(PX)

BX|X′(x|x′) log ∑
y

PY|X(y|x)α QY|X(y|x)1−α (A14)

= ∑
x∈supp(PX)

PX(x)

[
∑

x′∈supp(PX′ )

BX′ |X(x′|x)
]

log ∑
y

PY|X(y|x)α QY|X(y|x)1−α (A15)

= ∑
x∈supp(PX)

PX(x) log ∑
y

PY|X(y|x)α QY|X(y|x)1−α (A16)

= (α− 1)Dc
α(PY|X‖QY|X |PX), (A17)

where (A10) follows from (30); (A11) follows from (41) and (42); (A12) follows from Hölder’s inequality;
(A13) holds because BX|X′(x|x′) = 0 if PX′(x′) > 0 and PX(x) = 0; (A14) follows from Jensen’s
inequality because log(·) is concave; (A15) follows from (40); (A16) holds because PX(x) > 0 and
PX′(x′) = 0 imply BX′ |X(x′|x) = 0, hence the expression in square brackets on the LHS of (A16) equals
one; and (A17) follows from (30).

Appendix D. Proof of Corollary 1

Applying Theorem 2 with X ′ , {1} and the conditional PMF BX′ |X(x′|x) , 1, we obtain

Dc
α(PY|X′‖QY|X′ |PX′) ≤ Dc

α(PY|X‖QY|X |PX). (A18)

To complete the proof of (48), observe that

Dc
α(PY|X′‖QY|X′ |PX′) = Dc

α(PY‖QY|PX′) (A19)

= Dα(PY‖QY), (A20)

where (A19) holds because (41) and (46) imply PY|X′(y|x′) = PY(y) and because (42) and (47) imply
QY|X′(y|x′) = QY(y); and (A20) follows from Remark 1.

Appendix E. Proof of Example 1

If α = ∞, then it can be verified numerically that (53) holds for ε = 0.1. Fix now α ∈ (1, ∞). Then,
for all ε ∈ (0, 1),

Dα

(
PY‖Q

(ε)
Y
)
=

1
α− 1

log
[
0.5α (1− ε)1−α + 0.5α ε1−α

]
(A21)

≥ 1
α− 1

log
[
0.5α ε1−α

]
(A22)
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=
α

α− 1
log 0.5 + log

1
ε

. (A23)

The RHS of (53) satisfies, for sufficiently small ε,

Dc
α

(
P(ε)

Y|X‖Q
(ε)
Y |PX

)
= 0.5 · 0 + 0.5 · Dα

(
P(ε)

Y|X=1‖Q
(ε)
Y
)

(A24)

=
0.5

α− 1
log
[
εα (1− ε)1−α + (1− ε)α ε1−α

]
(A25)

=
0.5

α− 1
log
[
ε1−α

(
(1− ε)α + ε2α−1 (1− ε)1−α

)]
(A26)

≤ 0.5
α− 1

log
[
2ε1−α

]
(A27)

=
0.5

α− 1
log 2 + 0.5 log

1
ε

, (A28)

where (A27) holds for sufficiently small ε because limε↓0
(
(1− ε)α + ε2α−1 (1− ε)1−α

)
= 1. Because

limε↓0 log 1
ε = ∞, (53) follows from (A23) and (A28) for sufficiently small ε.

Appendix F. Proof of Theorem 3

Observe that, for all x′ ∈ X and all y′ ∈ Y ′,

PX(x′)PY′ |X(y′|x′) = ∑
x,y

PX(x)PY|X(y|x)1{x′ = x}AY′ |XY(y′|x, y), (A29)

PX(x′)QY′ |X(y′|x′) = ∑
x,y

PX(x)QY|X(y|x)1{x′ = x}AY′ |XY(y′|x, y). (A30)

Hence, (68) follows from (54) and

Dα(PXPY′ |X‖PXQY′ |X) ≤ Dα(PXPY|X‖PXQY|X), (A31)

which follows from the data-processing inequality for the Rényi divergence by substituting
1X′=X AY′ |XY for AX′Y′ |XY in Proposition 1 (h).

Appendix G. Proof of Theorem 4

Observe that, for all x′ ∈ X ′ and all y′ ∈ Y ,

PX′(x′)PY|X′(y′|x′) = ∑
x,y

PX(x)PY|X(y|x)BX′ |X(x′|x)1{y′ = y}, (A32)

PX′(x′)QY|X′(y′|x′) = ∑
x,y

PX(x)QY|X(y|x)BX′ |X(x′|x)1{y′ = y}. (A33)

Hence, (73) follows from (54) and

Dα(PX′PY|X′‖PX′QY|X′) ≤ Dα(PXPY|X‖PXQY|X), (A34)

which follows from the data-processing inequality for the Rényi divergence by substituting BX′ |X1Y′=Y
for AX′Y′ |XY in Proposition 1 (h).
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