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Abstract—We study the transmission of a memoryless bi-
variate Gaussian source over an average-power-constrained
one-to-two Gaussian broadcast channel. The transmitter observes
the source and describes it to the two receivers by means of
an average-power-constrained signal. Each receiver observes
the transmitted signal corrupted by a different additive white
Gaussian noise and wishes to estimate the source component
intended for it: Receiver 1 wishes to estimate the first source
component and Receiver 2 wishes to estimate the second. Our in-
terest is in the pairs of expected squared-error distortions that are
simultaneously achievable at the two receivers. We prove that an
uncoded transmission scheme that sends a linear combination of
the source components achieves the optimal power-versus-distor-
tion trade-off whenever the signal-to-noise ratio is below a certain
threshold. The threshold is a function of the source correlation
and the distortion at the receiver with the weaker noise.

Index Terms—Broadcast channel, combined source-channel
coding, correlated sources, Gaussian broadcast channel, Gaussian
sources, lossy compression, mean squared-error distortion, un-
coded transmission.

I. INTRODUCTION

W E consider the transmission of a memoryless bivariate
Gaussian source over an average-power-constrained

one-to-two Gaussian broadcast channel. The transmitter ob-
serves the source and describes it to the two receivers by means
of an average-power-constrained signal. Each receiver observes
the transmitted signal corrupted by a different additive white
Gaussian noise and wishes to estimate the source component
intended for it. That is, Receiver 1 wishes to estimate the
first source component and Receiver 2 wishes to estimate the
second. Our interest is in the pairs of expected squared-error
distortions that are simultaneously achievable at the two re-
ceivers.

We prove that an uncoded transmission scheme that sends a
linear combination of the source components achieves the op-
timal power-versus-distortion trade-off whenever the signal-to-
noise ratio is below a certain threshold. The threshold is a func-
tion of the source correlation and the distortion at the receiver
with the weaker noise.
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This result is reminiscent of the results in [1] and [2] about
the optimality of uncoded transmission of a bivariate Gaussian
source over a Gaussian multiple-access channel, without and
with feedback. There too, uncoded transmission is optimal
below a certain SNR-threshold. This work is also related to
the classical result of Goblick [3], who showed that for the
transmission of a memoryless Gaussian source over the ad-
ditive white Gaussian noise channel, the minimal expected
squared-error distortion is achieved by an uncoded transmis-
sion scheme. It is also related to the work of Gastpar [4] who
showed for some combined source-channel coding analog of
the quadratic Gaussian CEO problem that the minimal expected
squared-error distortion is achieved by an uncoded transmission
scheme.

Further results can be found in the followup papers [5] and
[6]. Of special interest is [7] where the achievable distortion
pairs are characterized also for signal-to-noise ratios where un-
coded transmission is suboptimal.

II. PROBLEM STATEMENT

Our setup is illustrated in Fig. 1. It consists of a memoryless
bivariate Gaussian source and a one-to-two Gaussian broadcast
channel. The memoryless source emits at each time a bi-
variate Gaussian of zero mean and covariance ma-
trix1

where (1)

The source is to be transmitted over a memoryless Gaussian
broadcast channel with time- input , which is subjected
to an expected average power constraint

(2)

for some given . The time- output at Receiver is
given by

where is the time- additive noise term on the channel to
Receiver . For each the sequence is inde-
pendent identically distributed (IID) and independent
of the source sequence , where denotes
the mean- variance- Gaussian distribution and where we as-
sume that2

(3)

1The restrictions made on , i.e., that � � ��� �� and that �� � �
�� � � � will be justified in Remark II.2, once the problem has been

stated completely.
2The case � � � is equivalent to the problem of sending a bivariate

Gaussian on a single-user Gaussian channel [1].
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Fig. 1. Two-user Gaussian broadcast channel with bivariate source.

For the transmission we consider block encoding schemes
where, for blocklength , the transmitted sequence

is given by

(4)

for some encoding function , and
where we use boldface characters to denote -tuples, e.g.,

. Receiver ’s estimate of the
source sequence intended for it, is a function
of its observation

(5)

The quality of the estimate with respect to the original source
sequence is measured in expected squared-error distortion
averaged over the blocklength . We denote this distortion by

, i.e.,

(6)

Our interest is in the set of distortion pairs that can be achieved
simultaneously at the two receivers as the blocklength tends to
infinity. This notion of achievability is described more precisely
in the following definition.

Definition II.1 (Achievability): Given
and , we say that the tuple

is achievable (or in short, that
the pair is achievable) if there exist a sequence of
encoding functions as in (4) satisfying the average
power constraint (2) and sequences of reconstruction functions

as in (5) with resulting average distortions
as in (6) that fulfill

whenever

(7)

for an IID sequence of zero-mean bivariate Gaus-
sians with covariance matrix as in (1) and IID zero-
mean Gaussians of variance .

Based on Definition II.1, we next define the set of all achiev-
able distortion pairs.

Definition II.2 :
For any , and as in Definition II.1, we de-

fine (or just ) as the region of all pairs

for which is achievable,
i.e.,

is achievable

Remark II.1: The region is closed and convex.
Proof: See Appendix A.A.

Remark II.2: In the description of the source law in (1), we
have excluded the case where . We have done so because
for this case the optimality of uncoded transmission follows im-
mediately for all SNRs from the corresponding result for the
single user scenario in [3]. Moreover, we have also assumed that
the source components are of equal variance and that their cor-
relation coefficient is nonnegative. We now show that these
two assumptions incur no loss in generality.

i) We can limit ourselves to nonnegative correlation coef-
ficients because the distortion region depends on
the correlation coefficient only via its absolute value .
That is, the tuple is achiev-
able if, and only if, the tuple
is achievable. To see this, note that if
achieves the distortion for the source of corre-
lation coefficient , then , where

and

achieves for the source with correlation coeffi-
cient .

ii) The restriction to source components of equal variances
incurs no loss of generality because the distortion region
scales linearly with the variance of the source compo-
nents. To see this, consider the more general case where
the two source components are not necessarily of equal
variances, i.e., where and

for some and for all . Accord-
ingly, define a tuple to be
achievable, as in Definiton II.1. The proof now follows
by showing that the tuple
is achievable if, and only if, for every , the
tuple is achiev-
able. This can be seen as follows. If
achieves the tuple , then

where

and where

achieves the tuple .
And by an analogous argument it follows that if

is achievable,
then also is achievable.
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We state one more property of the region . To this end, we
need the following two definitions.

Definition II.3 : We say that is achievable if there
exists some such that . The smallest achiev-
able is denoted by . The achievability of and the
distortion are analogously defined.

By the classical single-user result [8, Theorem 9.6.3, p. 473]

Definition II.4 ( and ): For every achievable
, we define as the smallest such that

is achievable, i.e.,

Similarly

In general, we have no closed-form expression for and
. However, in the following two special cases, we do.

Proposition II.1: The distortion is given by

The distortion pair is achieved by setting
.

Proof: See Appendix A.B.

Proposition II.2: The distortion is given by

The distortion pair is achieved by setting
.

Proof: The value of follows from
Theorem III.1 ahead as follows: For it can
be verified that condition (13) of Theorem III.1 is satisfied
for all . Hence, the pair is always
achieved by the uncoded scheme with , and so

(This proposition will not be used in the proof of
Theorem III.1.)

III. MAIN RESULT

Our main result states that, below a certain SNR-threshold,
every pair can be achieved by an uncoded

scheme, where for every time-instant , the channel
input is of the form

(8)

for some . The estimate of (at Receiver ),
, is the minimum mean squared-error estimate of

based on the scalar observation , i.e.,

We denote the distortions resulting from this uncoded scheme
by and . They are given by

(9)

where

(10)

(11)

and

(12)

Remark III.1: Henceforth, we shall limit ourselves to trans-
mission schemes with and . As we
next show, this entails no loss in optimality. For , an
uncoded transmission scheme with the choice of such
that yields a distortion that is uniformly worse than
the choice . Thus, without loss in optimality, we can
restrict ourselves to . It remains to notice that for

, the channel input depends on only
via the ratio .
Our main result can now be stated as follows.

Theorem III.1: For every and

(13)

there exist such that

and

where the threshold is given by the equation shown at the
bottom of the page.

Proof: The proof of Theorem III.1 is in Appendix B. The
key lies in characterizing the trade-off between the reconstruc-
tion fidelity that can be achieved on by Receiver 1 and the
reconstruction fidelity that can be simultaneously achieved
on by Receiver 2. The difficulty thereby is to find a way

if
otherwise
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of appropriately accounting for the role of source correlation
in this trade-off. This difficulty is overcome by considering an
additional distortion quantity: the least distortion that can be
achieved on at Receiver 1, when Receiver 1 is provided with

as side-information.

We next note that for the threshold
function satisfies where equality is satisfied
for . Thus, a weaker but simpler form of
Theorem III.1 is

Corollary III.1: If

then any is achievable by the uncoded scheme,
i.e., for every there exist some such
that

and

IV. SUMMARY

We studied the transmission of a memoryless bivariate
Gaussian source over an average-power-constrained one-to-two
Gaussian broadcast channel. In this problem, the transmitter of
the channel observes the source and describes it to the two re-
ceivers by means of an average-power-constrained signal. Each
receiver observes the transmitted signal corrupted by a different
additive white Gaussian noise and wishes to estimate one of
the source components. That is, Receiver 1 wishes to estimate
the first source component and Receiver 2 wishes to estimate
the second source component. Our interest was in the pairs
of expected squared-error distortions that are simultaneously
achievable at the two receivers.

For this problem, we presented the optimality of an uncoded
transmission scheme for all SNRs below a certain threshold (see
Theorem III.1). A weaker form of this result (see Corollary III.1)
is that if the SNR on the link with the weaker additive noise
satisfies

then every achievable distortion pair is achieved by the pre-
sented uncoded transmission scheme.

APPENDIX A
PROOF OF REMARK II.1 AND PROPOSITION II.1

A. Proof of Remark II.1

The convexity of follows by a time-sharing argument. This
technique is demonstrated in [9, Proof of Lemma 13.4.1, pp.
349].

We now prove that is closed. To this end, let
be sequences satsifying , for all

, and satisfying

for some . To show that is closed we need to
show that . We construct a sequence of schemes
achieving as follows. Since , it fol-
lows that there exists a monotonically increasing sequence of
positive integers such that for all there exists
a scheme satisfying

Since is increasing in , we now choose our sequence of
schemes to be for all
and . This sequence of schemes satisfies

(14)

(15)

so, by Definition II.1, the pair is achievable, i.e., in
.

B. Proof of Proposition II.1

To prove Proposition II.1 we derive a lower bound on
and then show that this lower bound is achieved

by the uncoded scheme. To this end, let

(16)

and note that is independent of . The key to the lower
bound is that for any sequence of schemes achieving ,
the amount of information that can contain about must
vanish as . This will be stated more precisely later on.

Let be some sequence of coding schemes
achieving the distortion in the sense that

(17)

where and are as in (6). Let be the channel input
associated with this coding scheme, and let be the resulting

-tuple received by Receiver 1.
We now lower bound using the relation .

From this relation it follows that the optimal estimator, for
, is
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Since cannot outperform the optimal estimator

(18)

We now lower bound the three terms on the RHS of (18). For
the first term we have

(19)

where the first inequality follows by rate-distortion theory, the
second inequality by the data processig inequality, and the third
because the IID Gaussian input maximizes the mutual informa-
tion.

To bound the second term in (18), we shall need Lemma A.2
ahead. To prepare for its proof, we first state the following
lemma, which will only be used in the proof of Lemma A.2.

Lemma A.1: Any scheme resulting in the distortion at
Receiver 2, must produce a random sequence satisfying

(20)

Proof: We first notice that

(21)

To upper bound it thus suffices to upper bound
. To this end, we first upper bound by

means of rate-distortion theory, and then deduce an upper bound
on by means of a conditional version of the entropy
power inequality.

We denote the rate-distortion function for by so

for any . Hence

(22)

Rearranging (22) yields

(23)

Based on (23), we now deduce an upper bound on .
To this end, we first notice that for a sequence that is IID

and independent of we have

Hence, by a conditional version of the entropy power inequality
[11, Inequality (17)] it follows that

and thus

(24)

where in the second inequality we have used (23). Combining
(24) with (21) yields
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Lemma A.2: For any sequence of schemes achieving
in the sense of (17) and any there exists an integer such
that for all

(25)

where is defined in (16) and is the -tuple received by
Receiver 1 when this scheme is used.

Proof: The proof only requires applying Lemma A.1 to a
sequence of schemes achieving . For such a sequence of
schemes and for any there exists an integer such that
for all

(26)

By Lemma A.1

And since ,
we obtain

(27)

Combining (27) with (26) concludes the proof.

We now have

(28)

where the first inequality follows from rate-distortion theory
(because is ), and the second inequality
follows by Lemma A.2.

The third term in (18) is lower bounded in the following
lemma.

Lemma A.3:

(29)

Proof: We first simplify the original expectation

(30)

where follows since is a function of and
hence is independent of , and follows
since is independent of . The remaining square-root
can now be bounded by means of (28)

(31)

where follows since

which holds by the orthogonality principle of the optimal recon-
structor. Hence, rearranging (31) gives

Using this in (30), finally gives

Combining the bounds in (19), (28), and (29) with the bound
in (18) we obtain
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Taking the limit inferior as (with held fixed), and
then letting tend to zero, we obtain

and hence

(32)

Since the RHS of (32) is achieved by the uncoded scheme with
, it follows that (32) must hold with equality, i.e.,

that

(33)

APPENDIX B
PROOF OF THEOREM III.1

To prove Theorem III.1 we need several preliminaries. Those
are stated now.

Lemma B.1: Theorem III.1 holds for satis-
fying either

(34)

or

(35)

Proof: For satisfying (34), we first note
that by the classical single-user result [8, Theorem 9.6.3, p.
473] it follows that (34) must be satisfied with equality and
that . The proof of Theorem III.1 now follows
because by Proposition II.2 the uncoded scheme achieves

which, by the definitions of and
cannot be outperformed by any other scheme.

For pairs satisfying (35), we first note that by
the definition of

(36)

whenever . Also, by Proposition II.1

so, for satisfying (35)

(37)

By Proposition II.1 the pair is achieved
by the uncoded scheme, and hence by (36) and (37) the same
must be true for any pair satisfying (35).

In view of Lemma B.1 we shall assume in the rest of the proof
that satisfies

(38)

We next define as the least distortion that can be
achieved in estimating at Receiver 1 subject to the constraint
that Receiver 1 achieves a distortion in estimating . (Al-
though Receiver 1 is not required to reconstruct , this quantity
is useful for the purpose of proving Theorem III.1).

Definition B.1 : For every , we define
as

where the infimum is over all to which there correspond
average-power limited encoders and reconstructors

satisfying

where is any estimator of based on ,
where is the result of applying to , and where

is the associated -tuple received by Receiver 1.

Remark B.1: The distortion is the unique solution to
the equation

(39)

where denotes the classical rate-distortion function
for the bivariate Gaussian source with a vector-valued
MSE distortion function:

The next proposition gives the explicit form of for the
cases of interest to us.

Proposition B.1: Consider transmitting the bivariate
Gaussian source (1) over the AWGN channel that connects the
transmitter to Receiver 1. For any satisfying (38) and
satisfying (13), the distortion is given by

(40)

where

(41)

and

(42)

where are such that . Moreover, the pair
is achieved by the uncoded scheme with the

above choice of and .
To prove Proposition B.1 we use of the following lemma.
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Lemma B.2: For any satisfying (38) and satis-
fying (13), let denote the RHS of (40) with satisfying

. Then

(43)

Proof: See Appendix B.A.

Proof of Proposition B.1: Combining Lemma B.2 with Re-
mark B.1 gives that . Moreover, by (11) we have
that where are such that .
Thus, , i.e., is achieved by the uncoded
scheme with that choice of .

Lemma B.3: For any satisfying (38)
and satisfying (13)

(44)

Proof: See Appendix B.B.

The heart of the proof of Theorem III.1 is given in the fol-
lowing lemma. It characterizes the trade-off between the recon-
struction fidelity at Receiver 1 and the reconstruction fidelity

at Receiver 2.

Lemma B.4: If the pair satisfies (38), and if
satisfies (13), then for all real numbers of equal

sign

(45)

where

(46)

and where

where we have used the shorthand notation for , which
is given explicitly in Proposition B.1.

Proof: See Appendix B.C.

We are now ready to prove Theorem III.1.
Proof of Theorem III.1: By Lemma B.4 it remains to

verify that there exist real numbers of equal sign
such that coincides with the distortions
achieved by the uncoded scheme. To this end, consider

(47)

(48)

We first show that are both nonnegative, and thus in-
deed of equal sign. That is nonnegative follows from (47)
by noting that

and

where the upper bound on is the one assumed in (38), and
the lower bound on follows by the classical single-user result
[8, Theorem 9.6.3, p. 473]. To show that is nonnegative, we
distinguish between two cases. If , then
the nonnegativity follows directly from (48) and from the fact
that . Otherwise, if ,
then the nonnegativity of follows from (48), using Inequality
(44) of Lemma B.3.

Having established that and are of equal sign, the proof
now follows from Lemma B.4 by verifying that if
satisfies (38), and if satisfies (13), then choosing
so that results in satisfying

A. Proof of Lemma B.2

The proof follows from evaluating the explicit form of
for satisfying (38) and satisfying (13).

The explicit form of for this case, is determined
in the following lemma.

Lemma B.5: Consider satisfying (38) and satis-
fying (13), and let denote the RHS of (40) with satisfying

. Then

(49)

To verify Lemma B.5, we first note that the expression in (49)
is nothing but the explicit form of for

(cf. [1, Theorem III.1]}), where

or

where . Thus, to prove Lemma B.5 it remains to
verify that for any satisfying (38) and satisfying (13),
we have . To show this, we use Lemma B.6 below,
where the regions and are as in [1, Theorem III.1], i.e.,

or
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where .

Lemma B.6: Let be a distortion pair resulting from
any coding scheme operating at some satisfying (13).
Then, .

Proof: Our proof is by contradiction:3

Assumption B.1 (Leading to a Contradiction): For some
satisfying (13), there exists a coding scheme achieving

some , i.e., some satisfying

and

(50)

The contradiction is obtained in terms of upper and lower
bounds on . On one hand, for satisfying (13), it
follows by the assumption that , in (50), that

(51)

On the other hand, since in the considered point-to-point
problem (cf. Proposition B.1) source-channel separation is
optimal, there exists some such that

(52)

where, under our assumption that

(53)

Combining (52) with (53) gives

(54)

and combining (54) with the upper bound on in (50) gives

(55)

which, combined with the fact that , yields a contra-
diction to (51).

Proof of Lemma B.5: The expression in (49) is nothing but
the explicit form of for . Thus, by
Lemma B.6, it remains to verify that whenever satisfies
(13) and satisfies (38), then cannot lie in . To this
end, we first note that from the explicit form of in (9),
it follows that for any satisfying (38) we have

. We can then verify, using the explicit form of in
(40), that for every and we
have .

3In Assumption B.1 we use the fact that if � �� � �� � �� � � � , then
� �� � �� � � � .

Proof of Lemma B.2: By Lemma B.5 it remains to evaluate
the RHS of (49). To this end, we first rewrite the denominator
on the RHS of (49) as

(56)

Using that and that is the RHS of (40), the
different terms on the RHS of (56) become

(57)

where step follows from replacing by its explicit
form in (9). Similarly, using the explicit form of in (40), we
obtain

(58)

The last term to be evaluated is the sum

(59)

where

(60)

and where in we have replaced and by their ex-
plicit forms in (9) and (40). Combining (57)–(60) with (56) fi-
nally leads to

(61)

which, combined with (49), yields (43).

B. Proof of Lemma B.3

Combining the explicit form of —which for
satisfying (38) and satisfying (13) is given in (49) and
where by Proposition B.1 we have —with Equality
(39) of Remark B.1, yields

(62)
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where we are using the short-hand notation for .
Replacing on the RHS of (62) the term by its upper bound
in (13), for , gives

(63)

Rewriting (63) gives

(64)

which can be rewritten as

C. Proof of Lemma B.4

To prove Lemma B.4, we begin with a reduction.
Reduction B.1: To prove Lemma B.4 it suffices to consider

pairs that are achievable by coding schemes that
achieve with equality

(65)

and for which

(66)

The proof of Reduction B.1 is based on the following lemma.

Lemma B.7: Any sequence of schemes achieving some
boundary point where satisfies (38), must
achieve both distortions with equality, i.e.,

(67)

(68)

Proof: That must be achieved with equality by
any sequence of schemes achieving , follows
from Definition II.4 of .

We now show that if satisfies (38), then also must be
achieved with equality. As we next show, to this end it suffices
to show that for all satisfying (38), the function is
strictly decreasing. Indeed, if is strictly decreasing for

Fig. 2. Monotonicity of � � � �.

all satisfying (38), then a pair for any
satisfying (38) is achievable only if . Hence, any se-
quence of schemes achieving with satisfying
(38), must achieve with equality.

It thus remains to show that for all satisfying (38), the
function , which is illustrated in Fig. 2, is strictly de-
creasing. By Proposition II.1, we have that

(69)

From (69) it follows that

(70)

By the convexity of it follows that is a convex function.
This combines with (70) and our assumption that (38) holds, to
imply that is strictly decreasing in the interval4

where the interval’s end point equals the RHS of (38).

Based on Lemma B.7, the proof of Reduction B.1 follows
easily.

Proof of Reduction B.1: The reduction to optimal re-
constructors is straightforward. Since every
is achievable, it is certainly achievable by some sequence of
schemes with optimal reconstructors.

It remains to prove that it suffices to limit ourselves to
pairs that are achievable by coding schemes
that achieve with equality. To this end, we first note that
by Definition II.4 it suffices to prove Lemma B.4 for pairs

where satisfies (13) and (38). The
proof now follows by Lemma B.7 which states that for such

4Let � � ��� �� � be a finite convex function and let � � ��� ��. If � is
such that

� � � � ���� 	 ����

then � is strictly decreasing in the interval ��� ��. Here we apply this with �

correspondig to � , with � corresponding to the RHS of (38), and with
� ��. This can be proved using [10, Corollary 24.2.1 and Theorem 24.1].



BROSS et al.: BROADCASTING CORRELATED GAUSSIANS 3067

pairs any sequence of schemes achieving must
achieve with equality.

To continue with the proof of Lemma B.4, we next derive a
lower bound on (for finite blocklengths ).

Lemma B.8: Let be a coding scheme
where and satisfy (66). Then, for any satis-
fying

(71)

Lemma B.8 relates the two reconstruction fidelities and
. The difficulty in doing so is that if we consider a scheme

achieving some at Receiver 2, then we can only derive
bounds on entropy expressions that are conditioned on .
However, for a lower bound on we would typically like
to have an upper bound on , or (without
conditioning on .) To overcome this difficulty, we furnish
Receiver 1 with as side-information, and then prove Lemma
B.8 using Lemma A.1 and the following upper bound.

Lemma B.9: If a scheme satisfies the or-
thogonality condition

for every (72)

then

(73)

Proof: The proof is based on the inequality

(74)

which holds for every because the scaled sequence
is a valid estimate of at Receiver 1. The desired bound now
follows by evaluating the LHS of this inequality for the choice
of

(75)

where we have used the shorthand notation for .
Indeed, from (74) and (75) we obtain

(76)

where in the last step we replaced by its explicit value and used
the property that the normalized summation over equals

, which follows from (72). Rearranging terms in (76)
gives

We are now ready to prove Lemma B.8.
Proof of Lemma B.8: Denote by the least distortion

that can be achieved on at Receiver 1 when is provided
as side-information. The proof follows from a lower bound on

as a function of and from an upper bound on as
a function of .

We first derive the lower bound on . To this end, let
denote the rate-distortion function on when

is given as side-information to both, the encoder and the
decoder. Thus, for every

(77)

Since Receiver 1 is connected to the transmitter by a point-to-
point link

(78)

The lower bound on now follows from upper bounding the
RHS of (78) by means of Lemma A.1, and rewriting the LHS of
(78) using (77). This yields

(79)

We next derive the upper bound on by considering the
distortion of a linear estimator of when Receiver 1 has
as side-information. More precisely, we consider the linear es-
timator

where, as we will see, the coefficients correspond to those
in Lemma B.4. To analyze the distortion associated with , first
note that by (66) the orthogonality condition of (72) is satisfied.
Since is a valid estimate of at Receiver 1 when is given
as side-information, we thus obtain
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(80)

where in step we have used that the normalized summations
over and are both equal to , which
follows by (72); and in step , we have used Lemma B.9 and
the assumption that .

The lower bound on of Lemma B.8 now follows easily:
Since the RHS of (79) is monotonically decreasing in ,
combining (80) with (79) gives

where we have denoted by the RHS of (80).

Based on Lemma B.8, the proof of Lemma B.4 now follows
easily.

Proof of Lemma B.4: We show that for any nonnegative
, the achievable distortion is lower bounded by

By Reduction B.1 it suffices to show this for coding schemes
with and given in (66) and

with associated normalized distortions satisfying

and (81)

where satisfies (38). By (81) there exists a subsequence
, tending to infinity, such that

(82)

Hence

where follows from (81); follows from Lemma B.8; and
follows from (82) and from the continuity of with
respect to —a continuity which can be argued from (46) as fol-
lows. The function depends on only through ,
and is strictly positive for all and all

, and it is continuous in because, by (40), is con-
tinuous in . Hence, is continuous in .
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